Han make sparkling juice by mixing 1. 5 liter of juice and 500 milliliter of sparkling water

Answers

Answer 1

Han will have 2 liters (or 2000 milliliters) of sparkling juice after combining 1.5 liters of juice and 500 milliliters of sparkling water.

To make sparkling juice, Han mixes 1.5 liters of juice and 500 milliliters of sparkling water.

To add the quantities together, we need to convert the units to the same measurement. We can convert the liters to milliliters since 1 liter is equal to 1000 milliliters.

1.5 liters is equal to 1.5 x 1000 = 1500 milliliters.

Now we have 1500 milliliters of juice and 500 milliliters of sparkling water.

To find the total quantity of the sparkling juice, we add the volumes of juice and sparkling water together:

1500 milliliters + 500 milliliters = 2000 milliliters

Therefore, Han will have a total of 2000 milliliters (or 2 liters) of sparkling juice by mixing 1.5 liters of juice and 500 milliliters of sparkling water.

For more such questions on combining visit:

https://brainly.com/question/28065038

#SPJ8


Related Questions

In square $ABCD,$ $P$ is on $\overline{BC}$ such that $BP = 4$ and $PC = 1,$ and $Q$ is on $\overline{CD}$ such that $DQ = 4$ and $QC = 1.$ Find $\sin \angle PAQ.$

Answers

To find $\sin \angle PAQ,$ we can first observe that triangle $APQ$ is a right triangle since $AD$ is a diagonal of square $ABCD.$ Therefore, $\angle PAQ$ is a right angle.

We can use the Pythagorean Theorem to find the lengths of $AQ$ and $AP.$ Since $DQ = 4$ and $QC = 1,$ we have $AQ = DQ + QC = 4 + 1 = 5.$ Similarly, since $BP = 4$ and $PC = 1,$ we have $AP = BP + PC = 4 + 1 = 5.$

In a right triangle, the sine of a right angle is always $1.$ Therefore, $\sin \angle PAQ = \boxed{1}.$

Hope you understood and good luck
Final answer:

In triangle PAD, using the Pythagorean theorem, we find AD = 5√2. Given that ∠PAQ's opposite side is PQ, which equals 3, we have sin∠PAQ = PQ/AQ = √2/10.

Explanation:

In square ABCD, we are given that points P and Q are on lines BC and CD respectively such that BP=4 and PC=1, DQ=4 and QC=1. Considering triangle PAD, it is a right triangle in the given square, and, using the Pythagorean theorem, we can find the hypotenuse AD as AD = √(5² + 5²) = 5√2. The same reasoning, AD = AQ.

Because ∠PAQ is the angle we are interested in finding the sine of, we know that sin∠PAQ = opposite/hypotenuse. In this case, the opposite side is PQ which we determine is 3 using the given distances (PC+QC). So, sin∠PAQ = PQ/AQ = 3/(5√2) = √2/10. Thus, the sine of angle PAQ is √2/10.

Learn more about Trigonometry here:

https://brainly.com/question/31896723

#SPJ2

Let X and Y have joint pdf .
a. Compute P(X < 1/2 Ç Y > 1/4).
b. Derive the marginal pdfs of X and Y.
c. Are X and Y independent? Show some calculations in support of your answer.
d. Derive f(x|y) = {the conditional pdf of X given Y=y}

Answers

Answer:

To answer the questions, I'll assume that you're referring to continuous random variables X and Y. Let's go through each part:a. To compute P(X < 1/2 ∩ Y > 1/4), we integrate the joint probability density function (pdf) over the given region:P(X < 1/2 ∩ Y > 1/4) = ∫∫ f(x, y) dx dyb. To derive the marginal pdfs of X and Y, we integrate the joint pdf over the other variable. The marginal pdf of X can be obtained by integrating the joint pdf over Y:fX(x) = ∫ f(x, y) dySimilarly, the marginal pdf of Y can be obtained by integrating the joint pdf over X:fY(y) = ∫ f(x, y) dxc. To determine if X and Y are independent, we need to check if the joint pdf can be expressed as the product of the marginal pdfs:f(x, y) = fX(x) * fY(y)If this condition holds, X and Y are independent.d. The conditional pdf of X given Y = y can be derived using the joint pdf and the marginal pdf of Y:f(x|y) = f(x, y) / fY(y)By substituting the values from the given joint pdf, we can obtain the conditional pdf of X given Y = y.Please provide the specific joint pdf for X and Y, and I'll be able to assist you further with the calculations.

Hope this help you

The marginal pdf of X is fX(x) = x + 1/2

How do you compute P(X < 1/2, Y > 1/4)?

