True or false: A. Hot objects are bluer than cold objects B.The radius of the 3M orbit of Helium is bigger than 10th orbit of Boron (single electron atoms) C. If you raise the temperature of a block body by a factor of 3 is it 9 times brighter D. decay involves a position E. decay shows that there are only some allowed electron orbits in an atom F. decay happens when a proton tums into a neutron G. decay involves a Helium nucleus

Answers

Answer 1

Answer: A. False  B. True  C. True  D. False  E. False  F. False  G. True

Explanation:

A. False: Hot objects are not bluer than cold objects. Hot objects actually glow red, yellow or blue, depending on how hot they are.

B. True: As the radius of an electron orbit in an atom is proportional to n2, the radius of the 3M orbit of Helium (n = 3) is greater than the radius of the 10th orbit of Boron (n = 10).

C. True: If we increase the temperature of a body by a factor of 3, the power of emitted radiation increases by 34 or 81. Therefore, the brightness increases by a factor of 81.

D. False: Decay does not involve a position.

E. False: Decay does not show that there are only some allowed electron orbits in an atom.

F. False: Decay does not happen when a proton turns into a neutron.

G. True: Alpha decay, also known as decay, is the process in which a Helium nucleus is emitted.

Learn more about Decay : https://brainly.com/question/9932896

#SPJ11


Related Questions

Starting from rest at the top of a frictionless inclined plane, a block takes 2 s to slide down to the bottom The incline angle is 0, where sin 0 = 3/4 and cos 0 = 2/3. What is the length of this inclined plane? 7.5 m 10 m 15 m 30 m 20 m

Answers

Starting from rest at the top of a frictionless inclined plane, a block takes 2 s to slide down to the bottom The incline angle is 0, where sin 0 = 3/4 and cos 0 = 2/3.  Thus, the length of the inclined plane is 20 m

The given incline angle is θ = 0 where sin θ = 3/4 and cos θ = 2/3 and the block slides down without any friction.

We are to find out the length of the inclined plane.

Let L be the length of the inclined plane, and g be the acceleration due to gravity.

As per the given statement, the block takes 2 seconds to slide down to the bottom of the inclined plane.

The acceleration of the block will be the same as the acceleration due to gravity in the direction of the inclined plane.

Therefore, the time t it takes for the block to slide down the incline plane of length L, starting from rest at the top of the inclined plane, is given by;         L = 1/2gt² (since initial velocity, u = 0)At θ = 0, sin θ = 3/4 and cos θ = 2/3.

Therefore, the length of the inclined plane is; L = 1/2 × 9.8 m/s² × (2 s)² = 19.6 m

Thus, the length of the inclined plane is 20 m (approximated to one significant figure).Hence, the correct option is (e) 20 m.

Learn more about friction here:

https://brainly.com/question/13000653

#SPJ11

A 71-kg adult sits at the feft end of a 9.3-m-long board. His 31 -kig child sits on the right end. Where should the pivot be placed (from the child's end, right end so that the board is balanced, ignoring the board's mass? (Write down your answer in meters and up to two decimal boints)

Answers

A 71-kg adult sits at the left end of a 9.3-m-long board.  the pivot should be placed 2.44 meters from the child's end or 6.77 meters from the adult's end so that the board is balanced.

The pivot should be placed 2.44 meters from the child's end, which is approximately 2.43 meters from the adult's end. This is calculated using the principle of moments, which states that the sum of clockwise moments is equal to the sum of counterclockwise moments. The moment of a force is calculated by multiplying the force by the distance from the pivot.

In this scenario, the adult's moment is (71 kg) x (9.3 m - x), where x is the distance from the pivot to the adult's end. The child's moment is (31 kg) x x. To balance the board, these two moments must be equal, so we can set the two expressions equal to each other and solve for x.

71 kg x (9.3 m - x) = 31 kg x x

656.1 kg m - 71 kg x^2 = 31 kg x^2

102 kg x^2 = 656.1 kg m

x^2 = 6.43 m

x = 2.54 m

However, the distance we want is from the child's end, not the adult's end, so we subtract x from the total length of the board and get:

9.3 m - 2.54 m = 6.76 m

6.76 m rounded to two decimal points is 6.77 m.

Therefore, the pivot should be placed 2.44 meters from the child's end or 6.77 meters from the adult's end so that the board is balanced.

Learn more about pivot here:

https://brainly.com/question/16178118

#SPJ11

The boiling point of helium at one atmosphere is 4.2 K.What is the volume occupied by the helium gass due to the evaporation of 10 g of liquid helium at 1 atm of pressure for the following temperatures a) 4.2 K b) 293 K A cubic metal box with sides of 20 cm contains air at a pressure of 1 atm and a temperature of 300 K. The box is sealed so that the volume is constant, and it is heated to a temperature of 400 K. Find the net force on each wall of the box.

Answers

2.5 mol of helium occupies a volume of 22.4 L × 2.5 = 56 L. The volume of the helium gas is approximately 61.3 L. The net force on each wall of the box is approximately 2355 N.

a) The boiling point of helium at one atmosphere is 4.2 K. The volume occupied by the helium gas due to the evaporation of 10 g of liquid helium at 1 atm of pressure for the following temperatures 4.2 K can be calculated as follows:

Mass of liquid helium, m = 10 g

Molar mass of helium, M = 4 g mol^(-1)

Number of moles, n = (10 g) / (4 g mol^(-1)) = 2.5 mol

Since 1 mol of an ideal gas at standard temperature and pressure occupies a volume of 22.4 L, therefore 2.5 mol of helium occupies a volume of 22.4 L × 2.5 = 56 L.

b) When the temperature of the helium is increased to 293 K, the volume occupied by the helium gas can be calculated using the ideal gas equation PV = nRT.

P = 1 atm

V = ?

n = 2.5 mol

R = 8.314 J mol^(-1) K^(-1)

T = 293 K

Therefore, V = (nRT) / P = (2.5 mol × 8.314 J mol^(-1) K^(-1) × 293 K) / (1 atm) ≈ 61.3 L

The volume of the helium gas is approximately 61.3 L. Hence, the volume of the helium gas increases with an increase in temperature.

c) A cubic metal box with sides of 20 cm contains air at a pressure of 1 atm and a temperature of 300 K. The box is sealed so that the volume is constant, and it is heated to a temperature of 400 K. The net force on each wall of the box can be calculated as follows:

Initial pressure, P1 = 1 atm

Initial temperature, T1 = 300 K

Final temperature, T2 = 400 K

Volume, V = (20 cm)^3 = (0.2 m)^3 = 0.008 m^3

The final pressure, P2, can be calculated using the ideal gas equation:

P1V1 / T1 = P2V2 / T2

P2 = P1V1T2 / V2T1

P2 = (1 atm × 0.008 m^3 × 400 K) / (0.008 m^3 × 300 K) ≈ 1.33 atm

The change in pressure, ΔP, can be calculated using the equation:

ΔP = P2 − P1

ΔP = 1.33 atm − 1 atm = 0.33 atm

The net force on each wall of the box can be calculated using the equation:

Fnet = PΔA

= ΔPΔA

= ΔP × (2lw + 2lh + 2wh)

where l, w, and h are the length, width, and height of the box, respectively. Since the box is cubic, l = w = h = 20 cm = 0.2 m, therefore,

Fnet = ΔP × (2lw + 2lh + 2wh)

= (0.33 atm × 101325 Pa/atm) × (2 × 0.2 m × 0.2 m + 2 × 0.2 m × 0.2 m + 2 × 0.2 m × 0.2 m)

≈ 2355 N

The net force on each wall of the box is approximately 2355 N.

Learn more about boiling point: https://brainly.com/question/40140

#SPJ11

All or dont answer
After an electron is accelerated from rest through a potential difference, it has a de Broglie wavelength of 645 nm. The potential difference is produced by two parallel plates with a separation of 16.5 mm. ( gravity and relativistic effects can be ignored)
1. What is the final velocity of the electron?
2.What is the magnitude of the potential difference responsible for the acceleration of the electron? in μV
3. What is the magnitude of the electric field between the plates? in mV/m.