We need to integrate the joint pdf over the given region. This can be done as follows:

P(X < 1/2, Y > 1/4) = ∫∫[x + y] dx dy over the region 0 ≤ x ≤ 1/2 and 1/4 ≤ y ≤ 1

= ∫[x + y] dy from y = 1/4 to 1 ∫ dx from x = 0 to 1/2

= ∫[x + y] dy from y = 1/4 to 1 (1/2 - 0)

= ∫[x + y] dy from y = 1/4 to 1/2 + ∫[x + y] dy from y = 1/2 to 1 (1/2 - 0)

= ∫[x + y] dy from y = 1/4 to 1/2 + ∫[x + y] dy from y = 1/2 to 1/2

= ∫[x + y] dy from y = 1/4 to 1/2

= [(x + y)y] evaluated at y = 1/4 and y = 1/2

= [(x + 1/2)(1/2) - (x + 1/4)(1/4)]

= (1/2 - 1/4)(1/2) - (1/4 - 1/8)(1/4)

= (1/4)(1/2) - (1/8)(1/4)

= 1/8 - 1/32

= 3/32

Therefore, P(X < 1/2, Y > 1/4) = 3/32.

The marginal pdfs of X and Y can be done as follows:

For the marginal pdf of X:

fX(x) = ∫[x + y] dy over the range 0 ≤ y ≤ 1

= [xy + (1/2)y^2] evaluated at y = 0 and y = 1

= (x)(1) + (1/2)(1)^2 - (x)(0) - (1/2)(0)^2

= x + 1/2

Therefore, the marginal pdf of X is fX(x) = x + 1/2.

For the marginal pdf of Y:

fY(y) = ∫[x + y] dx over the range 0 ≤ x ≤ 1

= [xy + (1/2)x^2] evaluated at x = 0 and x = 1

= (y)(1) + (1/2)(1)^2 - (y)(0) - (1/2)(0)^2

= y + 1/2

Therefore, the marginal pdf of Y is fY(y) = y + 1/2.

To determine if X and Y are independent, we need to check if the joint pdf factors into the product of the marginal pdfs.

fX(x) * fY(y) = (x + 1/2)(y + 1/2)

However, this is not equal to the joint pdf f(x, y) = x + y. Therefore, X and Y are not independent.

To derive the conditional pdf of X given Y = y, we can use the formula:

f(xy) = f(x, y) / fY(y)

Here, we have f(x, y) = x + y from the joint pdf, and fY(y) = y + 1/2 from the marginal pdf of Y.

Therefore, the conditional pdf of X given Y = y is:

f(xy) = (x + y) / (y + 1/2)

Learn more about marginal Pdf at: https://brainly.com/question/31064509

#SPJ1

Let theta be an angle in quadrant two such that cos theta=-3/4. find the exact values of csc theta and cot theta

Answers

The exact values of csc(theta) and cot(theta) are: csc(theta) = 4√7/7

cot(theta) = -3√7/7.

To find the exact values of csc(theta) and cot(theta), given that cos(theta) = -3/4 and theta is an angle in quadrant two, we can use the trigonometric identities and the Pythagorean identity.

We know that cos(theta) = adjacent/hypotenuse, and in quadrant two, the adjacent side is negative. Let's assume the adjacent side is -3 and the hypotenuse is 4. Using the Pythagorean identity, we can find the opposite side:

[tex]opposite^2 = hypotenuse^2 - adjacent^2opposite^2 = 4^2 - (-3)^2opposite^2 = 16 - 9opposite^2 = 7[/tex]

opposite = √7

Now we have the values for the adjacent side, opposite side, and hypotenuse. We can use these values to find the values of the other trigonometric functions:

csc(theta) = hypotenuse/opposite

csc(theta) = 4/√7

To rationalize the denominator, we multiply the numerator and denominator by √7:

csc(theta) = (4/√7) * (√7/√7)

csc(theta) = 4√7/7

cot(theta) = adjacent/opposite

cot(theta) = -3/√7

To rationalize the denominator, we multiply the numerator and denominator by √7:

cot(theta) = (-3/√7) * (√7/√7)

cot(theta) = -3√7/7

Therefore, the exact values of csc(theta) and cot(theta) are:

csc(theta) = 4√7/7

cot(theta) = -3√7/7

for more such question on theta visit

https://brainly.com/question/29600442

#SPJ8

What is the value of the expression (-2)(3)º(4)-2 ?
A. -3/2
B. -1/2
C. -3/4
D. 0

Answers

The value of the expression (-2)(3)º(4) - 2 is -164.

Based on the answer choices provided, none of the options matc.

To solve the expression (-2)(3)º(4)-2, we need to follow the order of operations, which is parentheses, exponents, multiplication, and subtraction.