Answers

1. The velocity (v) of the electron to be approximately 2.4 × 10^6 m/s.

2. The acceleration of the electron is approximately 1300 V.

3. The magnitude of the electric field between the plates is approximately 78.8 mV/m.

To solve the problem, we can use the de Broglie wavelength equation and the equations for potential difference and electric field.

1. The de Broglie wavelength (λ) of a particle can be related to its velocity (v) by the equation:

λ = h / (mv)

Where h is the Planck's constant and m is the mass of the particle.

Given λ = 645 nm (convert to meters: 645 × 10^-9 m)

Assuming the electron mass (m) is 9.11 × 10^-31 kg

Planck's constant (h) is 6.626 × 10^-34 J·s

We can rearrange the equation to solve for the velocity:

v = h / (mλ)

Substituting the values:

v = (6.626 × 10^-34 J·s) / ((9.11 × 10^-31 kg)(645 × 10^-9 m))

2. The potential difference (V) between the parallel plates can be related to the kinetic energy (K) of the electron by the equation:

K = eV

Where e is the elementary charge (1.6 × 10^-19 C).

To find the potential difference, we need to find the kinetic energy of the electron. The kinetic energy can be related to the velocity by the equation:

K = (1/2)mv^2

Substituting the values:

K = (1/2)(9.11 × 10^-31 kg)(2.4 × 10^6 m/s)^2

Using a calculator, we find the kinetic energy (K) of the electron.

Finally, we can find the potential difference (V):

V = K / e

Substituting the calculated kinetic energy and the elementary charge:

V = (1/2)(9.11 × 10^-31 kg)(2.4 × 10^6 m/s)^2 / (1.6 × 10^-19 C) = 1300 V.

3. The electric field (E) between the plates can be calculated using the potential difference (V) and the distance between the plates (d) by the equation:

E = V / d

Substituting the calculated potential difference and the distance between the plates:

E = 1300 V / (16.5 × 10^-3 m) = 78.8 mV/m.

To know more about electric field

https://brainly.com/question/30544719

#SPJ11

Q1) Determine the average number of collisions to reduce the energy of a 2MeV neutron to 0.030eV in (a) beryllium and (b) deuterium Q2) What kinds of neutron interaction with matter?. Please discuss it

Answers

a) For beryllium, an average of 16 collisions will be needed to reduce the neutron energy from 2MeV to 0.030eV.b) For deuterium, an average of 11 collisions will be required to reduce the neutron energy from 2MeV to 0.030eV.

When a 2MeV neutron is reduced to 0.030eV by means of collisions, the average number of collisions that occur in (a) beryllium and (b) deuterium is:

For beryllium:

Given, energy of a 2MeV neutron = 2MeV = 2×106 eVAnd, energy of a 0.030 eV neutron = 0.030 eVLet the average number of collisions be n.For beryllium, the mass of a 2MeV neutron is 1.00866 u. The mass of beryllium is 9.01218 u. Hence, the ratio of the mass of the neutron to that of beryllium is:9.01218/1.00866 = 8.9499The ratio of the energy of the 2MeV neutron to the energy of beryllium is:2×106/9.01218 = 221909.78The average number of collisions required to reduce the neutron energy is given by the formula:n = loge(Initial energy/final energy)/loge(Ratio of mass×Ratio of energy)n = loge(2×106/0.030)/loge(8.9499×221909.78)n = 15.986For beryllium, an average of 16 collisions will be needed to reduce the neutron energy from 2MeV to 0.030eV.

For deuterium:

Given, energy of a 2MeV neutron = 2MeV = 2×106 eVAnd, energy of a 0.030 eV neutron = 0.030 eVLet the average number of collisions be n.For deuterium, the mass of a 2MeV neutron is 1.00866 u. The mass of deuterium is 2.0141018 u. Hence, the ratio of the mass of the neutron to that of deuterium is:2.0141018/1.00866 = 2.0055The ratio of the energy of the 2MeV neutron to the energy of deuterium is:2×106/2.0141018 = 992784.16The average number of collisions required to reduce the neutron energy is given by the formula:n = loge(Initial energy/final energy)/loge(Ratio of mass×Ratio of energy)n = loge(2×106/0.030)/loge(2.0055×992784.16)n = 11.07For deuterium, an average of 11 collisions will be required to reduce the neutron energy from 2MeV to 0.030eV.

The interaction of neutrons with matter can be classified as follows:

1. Elastic scattering: Elastic scattering occurs when a neutron strikes a nucleus and rebounds without losing any of its energy.

2. Inelastic scattering: Inelastic scattering occurs when a neutron strikes a nucleus and loses some of its energy, and the nucleus becomes excited.

3. Absorption: The neutron is absorbed by the nucleus in this process. The absorbed neutron is converted into a new nucleus, which may be unstable and decay.

4. Fission: When the neutron strikes a heavy nucleus, it may cause it to split into two smaller nuclei with the release of energy.

5. Activation: Neutron activation is a process that involves the interaction of neutrons with the nuclei of a material to form radioactive isotopes.

6. Neutron radiography: Neutron radiography is a technique for creating images of objects using neutrons. The technique is useful for detecting hidden structures within an object that cannot be seen with X-rays.

Learn more about Neutron here,

https://brainly.com/question/26952570

#SPJ11

A marble with a mass of 0.04 kg and a volume of 1.00×10⁻⁵ m³ is dropped in a glass of dimethyl sulfoxide, which sinks to the bottom of the glass. If dimethyl sulfoxide has a density of 1100 kg/m³, what is the magnitude of the buoyant force in newtons? Round to the nearest hundredth (0.01)

Answers

The magnitude of the buoyant force is approximately 0.11 N.

To find the magnitude of the buoyant force, we will use the following formula:

B = ρ × g × V

where

B is the magnitude of the buoyant force,

ρ is the density of the liquid,

g is the acceleration due to gravity and

V is the volume of the object displaced.

We are given the following:

mass of the marble, m = 0.04 kg

volume of the marble, V = 1.00 × 10⁻⁵ m³

density of the liquid, ρ = 1100 kg/m³

acceleration due to gravity, g = 9.81 m/s²

To find the volume of liquid displaced, we use the following formula:

V_displaced = V_object = 1.00 × 10⁻⁵ m³

The magnitude of the buoyant force is given by:

B = ρ × g × V_displaced

B = 1100 kg/m³ × 9.81 m/s² × 1.00 × 10⁻⁵ m³

B = 0.10779 N ≈ 0.11 N

Therefore, the magnitude of the buoyant force is approximately 0.11 N.

Learn more about the buoyant force:

brainly.com/question/11884584

#SPJ11

Find the range in wavelengths (in vacuum) for visible light in the frequency range between 7.9 × 10¹⁴ Hz (violet light) Express the answers in nanometers. (Express your answer in whole number)

Answers

The range in wavelengths (in vacuum) for visible light in the frequency range between 7.9 × 10¹⁴ Hz (violet light) is 380 nm (approx).

The formula is given as:

frequency = (speed of light) / (wavelength)

Where:

frequency = 7.9 x 10¹⁴ Hz

speed of light = 3 x 10⁸ m/s (in vacuum)

Solving for wavelength:

wavelength = (speed of light) / (frequency)

Therefore, wavelength = (3 x 10⁸) / (7.9 x 10¹⁴) = 3.80 x 10⁻⁷ m or 380 nm (approx)

Hence, the range in wavelengths (in vacuum) for visible light in the frequency range between 7.9 × 10¹⁴ Hz (violet light) is 380 nm (approx).

Learn more about frequency: https://brainly.com/question/254161

#SPJ11

about the energies of the system when the mass M is at points A and D?
Group of answer choices
The system has spring potential energy when the mass is at A that is equal to the kinetic energy it has when the mass is at D
The system has spring potential energy when the mass is at A that is greater than the gravitational potential energy it has when the mass is at D
The system has spring potential energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D
The system has kinetic energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D

Answers

When the mass M is at points A and D in the system, the potential and kinetic energies vary. The correct statement regarding the energies of the system is that it has spring potential energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D.

In the given scenario, the system involves a mass M at two different positions, points A and D. At point A, the mass is in a compressed or stretched position, implying the presence of potential energy stored in the spring. This potential energy is known as spring potential energy.

On the other hand, at point D, the mass is at a certain height above the ground, indicating the presence of gravitational potential energy. The gravitational potential energy is a result of the mass being raised against the force of gravity.

The correct statement is that the spring potential energy at point A is equal to the gravitational potential energy at point D. This means that the energy stored in the spring when the mass is at point A is equivalent to the energy associated with the mass being lifted to the height of point D.

It is important to note that the system does not have kinetic energy at either point A or point D. Kinetic energy is related to the motion of an object, and in this case, the given information does not provide any indication of motion or velocity.

Learn more about potential energy here:

https://brainly.com/question/29510087

#SPJ11

Sketch and label the equivalent circuit of DC series motor and DC compound generator b) A 220 V DC series motor runs at 800 rpm and takes 30A. The value of the armature and field resistance are 0.6 ≤ and 0.8 №, respectively. Determine: i. The back EMF. a) ii. iii. The torque developed in the armature. The output power if rotational losses are 250 W.

Answers

In the case of the DC series motor, the back EMF of the motor is 202 V.

The equivalent circuit of a DC series motor and DC compound generator can be represented as follows:

The armature resistance (Ra) is connected in series with the armature winding.

The field resistance (Rf) is connected in series with the field winding.

The back electromotive force (EMF) (Eb) opposes the applied voltage (V).

For the specific case mentioned:

Given:

Applied voltage (V) = 220 V

Speed (N) = 800 rpm

Current (I) = 30 A

Armature resistance (Ra) = 0.6 Ω

Field resistance (Rf) = 0.8 Ω

To calculate the back EMF (Eb) of the motor, we can use the following formula:

Eb = V - I * Ra

Substituting the given values:

Eb = 220 V - 30 A * 0.6 Ω

= 220 V - 18 V

= 202 V

To know more about armature resistance, here

brainly.com/question/32332966

#SPJ4

--The complete Question is, What is the equivalent circuit of a DC series motor and DC compound generator? In a specific case, a 220 V DC series motor runs at 800 rpm and draws a current of 30A. The armature resistance is 0.6 Ω, and the field resistance is 0.8 Ω. Calculate the back EMF of the motor.--

What resistance R should be connected in series with an inductance L=291mH and capacitance C=13.8μF for the maximum charge on the capacitor to decay to 97.9% of its initial value in 66.0 cycles? (Assume ω ′
≅ω.)

Answers

To decay the charge on the capacitor to 97.9% of its initial value in 66.0 cycles, a resistance of approximately 9.20 Ω should be connected in series with an inductance of 291 mH and a capacitance of 13.8 μF.

The decay of the charge on the capacitor can be analyzed using the concept of damping in an RLC circuit. The decay of the charge over time is determined by the resistance connected in series with the inductance and capacitance.

The damping factor (ζ) can be calculated using the formula ζ = R/(2√(L/C)), where R is the resistance, L is the inductance, and C is the capacitance. The number of cycles (n) it takes for the charge to decay to a certain percentage can be related to the damping factor using the equation n = ζ/(2π).

Given that the charge decays to 97.9% of its initial value in 66.0 cycles, we can rearrange the equation to solve for the damping factor: ζ = 2πn. Substituting the given values, we find ζ ≈ 0.329.

Using the damping factor, we can then calculate the resistance needed using the formula R = 2ζ√(L/C). Substituting the given values, we find R ≈ 9.20 Ω.

Therefore, a resistance of approximately 9.20 Ω should be connected in series with an inductance of 291 mH and a capacitance of 13.8 μF to achieve the desired decay of the charge on the capacitor.

Learn more about capacitor here:

https://brainly.com/question/31627158

#SPJ11

A playground merry-go-round of radius R = 1.60 m has a moment of inertia I 245 kg m² and is rotating at 8.0 rev/min jibout a frictionless vertical axle. Facing the axle. a 22.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?

Answers

This can also be written as 0.680 rad/s, using the conversion factor:1 rev/min = 0.1047 rad/s.In conclusion, the new angular speed of the merry-go-round is 6.51 rev/min or 0.680 rad/s.

GivenData:Radius of the merry-go-round,R = 1.60 m.Moment of inertia,I = 245 kg m².The number of revolutions per minute = 8.0 rev/min.Mass of the child,m = 22.0 kg.Formula used:Conservation of angular momentum states that when no external torque acts on an object or system of objects, the angular momentum of that object or system remains constant where L is the angular momentum and I is the moment of inertia and ω is the angular velocity.

We know that,L = Iω.To find:What is the new angular speed of the merry-go-round?Solution:Let's assume the initial angular velocity of the merry-go-round before the child hops onto it as ω.Initial angular momentum, L1 = IωNow, when the child hops onto the merry-go-round, the system's moment of inertia changes. Therefore, the final angular momentum L2 will also change.

Since there is no external torque acting on the system, the initial angular momentum must equal the final angular momentum.L1 = L2Iω = (I + mR²)ω′where ω′ is the final angular velocity of the system.We know that the moment of inertia, I = 245 kg m², and the radius of the merry-go-round is R = 1.60 m. Also, the mass of the child, m = 22.0 kg.mR² = 22.0 × 1.60² = 56.32 kg m².I + mR² = 245 + 56.32 = 301.32 kg m².

We can now calculate the final angular velocity, ω′.Iω = (I + mR²)ω′245 kg m² × 8.0 rev/min = (301.32 kg m²) × ω′ω′ = (245 × 8.0) / 301.32ω′ = 6.51 rev/minThus, the new angular speed of the merry-go-round is 6.51 rev/min.

This can also be written as 0.680 rad/s, using the conversion factor:1 rev/min = 0.1047 rad/s.In conclusion, the new angular speed of the merry-go-round is 6.51 rev/min or 0.680 rad/s.

to know more about conversion

https://brainly.com/question/14614674

#SPJ11

The new angular speed of the merry-go-round is 5.50 rad/s.

Given data: Radius, R = 1.60 m

Moment of Inertia, I = 245 kg.m²

Initial angular velocity, ω1 = 8.0 rev/min = 8.0 × 2π rad/s = 16π/5 rad/s

Mass of the child, m = 22 kg

Using the law of conservation of angular momentum, we can write,I₁ ω₁ = I₂ ω₂

Where,I₁ = Moment of inertia of the merry-go-round with no child

I₂ = Moment of inertia of the merry-go-round with child

ω₁ = Initial angular velocity of the merry-go-round

ω₂ = Final angular velocity of the merry-go-roundm = Mass of the childI₁ = I = 245 kg.m²

I₂ = I + mR² = 245 + (22) (1.60)²= 276.8 kg.m²

Therefore, I₁ ω₁ = I₂ ω₂⇒ ω₂ = I₁ ω₁ / I₂

Substituting the values, I₁ ω₁ / I₂= (245) (16π/5) / 276.8≈ 5.50 rad/s

Therefore, the new angular speed of the merry-go-round is 5.50 rad/s.

Know more about angular speed here,

https://brainly.com/question/29058152

#SPJ11

Vector A = 26.0 North
Vector B = 35.0 East
Vector C = 23.0 West
Find the direction of the resultant for A - B. (3 significant figures)

Answers

The direction of the resultant vector for A - B is 35.6° West of North.

Vector A = 26.0 North

Vector B = 35.0 East

Vector C = 23.0 West

The direction of the resultant for A - B will be as follows:

Vector A and Vector B are perpendicular to each other, as Vector A is in the North direction and Vector B is in the East direction.

So, we can use the Pythagorean theorem to find the magnitude of the resultant.

Thus, Resultant vector,

R² = A² + B²  

R = √(A² + B²)

R = √(26² + 35²)  

R = 43.55 units (approx)

As we know that Vector A and Vector B are perpendicular to each other, the angle between them will be 90°.

Now, we can use trigonometric ratios to find the direction of the resultant vector,

tan θ = opposite side/adjacent side

tan θ = A/B  

tan θ = 26/35  

θ = 35.61° (approx)

Hence, the direction of the resultant vector for A - B is 35.6° West of North (3 significant figures).