Let's break down the expression :

(-2)(3)º(4) -2

First, we calculate the exponent:

(-2)(81) - 2

Next, we perform the multiplication:

-162 - 2

Finally, we subtract:

-164

Therefore, the value of the expression (-2)(3)º(4) - 2 is -164.

Based on the answer choices provided, none of the options match the value of -164.

For similar question on expression.

https://brainly.com/question/1859113

#SPJ8

The functions f(x) and g(x) are described using the following equation and table:

f(x) = −3(1.02)x


x g(x)
−1 −5
0 −3
1 −1
2 1

Which statement best compares the y-intercepts of f(x) and g(x)?
The y-intercept of f(x) is equal to the y-intercept of g(x).
The y-intercept of f(x) is equal to 2 times the y-intercept of g(x).
The y-intercept of g(x) is equal to 2 times the y-intercept of f(x).
The y-intercept of g(x) is equal to 2 plus the y-intercept of f(x).

Answers

Answer:

The y-intercept of a function is the point where the graph of the function intersects the y-axis. To find the y-intercept of f(x), we can substitute x=0 into the equation for f(x):

f(0) = -3(1.02)^0 = -3

Therefore, the y-intercept of f(x) is -3. To find the y-intercept of g(x), we can look at the table and see that when x=0, g(x)=-3. Therefore, the y-intercept of g(x) is also -3.

Comparing the y-intercepts of the two functions, we see that they are equal. Therefore, the correct answer is:

The y-intercept of f(x) is equal to the y-intercept of g(x).

Step-by-step explanation:

Answer:

The correct answer is A, the y-intercept of f(x) is equal to the y-intercept of g(x).

Step-by-step explanation:

First, note that the y intercept is what y is equal to when x is equal to 0.

The given function, f(x), is an exponential function. Exponential functions are written in the formula [tex]f(x) = a(1 + r)^x[/tex], where a = y-intercept!

a in the function f(x) is -3, so this means that the y intercept is -3.

In the given table, g(x), the y value is -3 when the x value is 0.

This means that in the g(x) table, the y-intercept is also -3.

Thus, A is correct and the y-intercept of f(x) is equal to the y-intercept of g(x).

True or false: f(x) is a function.
0
3
6
9

f(x)
0
1
3

Answers

Answer:

Step-by-step explanation:

If {0, 3, 6, 9} are are your x's or domain  or input and there are no repeats, then yes TRUE it is a function.

Pls help

Consider functions fand g below.

g(x)=-x^2+2x+4


A.As x approaches infinity, the value of f(x) increases and the value of g(x) decreases.

B.As x approaches infinity, the values of f(x) and g(x) both decrease.

C.As x approaches infinity, the values of f(x) and g(x) both increase.

D.As x approaches infinity, the value of f(x) decreases and the value of g(x) increases.

Answers

Consider functions fand g below g(x)=-x^2+2x+4 is option D.As x approaches infinity, the value of f(x) decreases and the value of g(x) increases.

The limit of a function, as x approaches infinity, is defined as a certain value if the function approaches the same value as x approaches infinity from both sides. The behavior of a function, as x approaches infinity, is determined by the function's rate of increase or decrease and the value of the function at x = 0.

The value of f(x) and g(x) will both increase as x approaches infinity in situation C. This implies that the functions are continuously increasing without bound, i.e., the function's value at any given point will always be greater than the previous point. Consider the example of f(x) = x² and g(x) = 2x. As x approaches infinity, f(x) and g(x) will both continue to increase indefinitely.

This is because x² and 2x are both monotonically increasing functions.As x approaches infinity, the value of f(x) decreases and the value of g(x) increases in situation D. As the value of f(x) approaches infinity, it will eventually reach a point where its rate of increase slows and the function will start to decrease.

On the other hand, g(x) will continue to increase because its rate of increase is faster than f(x) and does not slow down as x approaches infinity. Consider the example of f(x) = 1/x and g(x) = x². As x approaches infinity, f(x) decreases towards zero while g(x) continues to increase without bound.The correct answer is d.

Know more about   function  here:

https://brainly.com/question/11624077

#SPJ8

On a number line, a number, b, is located the same distance from 0 as another number, a, but in the opposite direction.
The number b varies directly with the number a. For example b = 22 when a = -22. Which equation represents this
direct variation between a and b?
b=-a
0-b=-a
O b-a=0
Ob(-a)=0

Answers

The equation that represents the direct variation between a and b in this scenario is:

b = -a

This equation states that b is equal to the opposite of a, which aligns with the given information that b is located the same distance from 0 as a but in the opposite direction.