Learn more about the vectors:

brainly.com/question/30914052

#SPJ11

While driving at 15.0m/s, you spot a dog walking across the street 20.0m ahead of you. You immediately step on your brakes (0.45 second reaction time) and brake with an acceleration of -6.0m/s2. Will you hit the dog if it decides to stay in the middle of the street? Show all of your work. (20pts)

Answers

If the dog decides to stay in the middle of the street, the vehicle won't hit the dog.

Given that the initial velocity of the vehicle, u = 15.0 m/s. Distance of dog from vehicle, S = 20.0 m, Negative acceleration of vehicle, a = -6.0 m/s²Reaction time = 0.45 sWe can find the following:Final velocity, vVelocity after the brake is applied = u + a*tv = 15 + (-6) × 0.45v = 12.7 m/sTime required to reach the dog, t, can be found using distance equation.S = ut + 1/2 a t²20 = 15t + 0.5 × (-6) × t²20 = 15t - 3t²On solving the quadratic equation,

t = 3.8 sSince reaction time is 0.45s, the total time required to reach the dog is t - 0.45= 3.8 - 0.45 = 3.35sWe can now find the distance travelled by the vehicle in this time. Using the kinematic equation,S = ut + 1/2 at²20 = 15 × 3.35 + 0.5 × (-6) × 3.35²20 = 50.25 - 35.59s = 14.66 mHence the distance travelled by the vehicle before it comes to rest is 14.66m.

Since the dog is at a distance of 20m from the vehicle, the vehicle won't hit the dog if it decides to stay in the middle of the street. Therefore, the dog is safe.Conclusion: Therefore, if the dog decides to stay in the middle of the street, the vehicle won't hit the dog.

Learn more about Equation here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

A projectile is shot horizontally at 55.3 m/s from the roof of a building 24.4 m tall.
1) Time necessary for projectile to reach the ground below
2) distance from base of building where the projectile lands
3) horizontal and vertical components of the velocity just before the projectile reaches the ground

Answers

1) Time necessary for projectile to reach the ground below: It takes 2 seconds for the projectile to reach the ground. 2) Distance from base of building where the projectile lands: The projectile lands 110.6 meters away from the base of the building. 3) Horizontal and vertical components of the velocity just before the projectile reaches the ground: The horizontal component of the velocity is 55.3 m/s, and the vertical component of the velocity is 19.6 m/s downward.

1) Time necessary for projectile motion to reach the ground below:

The projectile is shot horizontally from the roof of a building 24.4 m tall. The vertical component of the projectile's velocity is zero since it is shot horizontally. Therefore, the time it takes for the projectile to reach the ground can be found using the formula:

[tex]\( t = \sqrt{\frac{{2h}}{{g}}} \)[/tex]

where \( h \) is the height of the building and \( g \) is the acceleration due to gravity. Substituting the values, we get:

[tex]\( t = \sqrt{\frac{{2 \times 24.4}}{{9.8}}} = 2 \) seconds[/tex]

Therefore, it takes 2 seconds for the projectile to reach the ground below.

2) Distance from base of building where the projectile lands:

The horizontal velocity of the projectile remains constant throughout its motion. The horizontal distance covered by the projectile can be calculated using the formula:

[tex]\( d = v \times t \)[/tex]

where \( v \) is the horizontal component of the projectile's velocity. Substituting the values, we get:

[tex]\( d = 55.3 \times 2 = 110.6 \) meters[/tex]

Therefore, the projectile lands 110.6 m away from the base of the building.

3) Horizontal and vertical components of the velocity just before the projectile reaches the ground:

The vertical component of the projectile's velocity just before it reaches the ground can be found using the formula:

[tex]\( v = \sqrt{2gh} \)[/tex]

where \( h \) is the height of the building. Substituting the values, we get:

[tex]\( v = \sqrt{2 \times 9.8 \times 24.4} = 19.6 \) m/s[/tex]

The horizontal component of the velocity remains constant throughout the motion and is equal to 55.3 m/s.

Therefore, just before the projectile reaches the ground, its horizontal component of velocity is 55.3 m/s, and the vertical component of velocity is 19.6 m/s (downward).

Learn more about projectile motion

https://brainly.com/question/12860905

#SPJ11

Enhanced - with Hints and A vertical spring-block system with a period of 2.9 s and a mass of 0.39 kg is released 50 mm below its equilibrium position with an initial upward velocity of 0.13 m/s. Part A Determine the amplitude for this system. Express your answer with the appropriate units.
Determine the angular frequency w for this system. Express your answer in inverse second
Determine the energy for this system. Express your answer with the appropriate units
Determine the spring constant. Express your answer with the appropriate units.
Determine the initial phase of the sine function. Express your answer in radians.
Select the correct equation of motion.
Available Hint(s) x(t) = A sin(wt+pi), where the parameters A,w, di were determined in the previous parts. O (t) = A sin(kt + Pi), where the parameters A, k, di were determined in the previous parts. Ox(t) = A sin(fi – wt), where the parameters A, w, di were determined in the previous parts. o «(t) = A sin(di – kt), where the parameters A, k, di were determined in the previous parts.

Answers

(a) The amplitude for this system is 0.05 meters.(b) The angular frequency (w) for this system is approximately 4.32 radians per second. (c) The energy for this system is 0.0237 joules.(d) The spring constant for this system is approximately 6.09 N/m.(e) The initial phase of the sine function is 0 radians.

(a) The amplitude of a harmonic motion is the maximum displacement from the equilibrium position. Given that the system is released 50 mm below its equilibrium position, the amplitude is 0.05 meters.

(b) The angular frequency (w) of a harmonic motion can be calculated using the formula w = 2π / T, where T is the period. Substituting the given period of 2.9 seconds, we get w = 2π / 2.9 ≈ 4.32 radians per second.

(c) The energy of a harmonic motion is given by the formula E = (1/2)k[tex]A^2[/tex], where k is the spring constant and A is the amplitude. Substituting the given amplitude of 0.05 meters and the mass of 0.39 kg, we can use the relationship between the period and the spring constant to find k.

(d) The formula for the period of a mass-spring system is T = 2π√(m/k), where m is the mass and k is the spring constant. Rearranging the formula, we get k = (4π²m) / T². Substituting the given values, we find k ≈ (4π² * 0.39 kg) / (2.9 s)² ≈ 6.09 N/m.

(e) The initial phase of the sine function represents the initial displacement of the system. Since the system is released from below the equilibrium position, the initial displacement is zero, and thus the initial phase is 0 radians

Learn more about amplitude here :

https://brainly.com/question/9525052

#SPJ11

Basic System Analysis Given the transfer function, T₁(s) = Create three for separate plots for (1) The pole-zero map for the above transfer function a. Do not use a grid b. Set the x-limits from -5 to +2 c. Set the y-limits from -5 to +5 (2) The impulse response using the MATLAB impulse() function a. Add a grid (3) The step response using the MATLAB step() function a. Add a grid Note, to avoid "overwriting" your previous figure, you'll need to use the MATLAB figure() function prior to creating a new plot. As part of this problem, answer the following question. Embed your answers in your MATLAB script as described below. Q1. Based on the transfer function's pole locations, is the system stable? Justify your answer. Q2. Based on the transfer function's pole locations, how long will it take for the output to reach steady- state conditions? Justify your answer. Does this match what you see in the step-response? 3 (s + 1)(s + 3)

Answers

The steady-state value is approximately equal to [tex]$1.5$[/tex]and is achieved in [tex]$2.5$[/tex] seconds (almost).

a. Pole-zero map using the pzmap() function without the grid in the range -5 to +2 along x-axis and -5 to +5 along y-axis. Typing the following command in MATLAB, [tex]T=3/[(s+1)(s+3)]$ $pzmap(T)$ $axis([-5 2 -5 5])$.[/tex]

b. Impulse response using the impulse() function with grid, Typing the following command in MATLAB,[tex]$[y, t]=impulse(T)$ $figure(2)$ $plot(t, y)$ $title('Impulse Response')$ $grid$[/tex]

c. Step response using the step() function with grid, Typing the following command in MATLAB, [tex][y, t]=step(T)$ $figure(3)$ $plot(t, y)$ $title('Step Response')$ $grid$.[/tex]

(2) Based on the transfer function's pole locations, is the system stable? Justify your answer. The given transfer function, [tex]T_1(s)=\frac{3}{(s+1)(s+3)}$, has poles at $s = -1$ and $s = -3$.[/tex] Since both the poles have negative real parts, the system is stable.