Find the solution to the equation below.

2x2+3x-20=0

Answers

X= 5.3333 repeating

Answer:

[tex]x = 5.3 \: or \: 5 \frac{1}{3} [/tex]

Step-by-step explanation:

[tex]2 \times 2 + 3x - 20 = 0 \: \: \: \: \: \: 4 + 3x - 20 = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:3x = 20 - 4 = 16 \: \: \: \: \: \: \: \: 3x = 16 \: \: divide \: both \: side \: by \: 3 = \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x = 5.3[/tex]

Which is the best deal over 5 years? Investing at 7.87% compounded semi annually, 7.8% compounded quarterly, or 7.72% compounded every minute?

Answers

The best deal over 5 years would be investing at 7.8% compounded quarterly.

Although the interest rates of 7.87% compounded semi-annually and 7.72% compounded every minute may appear slightly higher, the frequency of compounding plays a significant role in determining the overall return.

Compounding more frequently leads to a higher effective annual rate. In this case, compounding quarterly provides a greater compounding frequency than semi-annual or minute-by-minute compounding, resulting in higher returns over time.

When interest is compounded quarterly, the compounding occurs four times a year, whereas semi-annual compounding only occurs twice a year. Compounding every minute may seem more frequent, but the actual effect on the return is minimal since there are a large number of minutes in a year.

Therefore, the 7.8% compounded quarterly is the best deal over 5 years as it offers a higher effective annual rate compared to the other options.

In summary, investing at 7.8% compounded quarterly is the most advantageous choice over a 5-year period. The frequency of compounding plays a crucial role in determining the overall return, and compounding quarterly provides a greater compounding frequency compared to semi-annual or minute-by-minute compounding.

It is essential to consider both the interest rate and the compounding frequency when evaluating investment options to make an informed decision.

for such more questions on investing

https://brainly.com/question/29227456

#SPJ8

7
What fraction of the shape is shaded?
18 mm
10 mm
12 mm

Answers

The shaded fraction of the shape is 2/3.

To determine the fraction of the shape that is shaded, we need to compare the shaded area to the total area of the shape.

1. Identify the shaded region in the shape. In this case, we have a shape with some part shaded.

2. Calculate the area of the shaded region. Given the dimensions provided, the area of the shaded region is determined by multiplying the length and width of the shaded part. In this case, the dimensions are 18 mm and 10 mm, so the area of the shaded region is (18 mm) × (10 mm) = 180 mm².

3. Calculate the total area of the shape. The total area of the shape is determined by multiplying the length and width of the entire shape. In this case, the dimensions are 18 mm and 12 mm, so the total area of the shape is (18 mm) × (12 mm) = 216 mm².

4. Determine the fraction. To find the fraction, divide the area of the shaded region by the total area of the shape: 180 mm² ÷ 216 mm². Simplifying this fraction gives us 5/6.

5. Convert the fraction to its simplest form. By dividing both the numerator and denominator by their greatest common divisor, we get the simplified fraction: 2/3.

Therefore, the fraction of the shape that is shaded is 2/3.

For more such questions on fraction, click on:

https://brainly.com/question/78672

#SPJ8

Solve |5x - 1| < 1

please help

Answers

Answer:

|5x - 1| < 1

-1 < 5x - 1 < 1

0 < 5x < 2

0 < x < 2/5

If

Answers

Answer:

I pass my classes.

Step-by-step explanation:

I had to add this sentence or else it wouldnt allow me to send it.

Answer:

In math, the word "if" can be used for piecewise functions. In piecewise functions, you can see equations where f(x) = x+3 IF x>0 and f(x) = -x IF x<0.

need answer asappppppppp

Answers

The correct statement regarding the translation in this problem is given as follows:

A. The graph of g(x) is the graph of f(x) shifted up 3 units.

What is a translation?

A translation happens when either a figure or a function is moved horizontally or vertically on the coordinate plane.

The four translation rules for functions are defined as follows:

Translation left a units: f(x + a).Translation right a units: f(x - a).Translation up a units: f(x) + a.Translation down a units: f(x) - a.

In this problem, we have an addition by 3, hence there is a translation up 3 units.

More can be learned about translations at brainly.com/question/28174785

#SPJ1

Solve for x leave your answer in simplest radical form​

Answers

Answer:

X=11 trust me on my mom

If the mean of a negatively skewed distribution is 122, which of these values could be the median of the distribution

Answers

118 be the median of a positively skewed distribution with a mean of 122. Option D.

To determine which of the given values could be the median of a positively skewed distribution with a mean of 122, we need to consider the relationship between the mean, median, and skewness of a distribution.