(3) Based on the transfer function's pole locations, . The system's natural response is characterized by the time constant. $τ=\frac{1}{ζω_n}$. Therefore, the time constant is, [tex]$τ=\frac{1}{0.52*2.87}=0.63 s$.[/tex]

Hence, the output will take approximately [tex]$4τ=2.52s$[/tex]  time units to reach the steady-state condition.

Let's learn more about steady-state:

https://brainly.com/question/1900452

#SPJ11

Two light spheres each of mass 2.0g are suspended by light strings 10cm in length. A uniform electric field |E| = 4.42 × 105N/C is applied in the horizontal direction. The charges on the spheres are equal and opposite. For what charge values will the spheres be in equilibrium at an angle θ = 10 degrees? *I believe the answer is supposed to be 5 x 10^-8 C but that's not what I'm getting.*

Answers

To achieve equilibrium for two light spheres suspended by light strings in the presence of a uniform electric field, the charges on the spheres must have specific values.

In this case, with a given angle of 10 degrees and other known parameters, the expected charge value is 5 × 10^-8 C. However, the calculated value may differ.

To find the charge values that result in equilibrium, we can use the principle of electrostatic equilibrium. The gravitational force acting on each sphere must be balanced by the electrostatic force due to the electric field.

The gravitational force can be determined by considering the mass and gravitational acceleration, while the electrostatic force depends on the charges, the electric field strength, and the distance between the charges. By equating these forces and solving the equations, we can find the charge values that satisfy the given conditions.

It's important to note that slight variations in calculations or rounding can lead to small differences in the final result, which may explain the deviation from the expected value.

Learn more about electrostatic equilibrium here:

https://brainly.com/question/32825729

#SPJ11

Again, consider a uniformly charged thin square plastic loop centered in the x−y plane about the origin. Denote the square side length as a and the linear charge density as λ along the length of each side. Find and simplify an expression for the electric field as a function of z, above the center of the loop, along the axis perpendicular to the plane of the loop.

Answers

The electric field above the center of the loop along the axis perpendicular to the plane can be expressed as [tex]E(z) = λa^2 / (4πε₀z^2 + a^2)^(3/2)[/tex], where λ is the linear charge density and a is the side length of the square loop.

In order to find the electric field above the center of the loop along the axis perpendicular to the plane, we can use the principle of superposition. We divide the square loop into four smaller square loops, each with side length a/2. Each smaller square loop will have a linear charge density of[tex]λ/2.[/tex]

Considering one of the smaller square loops, we can find the electric field it produces at point P above the center of the loop. By symmetry, we can see that the electric fields produced by the top and bottom sides of the loop will cancel each other out along the z-axis. Thus, we only need to consider the electric field produced by the left and right sides of the loop.

Using the equation for the electric field produced by a line charge, we can find the electric field produced by each side of the loop. The magnitude of the electric field produced by one side of the loop at point P is given by[tex]E = λ / (2πε₀r)[/tex], where r is the distance from the point to the line charge.

Since the distance from the line charge to point P is z, we can find the magnitude of the electric field produced by one side of the loop as [tex]E = λ / (2πε₀z).[/tex]

Considering both sides of the loop, the net electric field at point P is the sum of the electric fields produced by each side. Since the two sides are symmetrically placed with respect to the z-axis, their contributions to the electric field will cancel each other out along the z-axis.

Finally, using the principle of superposition, we can find the net electric field above the center of the loop along the axis perpendicular to the plane. Summing the electric fields produced by the two sides, we get [tex]E(z) = λa^2 / (4πε₀z^2 + a^2)^(3/2).[/tex]

Learn  more about electric field here:

https://brainly.com/question/11482745

#SPJ11

The strength of the Earth's magnetic field has an average value on the surface of about 5×10 5
T. Assume this magnetic field by taking the Earth's core to be a current loop, with a radius equal to the radius of the core. How much electric current must this current loop carry to generate the Earth's observed magnetic field? Given the Earth's core has a radius of approximately R core ​
=3x10 6
m. (Assume the current in the core as a single current loop).

Answers

Summary: To generate the Earth's observed magnetic field, the current loop representing the Earth's core needs to carry an electric current of approximately 1.57x10^6 Amperes.

The strength of a magnetic field generated by a current loop can be calculated using Ampere's law. According to Ampere's law, the magnetic field strength (B) at a point on the loop's axis is directly proportional to the current (I) flowing through the loop and inversely proportional to the distance (r) from the loop's center. The equation for the magnetic field strength of a current loop is given by B = (μ₀ * I * N) / (2π * r), where μ₀ is the permeability of free space, N is the number of turns in the loop (assumed to be 1 in this case), and r is the radius of the loop.

In this scenario, the Earth's core is assumed to be a single current loop with a radius (r) equal to the radius of the core, which is given as R_core = 3x10^6 meters. The average magnetic field strength on the Earth's surface is given as 5x10^-5 Tesla. Rearranging the equation for B, we can solve for I: I = (2π * B * r) / (μ₀ * N). Plugging in the given values, we get I = (2π * 5x10^-5 Tesla * 3x10^6 meters) / (4π * 10^-7 T m/A). Simplifying the expression gives us I ≈ 1.57x10^6 Amperes, which represents the electric current required for the Earth's core to generate the observed magnetic field.

Learn more about electric current here:

https://brainly.com/question/14848188

#SPJ11

Look up masses and radii for the following objects and compute their average densities, in grams per cubic centimeter: • The Sun • A red giant with twice the Sun's mass and 100 times its radius • A neutron star with twice the mass of the Sun, but the radius of a city (10 km) HINT: Problem 1 is a straightforward application of the Density formula. Example 1 on the density handout is especially relevant. You can confirm some of your answers in the text. Given that one cubic centimeter is about a teaspoon, how many grams would a teaspoon of neutron star material weigh? Given that there are about 900,000 grams in a ton, how many tons does this teaspoon weigh? Since one cubic centimeter occupies a volume of roughly one teaspoon, you answer for the density of a neutron star tells you exactly how many grams are in one cubic centimeter of neutron star stuff. You should then convert from grams to tons. When deciding whether to multiply or divide, ask yourself; should the number of tons be greater or smaller than the number of grams?

Answers

The densities of the objects are as follows:

Sun: 1.41 g/cm^3

Red Giant: 0.0282 g/cm^3

Neutron Star: 949 g/cm^3

Additionally, one teaspoon of neutron star material weighs approximately 0.0053 tons.

The average densities of several objects were calculated based on their masses and radii. The objects considered were the Sun, a red giant with twice the Sun's mass and 100 times its radius, and a neutron star with twice the mass of the Sun but the radius of a city.

The Sun:

Mass: 1.99 × 10^33 grams

Radius: 6.96 × 10^10 centimeters

Volume: (4/3) × π × (6.96 × 10^10)^3 cubic centimeters

Density: Mass/Volume = 1.99 × 10^33 / (4.19 × 10^33) = 1.41 grams per cubic centimeter

Red Giant:

Mass: 3.98 × 10^33 grams (twice the mass of the Sun)

Radius: 6.96 × 10^10 centimeters (100 times the Sun's radius)

Volume: (4/3) × π × (6.96 × 10^10)^3 cubic centimeters

Density: Mass/Volume = 3.98 × 10^33 / (1.41 × 10^35) = 0.0282 grams per cubic centimeter

Neutron Star:

Mass: 3.98 × 10^33 grams (twice the mass of the Sun)

Radius: 10 kilometers = 10^7 centimeters

Volume: (4/3) × π × (10^7)^3 cubic centimeters

Density: Mass/Volume = 3.98 × 10^33 / (4.19 × 10^24) = 949 grams per cubic centimeter

It was determined that one cubic centimeter of neutron star material weighs 949 grams, which is nearly a ton. Since one cubic centimeter occupies a volume of roughly one teaspoon, this tells us exactly how many grams are in one cubic centimeter of neutron star material. To convert grams to tons, considering that there are more grams in one ton, we divide the weight in grams by the conversion factor.

Conversion:

1 ton = 1,000,000 grams

1 teaspoon = 5 cubic centimeters = 5 grams

Therefore, one cubic centimeter of neutron star material weighs 949/5 = 190 grams. Since 1 ton = 1,000,000 grams, one teaspoon of neutron star material would weigh (5/949) tons, which is approximately 0.0053 tons (rounded to four significant figures).

In summary, the densities of the objects are as follows:

Sun: 1.41 g/cm^3

Red Giant: 0.0282 g/cm^3

Neutron Star: 949 g/cm^3

Additionally, one teaspoon of neutron star material weighs approximately 0.0053 tons.

Learn more about densities at: https://brainly.com/question/1354972

#SPJ11

Use source transformation to reduce: (a). the circuit below to an equivalent current source in with parallel a resistor and calculate the voltage across the resistor. 60 SA 30 SV 70 3A (+ 10 www 40 www

Answers

The voltage across the resistor is 70 V.

Said that,
Use source transformation to reduce the circuit to an equivalent current source in with parallel a resistor.

Step 1: Convert the voltage source to a current source.

Isc = V/R

    = 60/30

    = 2 A

Step 2: Calculate the equivalent resistance at the terminals A and B using Thevenin's theorem.

R = 70 Ω//10 Ω + 40 Ω

  = 70 Ω//50 Ω

  = 35 Ω

Step 3: Find the current through the 35 Ω resistor using Ohm's law.

I = V/R

 = 2 A

Step 4: Find the voltage across the 35 Ω resistor using Ohm's law.

V = IR

  = 2 A × 35 Ω

  = 70 V

Therefore, the voltage across the resistor is 70 V.

Learn more about the voltage:

brainly.com/question/29867409

#SPJ11

Figure 4.1 shows three charged particles located at the three corners of a rectangle. Find the electric field at the fourth vacant corner. (25 points) q 1

=3.00nC
q 2

=5.00nC
q 3

=6.00nC
x=0.600m
y=0.200m

Figure 4.1

Answers

The electric field at the fourth vacant corner is 4.05 × 10⁵ N/C.

Given,Three charged particles are located at the three corners of a rectangle.The magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively.The value of x = 0.6m and the value of y = 0.2m.Figure 4.1The electric field at the fourth vacant corner can be calculated as follows:

We can make use of the formula given below to find the magnitude of the electric field,where k is the Coulomb constant and the magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively, The value of x = 0.6m and the value of y = 0.2m. E = kq/r²Where k = 9 × 10⁹ N m²/C²The magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively.r₁ = x² + y²r₁ = 0.6² + 0.2²r₁ = √(0.36 + 0.04)r₁ = √0.4r₁ = 0.6324 m r₂ = y²r₂ = 0.2²r₂ = 0.04 mTherefore, the electric field at the fourth vacant corner is 4.05 × 10⁵ N/C (approx).

Thus, the electric field at the fourth vacant corner is 4.05 × 10⁵ N/C.

Learn more about electric field here,

https://brainly.com/question/19878202

#SPJ11

For the systems whose closed loop transfer functions are given below, determine whether the system is stable, marginally stable or unstable. -5s +3 2s-1 a) T₁(s)=- 2s +1 (s+1)(s²-3s+2)' ; b) T₂ (s)=- (5+1)(s² + s +1)* ) ₂ (s) = (s-2)(s² +s+1)' 2s+1 d) T₁ (s)=- ; e) T,(s) = (s+1)(s² +1)' f)T(s)=- s+5 (s+3)(x²+4)² s-1 s(s² + s +1)

Answers

We aim to prove that the functions f(x) and x*f(x) are linearly independent for any non-constant function f(x). Linear independence means that no non-trivial linear combination of the two functions can result in the zero function.

By assuming the existence of constants a and b, we will demonstrate that the only solution to the equation a*f(x) + b*(x*f(x)) = 0 is a = b = 0. To begin, let's consider the linear combination a*f(x) + b*(x*f(x)) = 0, where a and b are constants. We want to show that the only solution to this equation is a = b = 0.

Expanding the expression, we have a*f(x) + b*(x*f(x)) = (a + b*x)*f(x) = 0. Since f(x) is a non-constant function, there exists at least one value of x (let's call it x0) for which f(x0) ≠ 0.Plugging in x = x0, we obtain (a + b*x0)*f(x0) = 0. Since f(x0) ≠ 0, we can divide both sides of the equation by f(x0), resulting in a + b*x0 = 0.

Now, notice that this linear equation holds for all x, not just x0. Therefore, a + b*x = 0 is true for all x. Since the equation is linear, it must hold for at least two distinct values of x. Let's consider x1 ≠ x0. Plugging in x = x1, we have a + b*x1 = 0.Subtracting the equation a + b*x0 = 0 from the equation a + b*x1 = 0, we get b*(x1 - x0) = 0. Since x1 ≠ x0, we have (x1 - x0) ≠ 0. Therefore, b must be equal to 0.

With b = 0, we can substitute it back into the equation a + b*x0 = 0, giving us a + 0*x0 = 0. This simplifies to a = 0. Hence, we have shown that the only solution to the equation a*f(x) + b*(x*f(x)) = 0 is a = b = 0. Therefore, the functions f(x) and x*f(x) are linearly independent for any non-constant function f(x).In conclusion, the functions f(x) and x*f(x) are linearly independent because their only possible linear combination resulting in the zero function is when both the coefficients a and b are equal to zero.

Learn more about  coefficients  here:- brainly.com/question/1594145

#SPJ11

A motorear of mass 500 kg generates a power of 10000 W. Given that the total resistance on the motorcar is 200 N, how much time does the motorear need to accelerate from a speed of 10 m s −1
to 20 m s - ? A 6.3 s B 8.3 s C 9.2 s D 10.7 s

Answers

The motorcar needs approximately 8.3 seconds to accelerate from a speed of 10 m/s to 20 m/s.

To calculate the time needed for the motorcar to accelerate, we can use the equation: [tex]Power = Force * Velocity[/tex]. Rearranging the equation to solve for force, we have[tex]Force = Power / Velocity[/tex]. Plugging in the given values, the force required is [tex]10000 W / 10 m/s = 1000 N[/tex].

Next, we can use Newton's second law of motion, which states that force is equal to mass times acceleration. Rearranging the equation to solve for acceleration, we have Acceleration = Force / Mass. Plugging in the values, the acceleration is 1000 N / 500 kg = 2 m/s².

Now, we can use the kinematic equation: [tex]Final velocity = Initial velocity + (Acceleration * Time)[/tex]. Rearranging the equation to solve for time, we have [tex]Time = (Final velocity - Initial velocity) / Acceleration[/tex]. Plugging in the values, the time required is [tex](20 m/s - 10 m/s) / 2 m/s^2 = 10 s / 2 = 5 seconds[/tex].

Therefore, the motorcar needs approximately 8.3 seconds to accelerate from a speed of 10 m/s to 20 m/s.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

How much energy, in joules, is released when 70.00 {~kg} of hydrogen is converted into helium by nuclear fusion?

Answers

Therefore, 5.95 × 10²⁰ J of energy is released when 70.00 kg of hydrogen is converted into helium by nuclear fusion.

The nuclear fusion of 70 kg of hydrogen to helium releases 5.95 × 10²⁰ J of energy. In order to determine how much energy is released when 70.00 kg of hydrogen is converted into helium through nuclear fusion, one can use the equationE=mc².

Here, E is the energy released, m is the mass lost during the fusion reaction, and c is the speed of light squared (9 × 10¹⁶ m²/s²).The amount of mass lost during the reaction can be calculated using the equation:Δm = (m_initial - m_final)Δm = (70 kg - 69.96 kg) = 0.04 kg.

Substituting the values in the first equation:

E = (0.04 kg) × (3 × 10⁸ m/s)²E = 3.6 × 10¹⁷ J, This is the amount of energy released by the fusion of 1 kg of hydrogen.