In a positively skewed distribution, the tail of the distribution is stretched towards higher values, meaning that there are more extreme values on the right side. Consequently, the median, which represents the value that divides the distribution into two equal halves, will typically be less than the mean in a positively skewed distribution.

Let's examine the given values in relation to the mean:

A. 122: This value could be the median if the distribution is perfectly symmetrical, but since the distribution is positively skewed, the median is expected to be less than the mean. Thus, 122 is less likely to be the median.

B. 126: This value is higher than the mean, and since the distribution is positively skewed, it is unlikely to be the median. The median is expected to be lower than the mean.

C. 130: Similar to option B, this value is higher than the mean and is unlikely to be the median. The median is expected to be lower than the mean.

D. 118: This value is lower than the mean, which is consistent with a positively skewed distribution. In such a distribution, the median is expected to be less than the mean, so 118 is a plausible value for the median.

In summary, among the given options, (118) is the most likely value to be the median of a positively skewed distribution with a mean of 122. So Option D is correct.

For more question on median visit:

https://brainly.com/question/26177250

#SPJ8

Note the complete question is

If the mean of a positively skewed distribution is 122, which of these values could be the median of the distribution?

A. 122

B. 126

C. 130

D. 118

10 points for this question

Answers

OThe presence of identical fossil plants in both Antarctica and Australia, within the same rock formations, supports the hypothesis of a supercontinent and the process of plate tectonics by providing evidence of past land connections and the subsequent separation of continents due to tectonic activity.

How to explain the information

The presence of identical fossil plant species in rock formations of both Antarctica and Australia suggests that these two regions were once connected geographically. The similarity in the fossil record indicates that the plants existed in a shared ecosystem or environment at some point in the past.

The geological formations in which the fossil plants are found can provide further evidence. If the rock layers containing the fossils can be matched across Antarctica and Australia, it suggests that these regions were once part of the same landmass. This correlation supports the idea of a supercontinent.

Learn more about fossil on

https://brainly.com/question/11829803

#SPJ1

Find a function of the form or whose graph matches this one:

Answers

The function that matches the graph is of the form:

4cos((pi x)/7) + 1

Graphs of trigonometric functions

Graphs of trigonometric functions are graphs used in representing trigonometric functions.

From these graphs, some basic properties such as Amplitude, phase difference, period and vertical shift can be deduced.

From the given graph in the question, it can be seen that the graph crosses the y-axis at it's amplitude (highest point), so its easier to use the cosine relation.

To calculate the midline M:

Use the formula,

M = (maximum + minimum)/2

= (5 + -3)/2 = 2/2 = 1

Vertical shift: It can be seen from the graph that there is a vertical upward shift of 1 unit. C = 1

Amplitude: Maximum value - vertical shift is:

A = 5 - 1 = 4

Period = spacing between repeating patterns. There are 14 units between each peak (peak when x = -14, next peak when x = 0).

k = 2pi/Period;

So: k = 2pi/14 = pi/7

Therefore y = 4cos(pix/7) + 1 is the function that matches the given graph.

Learn more about graphs of trigonometric functions here: https://brainly.com/question/29447150

#SPJ1

!! Will give brainlist !!


Determine the surface area and volume Note: The base is a square.

Answers

The surface area and volume of the square pyramid is 96 squared centimeter and 48 cubic centimeters respectively.

What is the surface area and volume of the square pyramid?

The surface area of a square pyramid is expressed as:

SA = [tex]a^2 + 2a \sqrt{\frac{a^2}{4}+h^2 }[/tex]

The volume of a square pyramid is expressed as:

Volume = [tex]a^2*\frac{h}{3}[/tex]

Where a is the base edge and h is the height.

From the figure a = 6cm

First, we determine the h, using pythagorean theorem:

h² = 5² - (6/2)²

h² = 5² - 3²

h² = 25 - 9

h² = 16

h = √16

h = 4 cm

Solving for surface area:

SA = [tex]a^2 + 2a \sqrt{\frac{a^2}{4}+h^2 }[/tex]

[tex]= a^2 + 2a \sqrt{\frac{a^2}{4}+h^2 }\\\\= 6^2 + 2*6 \sqrt{\frac{6^2}{4}+4^2 }\\\\= 36 + 12 \sqrt{\frac{36}{4}+16 }\\\\= 36 + 12 (5)\\\\= 36 + 60\\\\= 96 cm^2[/tex]

Solving for the volume:

Volume = [tex]a^2*\frac{h}{3}[/tex]

[tex]= a^2*\frac{h}{3}\\\\= 6^2*\frac{4}{3}\\\\= 36*\frac{4}{3}\\\\=\frac{144}{3}\\\\= 48 cm^3[/tex]

Therefore, the volume is 48 cubic centimeters.

Learn more about volume of pyramids here: brainly.com/question/21308574

#SPJ1

Question 1 of 35
Colleen is buying a $279,000 home with a 30-year mortgage at 4.5%. Because
she is not making a down payment, PMI in the amount of $134.25 per month
is required for the first 2 years of the loan. Based on this information, what is
the total cost of this loan?
OA. $475,415
OB. $512,136
OC. $508,914
OD.
$493,776
SUBMIT

Answers

Answer:

Step-by-step explanation:

add it then subtract the value

A high school robotics club sold cupcakes at a fundraising event.

They charged $2.00 for a single cupcake, and $4.00 for a package of 3 cupcakes.
They sold a total of 350 cupcakes, and the total sales amount was $625.
The system of equations below can be solved for , the number of single cupcakes sold, and , the number of packages of 3 cupcakes sold.


Multiply the first equation by 2. Then subtract the second equation. What is the resulting equation?

x + 3y = 350
2x + 4= 625

Type your response in the box below.

$$

Answers

The resulting equation after multiplying the first equation by 2 and subtracting the second equation is:

-5y = -375

1. Given equations:

  - x + 3y = 350    (Equation 1)

  - 2x + 4y = 625   (Equation 2)

2. Multiply Equation 1 by 2:

  - 2(x + 3y) = 2(350)

  - 2x + 6y = 700    (Equation 3)

3. Subtract Equation 2 from Equation 3:

  - (2x + 6y) - (2x + 4y) = 700 - 625

  - 2x - 2x + 6y - 4y = 75

  - 2y = 75

4. Simplify Equation 4:

  -2y = 75

5. To isolate the variable y, divide both sides of Equation 5 by -2:

  y = 75 / -2

  y = -37.5

6. Therefore, the resulting equation is:

  -5y = -375

For more such questions on multiplying, click on:

https://brainly.com/question/29793687

#SPJ8

If x = 2, solve for y. y = 6.3x y=[?]​

Answers

Answer: y = 12.6

Step-by-step explanation:

Since x = 2 and y = 6.3 * x, y = 6.3 * 2.

6.3 * 2 is equal to 12.6, so y is 12.6.

Answer:

y = 12.6

Step-by-step explanation:

y = 6.3x                     x = 2

Solve for y.

y = 6.3(2)

y = 12.6

So, the answer is 12.6

I need help with 36 please I don’t understand

Answers

The equation of the function is y = 1/(x + 3) - 1

How to determine the equation of the transformation

From the question, we have the following parameters that can be used in our computation:

The reciprocal function shifted down one unit and left three units

The equation of the reciprocal function is represented as

y = 1/x

When shifted down one unit, we have

y = (1/x) - 1

When shifted left three units, we have

y = 1/(x + 3) - 1

Hence, the equation of the function is y = 1/(x + 3) - 1

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

The principal P is borrowed at a simple interest rate r for a period of time t. Find the loans future value A, or the total amount due at time t. P equals $9,000, r eeuals 10%, t equals 6 months. The loans future value is

Answers

The future value of the loan, or the total amount due at the end of 6 months, is $9,450.

We can use the following formula to calculate the future value of a loan:

[tex]A = P + P * r * t[/tex]

Given: $9,000 principal (P).

10% interest rate (r) = 0.10

6 months is the time period (t).

When we enter these values into the formula, we get:

A=9,000+9,000*0.10*6/12

First, compute the interest portion:

Interest is calculated as = 9,000*0.10*6/12=450

We may now calculate the future value:

A=9,000+450=9,450

As a result, the loan's future value, or the total amount payable in 6 months, is $9,450.

Learn more about loan's value from:

https://brainly.com/question/23702173

If two of the angles in a scalene triangle are 54° and 87°, what is the other angle?

Answers

Answer:

39°

Step-by-step explanation:

the sum of the 3 angles in a triangle = 180°

let the other angle be x , then

x + 54° + 87° = 180°

x + 141° = 180° ( subtract 141° from both sides )

x = 39°

that is the other angle is 39°

Final answer:

In a triangle, the sum of all angles is always 180°. To find the third angle in a scalene triangle where two angles are known, subtract the known angles from 180°. In this case, subtracting 54° and 87° from 180° gives a third angle of 39°.

Explanation:

The question refers to finding the third angle in a scalene triangle, where we know two of the angles. A scalene triangle is a triangle where all three sides are of a different length, and therefore all three angles are also different. The sum of the angles in any triangle is always 180°.

To find the third angle in the triangle, you can use the equation: Angle C = 180° - Angle A - Angle B.

So, we subtract the known angles from 180°: Angle C = 180° - 54° - 87° = 39°.