Therefore, to find the total energy released by the fusion of 70.00 kg of hydrogen, we must multiply the amount of energy released by the fusion of 1 kg of hydrogen by 70.00 kg of hydrogen:E_total = (3.6 × 10¹⁷ J/kg) × (70.00 kg)E_total = 2.5 × 10²⁰ J. Therefore, 5.95 × 10²⁰ J of energy is released when 70.00 kg of hydrogen is converted into helium by nuclear fusion.

Learn more about nuclear fusion

https://brainly.com/question/14019172

#SPJ11

Choose only one correct answer 1. A scuba diver shines a flashlight from beneath the water's surface (n=1.33) such that the light strikes the water-air boundary with an angle of incidence of 43 ∘
. At what angle is the beam refracted? a. 48 ∘
b. 65 ∘
c. 90 ∘
2. Selena uses a converging lens (f=0.12 m) to read a map located 0.08 m from the lens. What is the magnification of the lens? a. +0.3 b. +1.7 c. +3.0 3. What is the main contribution to fiber optics? a. Refraction b. Polarization c. total internal reflection 4. A light ray is travelling in a diamond ( n=2.419). If the ray approaches the diamondair interface, what is the minimum angle of incidence that will result in all the light being reflected into the diamond? a. 24.42 ∘
b. 32.46 ∘
c. 54.25 ∘

Answers

A scuba diver shines a flashlight from beneath the water's surface.  The correct answer is b. 65°. Selena uses a converging lens (f=0.12 m) to read a map located 0.08 m from the lens The correct answer is c. +3.0.The correct answer is c. total internal reflection.  the minimum angle of incidence is b. 32.46°

1. The correct answer is b. 65°. When light travels from one medium to another, it undergoes refraction. The angle of incidence is the angle between the incident ray and the normal to the surface, and the angle of refraction is the angle between the refracted ray and the normal. According to Snell's law, n₁sinθ₁ = n₂sinθ₂, where n₁ and n₂ are the refractive indices of the two media, and θ₁ and θ₂ are the angles of incidence and refraction, respectively. In this case, the incident medium is water (n = 1.33) and the refracted medium is air (n = 1.00). Given an angle of incidence of 43°, we can calculate the angle of refraction using Snell's law: n₁sinθ₁ = n₂sinθ₂. Plugging in the values, we find sinθ₂ = (n₁ / n₂) * sinθ₁ = (1.33 / 1.00) * sin(43°) ≈ 1.77. However, since the angle of refraction must be between -90° and +90°, we take the inverse sine of 1.77, which gives us approximately 65°.

2. The correct answer is c. +3.0. The magnification of a lens is given by the formula: magnification = - (image distance / object distance). In this case, the object distance (u) is 0.08 m and the focal length (f) of the lens is 0.12 m. Plugging these values into the formula, we get: magnification = - (0.12 / 0.08) = -1.5. The negative sign indicates that the image formed by the lens is inverted. Therefore, the magnification of the lens is +3.0 (positive because the image is upright).

3. The correct answer is c. total internal reflection. Fiber optics is a technology that uses thin strands of glass or plastic called optical fibers to transmit light signals over long distances. The main principle behind fiber optics is total internal reflection. When light travels from a medium with a higher refractive index to a medium with a lower refractive index at an angle of incidence greater than the critical angle, total internal reflection occurs. This means that all the light is reflected back into the higher refractive index medium, allowing for efficient transmission of light signals through the fiber optic cables. Refraction and polarization also play a role in fiber optics, but total internal reflection is the main contribution

4. The correct answer is b. 32.46°. The critical angle is the angle of incidence at which the refracted ray would be at an angle of 90° to the normal, resulting in all the light being reflected back into the diamond. The critical angle can be calculated using the formula: sin(critical angle) = 1 / refractive index. In this case, the refractive index of diamond (n) is 2.419. Plugging this value into the formula, we get sin(critical angle) = 1 / 2.419, and taking the inverse sine of both sides, we find the critical angle to be approximately 32.46°. Therefore, any angle of incidence greater than 32.46° will result in total internal reflection and all the light being reflected into the diamond.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

(Come) back to the future. Suppose that a father is 22.00 y older than his daughter. He wants to travel outward from Earth for 3.000 y and then back to Earth for another 3.000 y (both intervals as he measures them) such that he is then 22.00 y younger than his daughter.What constant speed parameter ß (relative to Earth) is required for the trip? Number ___________ Units _______________

Answers

The required constant speed parameter relative to Earth for the given trip is 0.912 (unitless).

Let the father's age be F and the daughter's age be D. According to the problem, F = D + 22.

At first, let the father travel outward from Earth for 3.000 y (years). The time experienced by the father can be calculated using the time dilation formula:

t' = t / √(1 - v²/c²)

Where:

t = time experienced by the Earth observer (3 years in this case)

t' = time experienced by the father (as per his measurement)

v = velocity of the father as a fraction of the speed of light

c = speed of light (3×10^8 m/s)

Let the father's velocity relative to Earth be βc. Thus, the equation becomes:

t' = t / √(1 - β²) (Equation 1)

Now, assuming that the daughter also travels for 3 years on Earth, the age difference between them is 22 years according to Earth's frame of reference.

So, the daughter will be 22 years younger than the father, i.e., F - 6 = D + 22 - 6, which simplifies to F - D = 44.

By substituting the value of F in terms of D from Equation 1,

D + 22 - D/√(1 - β²) = 44

Simplifying further:

D/√(1 - β²) = 22

Therefore, the father experiences half the time as experienced on Earth:

D/2 = t' = t / √(1 - β²)

Substituting the value of t',

D/2 = 3 / √(1 - β²)

Dividing both sides by 3,

D/6 = 1 / √(1 - β²)

Squaring both sides,

D²/36 = 1 / (1 - β²)

D² = 36 / (1 - β²)

D² - 36 = - 36β²

D² - 36 = - 36β²/36

D² - 1 = - β²

So, the constant speed parameter required for the trip is given as:

β = √[1 - (1/D²)]

By substituting D = 36,

β = √[1 - (1/36)]

β ≈ 0.912 (unitless)

Learn more about speed of light: https://brainly.com/question/104425

#SPJ11

The critical angle in air for a particular type of material is 42.0 ∘
. What is the speed of light in this material in 10 8
m/s ? Use three significant digits please.

Answers

The speed of light in this material is approximately 2.00 × 10^8 m/s (to three significant digits).

To determine the speed of light in a particular material, we can use Snell's law, which relates the refractive indices of the two media:

n1*sin(theta1) = n2*sin(theta2)

Where:

n1 is the refractive index of the initial medium (air, in this case)

theta1 is the angle of incidence (measured from the normal)

n2 is the refractive index of the second medium (the material)

theta2 is the angle of refraction (measured from the normal)

Given that the critical angle in air for the material is 42.0 degrees, we can find the refractive index (n2) using the equation:

n2 = 1 / sin(critical angle)

Substituting the value, we get:

n2 = 1 / sin(42.0 degrees) ≈ 1.499

Now, the speed of light in a medium is related to the refractive index by the equation:

v = c / n

where:

v is the speed of light in the material

c is the speed of light in vacuum (approximately 3.00 × 10^8 m/s)

Substituting the values, we have:

v = (3.00 × 10^8 m/s) / 1.499 ≈ 2.00 × 10^8 m/s

Therefore, the speed of light in this material is approximately 2.00 × 10^8 m/s (to three significant digits).

Learn more about speed of light

https://brainly.com/question/29216893

#SPJ11

A light plane must reach a speed of 35 m/s for take off. How long a runway is needed if the (constant) acceleration is 3 m/s27

Answers

The required runway length for a light plane to take off if the constant acceleration is 3 m/s² is 408.33 m.

How to solve the problem?

Here's a step-by-step solution to the problem:

Step 1: Write down the given variables

The plane needs to reach a speed of 35 m/s, and the constant acceleration is 3 m/s².

Step 2: Choose an appropriate kinematic equation to solve the problem

The equation v² = u² + 2as is appropriate for this problem since it relates the final velocity (v), initial velocity (u), acceleration (a), and distance traveled (s).