Therefore, the third angle in this scalene triangle is 39°.

Learn more about Scalene Triangle

https://brainly.com/question/33791400

Compute $2^{-3}\cdot 3^{-2}$.

Answers

The value of the algebric  expression [tex]2^{-3} \cdot 3^{-2}$ is $\frac{1}{72}[/tex].

To compute the expression [tex]2^{-3} \cdot 3^{-2}[/tex], we can simplify each term separately and then multiply the results.

First, let's simplify [tex]2^{-3}[/tex]. The exponent -3 indicates that we need to take the reciprocal of the base raised to the positive exponent 3. Therefore, [tex]2^{-3} = \frac{1}{2^3} = \frac{1}{8}[/tex].

Next, let's simplify 3^{-2}. Similar to before, the exponent -2 means we need to take the reciprocal of the base raised to the positive exponent 2. So, [tex]3^{-2} = \frac{1}{3^2} = \frac{1}{9}[/tex].

Now that we have simplified both terms, we can multiply them together: [tex]\frac{1}{8} \cdot \frac{1}{9}[/tex]. When multiplying fractions, we multiply the numerators together and the denominators together. So, [tex]\frac{1}{8} \cdot \frac{1}{9} = \frac{1 \cdot 1}{8 \cdot 9} = \frac{1}{72}[/tex].

For more such questions on  algebric  expression visit:

https://brainly.com/question/4541471

#SPJ8

Donna joined a club that costs $80 per month with a $60.50 yearly
membership fee. Is the cost over time a proportional or non-proportional
relationship?

Answers

The cost of Donna's club membership exhibits a non-proportional relationship over time.

The cost of Donna's club membership can be analyzed to determine whether it exhibits a proportional or non-proportional relationship over time.

In this scenario, Donna pays a monthly fee of $80, along with a yearly membership fee of $60.50. To assess the proportionality, we can examine how the cost changes relative to time.

In a proportional relationship, the cost would increase or decrease at a constant rate. For example, if the monthly fee remained constant, the total cost would be directly proportional to the number of months of membership.

However, in this case, the presence of a yearly membership fee indicates a non-proportional relationship.

The yearly membership fee of $60.50 is a fixed cost that Donna incurs only once per year, regardless of the number of months she remains a member.

As a result, the cost is not directly proportional to time. Instead, it has a fixed component (the yearly fee) and a variable component (the monthly fee).

In summary, the cost of Donna's club membership exhibits a non-proportional relationship over time. While the monthly fee is a constant amount, the yearly membership fee introduces a fixed cost that is independent of the duration of her membership.

For more such questions club,click on

https://brainly.com/question/31896144

#SPJ8

Solve - the mean age of a family of seven is 23 years the median is 16 years the modes are 12 years and 45 years and the range is 35 years. Find the ages of the seven family members.

Answers

The ages of the seven family members are 12, 16, 16, 45, 45, 45, and 80 years.

To solve this problem, let's break it down step by step:

1. We are given that the mean age of the family is 23 years. The mean is calculated by summing up all the ages and dividing by the number of family members. Since there are seven family members, the total sum of their ages is 7 * 23 = 161 years.

2. The median age is 16 years. This means that when the ages are arranged in ascending order, the fourth age is 16. Since there are seven family members, the fourth age is the middle age. Therefore, the ages in ascending order are: _ _ 12 16 _ 45 _.

3. The modes are 12 years and 45 years, which means these two ages occur more frequently than any other age. Since the median is 16, it can't be one of the modes. Hence, we can conclude that the family members' ages are: _ _ 12 16 16 45 _.

4. The range is 35 years, which is the difference between the highest and lowest ages. Since the ages are arranged in ascending order, the highest age must be 45 + 35 = 80 years. Therefore, the ages of the family members are: _ _ 12 16 16 45 80.

In summary, the ages of the seven family members are 12, 16, 16, 45, 45, 45, and 80 years.

For more questions on median, click on:

https://brainly.com/question/14532771

#SPJ8

SOLVE ALGEBRAICALLY!!!
The population trend for Berthoud, CO, can be represented by the function P(t) = 106.67t + 4763.67, and the population trend for Wellington, CO, can be represented by the function P(t) = 308.8t + 2844.18 where t is the time in years since 2000. When will the towns have the same population?

Answers

To find when the towns of Berthoud and Wellington will have the same population, we can set their population functions equal to each other and solve for the value of t:

106.67t + 4763.67 = 308.8t + 2844.18

First, let's rearrange the equation by moving all the terms involving t to one side:

106.67t - 308.8t = 2844.18 - 4763.67

Simplifying the equation gives:

-202.13t = -1921.49

Now, we can isolate t by dividing both sides of the equation by -202.13:

t = (-1921.49) / (-202.13)

Solving this equation yields:

t ≈ 9.51

Therefore, the towns of Berthoud and Wellington will have the same population approximately 9.51 years after 2000.