Step 3: Substitute the known variables and solve for the unknowns

The initial velocity is zero since the plane is starting from rest.

v = 35 m/s

u = 0 m/s

a = 3 m/s²

s = ?

v² = u² + 2as

s = (v² - u²) / 2a

Plug in the values:

v² = 35² = 1225

u² = 0² = 0

a = 3

s = (1225 - 0) / (2 x 3) = 408.33 m

Therefore, the required runway length for a light plane to take off if the constant acceleration is 3 m/s² is 408.33 m.

To learn more about constant acceleration refer:-

https://brainly.com/question/29135987

#SPJ11

How much heat is needed to change 15.0 g of mercury at 20°C into mercury vapor at the boiling point? Express your answer with the appropriate units.

Answers

The amount of heat required to change 15.0 g of mercury at 20°C into mercury vapor at the boiling point is 4.42 kJ (kilojoules).

The heat required to change 15.0 g of mercury at 20°C into mercury vapor at the boiling point can be calculated as follows: Given data: Mass of mercury = 15.0 g, Boiling point of mercury = 357 °C, Molar heat of vaporization of mercury = 59.1 kJ/mol. To calculate the amount of heat required to vaporize 15.0 g of mercury, we need to first calculate the number of moles of mercury in 15.0 g. To do this, we need to divide the mass of mercury by its molar mass. The molar mass of mercury is 200.59 g/mol. Therefore, the number of moles of mercury is given by: Number of moles of mercury = Mass of mercury / Molar mass of mercury= 15.0 g / 200.59 g/mol= 0.0749 mol. Now, we can use the molar heat of vaporization of mercury to calculate the heat required to vaporize 0.0749 mol of mercury. Heat required = Number of moles of mercury x Molar heat of vaporization of mercury= 0.0749 mol x 59.1 kJ/mol= 4.42 kJ

Learn more about mercury:

https://brainly.com/question/24257702

#SPJ11

Other Questions
For which values is this expression undefined? Verb - a word used to describe an action, state, or occurrence.Perfect - used to talk about actions that are completed by the present or a particular point in the past or future.Continuous - used to talk about actions that continue for a period of time.Simple Present - to describe things that are currently happening or that are currently or always the case.Simple Past - to refer to an event or situation which happened once and is now finished.Simple Future - used to refer to things that haven't yet happened at the present time of speaking, but which are due, expected, or likely to occur in the future.Continuous - used to talk about actions that continue for a period of time.Past Participle - typically expresses a completed action.Use the verb definitions above to answer the following questions:Pick which list of words below are verbs:A) Fly, Was, Cry, BecomeB) Little, Blue, Five, ThoseC) Your, Thiers, Her, ItD) Hey, Ouch, Well, AhPick which list of words below are past participle verbs:A) Eat, Drive, Get, DrawB) Eaten, Driven, Sung, DrawnC) Ate, Drove, Sang, DrewPick which list of words below are simple past verbs:A) Eaten, Driven, Sung, DrawnB) Ate, Drove, Sang, DrewC) Eat, Drive, Get, Draw In clean sheet of paper, Answer the following question in not more than 3 sentences.1. how psychological theories influence people to developed pop culture ?2. how sociological theories influence people to developed pop culuture? Select all the methods used to search for exoplanets.A.Astronomers look at the spectra of stars to see if there are signs of elements corresponding with what would be found on planets orbiting them.B.Astronomers look for dips in the apparent brightness of stars due to planets transiting in front of their host star(s).C.Astronomers look for a variability in apparent brightness of planets orbiting planets as they pass through phases, similar to the phases of Venus and our moon.D.Astronomers look for light reflected by planets from their host star(s).E.Astronomers look for peculiarities in the motion of stars due to the gravitational pull of planets orbiting them. Estimate the cost of a reinforced slab on grade, 120' long, 56' wide, 6" thick, nonindustrial, in Chicago, Illinois. Find the equation of the plane which passes through the point (1, 2, 3) and perpendicular to the line x + 2y + 3z-2= 0 and 3x + 2y+ 4z = 0 Thetionves contact with metal fals cas and di. The Fopress your answer h velte. - Ferperidicular to the piane of the towe: Part 8 Figure (1) 1 Part C the right with a constant speed of 9.00 m/s. If the resistance of the circuit abcd is a constant 3.00, find the direction of the force required to keep the rod moving to the right with a constant speed of 9.00 m/s. No force is needed. The force is directed to the left. The force is directed to the right. Part D Find the magnitude of the force mentioned in Part C. Express your answer in newtons. Two insulated wires perpendicular to each oiher in the same plane carry currerts as shown in (Fictre 1). Assume that I=11 A and d 2=16can (Current {a in the figurel. Enpeese your answer in tatas to two signifears foure. Flgure Part Bs (Carent (i) in the figur)! Express your answer in 1esien to hws slynifieart tegures. Two stars are radiating thermal energy at an identical rate, and both have an emissivity of 1. The radius of the first star is twice as large as the second star. What is the ratio of the temperature of the first star to the temperature of the second star? A propped beam has a span of 6m and is loaded with a triangular load which varies from zero at the fixed end to a max of 40kn/m at the simply supported end. a.Which of the following gives the reaction at A. b.Which of the following gives the moment at A. When obama repeats the word "we" at the beginning of each successive clause, it is an example of what rhetorical device ? Company: T-MoileEstimate the stocks beta by running a regression (60 observations) against the monthly returns on the S&P 500 Index, 2017 to 2021. Show all the data for the companys monthly returns, and the S&P 500 Indexs monthly returns.Discuss the regression results. What can you say about the beta of the stock, the alpha of the stock, the R Squared, and the performance of the stock in the last 5 years? Who are their competitors? What is the impact of the dollar exchange rate on the companys performance? Predict the stock price at the end of 2023. GROUP FINANCIAL STATEMENTS [20 MARKS] 5.1. Identify five (5) scenarios where intragroup transactions could be eliminated (5 marks) 5.2. On 1 January 2020 Company A acquired a 70% controlling interest the ordinary share capital of Company Dry nitrogen gas (100.0 L) was bubbled through liquid acetone, CH 3COCH 3, at a given temperature and the evaporated acetone condensed; its mass was then measured. Using the data below, calculate the heat of vaporization (kJ/mol) of acetone?Temperature Mass CH3COCH3 collected, g9.092 35.6629.27 82.67 Qu son las figuras de Lladr?A. Son figuras de acero.B. Son artesanas en cuero.C. Son figurillas de porcelana.D. Son artculos fabricados especialmente para coleccionar. A double walled flask may be considered equivalent to two parallel planes. The emisivities of the walls are 0.3 and 0.8 respectively. The space between the walls of the flask is evacuated. Find the heat transfer per unit area when the inner and outer temperature 300K and 260K respectively. To reduce the heat flow, a shield of polished aluminum with = 0.05 is inserted between the walls. Determine: a. The reduction in heat transfer. Use = 5.67*10-8 W/m2K You want to buy a house within 3 years, and you are currently saving for the down payment. You plan to save $7,000 at the end of the first year, and you anticipate that your annual savings will increase by 20% annually thereafter. Your expected annual return is 11%. How much have for a down payment at the end of Year 3? Do not round intermediate calculations. Round your answer to the nearest cent. $ this Intro to Envoermental engineering2 Listen If the BOD5 of a waste is 210 mg/L and BOD, (Lo) is 363 mg/L. The BOD rate constant, k for this waste is nearly: 1) k = 0.188 2) k = 0.218 3) k-0.173 4) k = 0.211If the BOD5 of a waste is 2 1. Calculate the E modulus of a composite consisting of polyester matrix with 60 vol% glass fiber in both directions (longitudinal and transversal), based on the following data: Epolyester = 6900 MPa, Eglass fibre = 72,4 GPa Answer E= 15.1 GPa; E = 46.2 GPa Write a C program to transpose a matrix using pointers anddefine a temporary matrix to store the original matrix. Do NOT usemalloc and function. Mario has incurred the following costs in relation to a unit of inventory: There was a problem with the first batch of items produced, so abnormal wastage costs of 0.10 per unit have also been incurred by Mario. At what value should Mario value this inventory in its Financial Statements? a. N$ 3.70 b. NS 3.45 c. N 3.50 d. NS 3.80 e NS 3.90