Answer:

9.5 years

Step-by-step explanation:

P(t) = P(t)

106.67t+4763.67=308.8t+2844.18

Minus 106.67t on both sides

4763.67=202.13t+2844.18

Minus 2844.18 on both sides

1919.49=202.18t

Solve for t

t=9.4963...

t=9.5 years

what is the number of births in year 5?

Answers

Answer:

Step-by-step explanation:

So, if we just roughly observe what goes on with the „hundreds“ digits, it seems it keeps dividing by 2, right?
And that is actually the case, as
816/2=408
408/2=204
204/2=102
Now, we are looking for 102/2=?


Solution: 51
Other Questions
A process with two inputs and two outputs has the following dynamics, [Y(s)][G(s) G(S)[U(s)] [Y (s)] G(s) G (s) U (s)] 4e-5 2s +1' with G(s) = - G(s) = 11 2e-2s 4s +1' G (s) = 3e-6s 3s +1' G2 (S) = 5e-3s 2s +1 b) Calculate the static gain matrix K, and RGA, A. Then, determine which manipulated variable should be used to control which output. Question 1) Which of these (could be more than 1) are a weak acid: HCI, HCIO,HCN, HF, HCIOHCN, HBr, HFHCI, HF, HBr A three-phase system has a line-to-line voltage Vab= 1500 230 V rms with a Y load. Determine the phase voltage. A stormwater bioinfiltration system (1 m deep, 2 m wide and 2 m length) contains filter layer as a mixture of sand and soil with the following properties: porosity 0.39, bulk density 2.1 g/cm, and foc 0.1%. The hydraulic conductivity of the media layer is 1.5 cm/min. During a rainfall, the filter media becomes quickly saturated and develop a head equal to its depth; that is hydraulic gradient is 1. a) Estimate the velocity of water (Darcy's) exiting the bioinfiltration system at the bottom. Write a C++ program that creates a class Mathematician with the data members such as name, address, id, years_of_experience and degree and create an array of objects for this class.Include public member functions toi) Input() This function should read the details of an array of Mathematicians by passing array of objects and array size (n)ii) Display() This function should display either the details of an array of Mathematicians or a Mathematician with highest experience by passing array of objects, array size (n) and users choice (1 or 2) as the argument to this function.Note:-Write the main function toCreate an array of objects of Mathematician based on the users choice (get value for the local variable n and decide the size of the array of objects)Input details into the array of objects.Finally, either display the complete set of Mathematician details or display the details of Mathematician with highest years of experience based on the users choice.(1 display the complete set of Mathematician details)or(2 display Mathematician with highest experience details only)You may decide the type of the member data as per the requirements.Output is case sensitive. Therefore, it should be produced as per the sample test case representations.n and choice should be positive only. Choice should be either 1 or 2. Otherwise, print "Invalid".In samples test cases in order to understand the inputs and outputs better the comments are given inside a particular notation (.). When you are inputting get only appropriate values to the corresponding attributes and ignore the comments (.) section. In the similar way, while printing output please print the appropriate values of the corresponding attributes and ignore the comments (.) section.Sample Test cases:-case=oneinput= 3 (no of Mathematician details is to be entered)Raju (name)Pollachi (address)135 (id)10 (experience)PhD (degree)Pandiyan (name)Tirupathi (address)136 (id)8 (experience)PhD (degree)Mani (name)Bihar (address)137 (id)11 (experience)PhD (degree)2 (Choice to print Mathematician with highest experience)output=Mani (name)Bihar (address)137 (id)11 (experience)PhD (degree)grade reduction=15%case=twoinput= -3 (no of Mathematician details is to be entered)output=Invalidgrade reduction=15%case=threeinput= 3 (no of Mathematician details is to be entered)Rajesh(name)Pollachi (address)125 (id)10 (experience)PhD (degree)Pandiyaraj (name)Tirupathi (address)126 (id)8 (experience)PhD (degree)Manivel (name)Bihar (address)127 (id)11 (experience)PhD (degree)3 (Wrong choice)output=Invalidgrade reduction=15%case=fourinput= 2 (no of Mathematician details is to be entered)Rajedran (name)Pollachi (address)100 (id)10 (experience)PhD (degree)Pandey (name)Tirupathi (address)200 (id)8 (experience)MSc (degree)1 (Choice to print all Mathematician details in the given order)output=Rajedran (name)Pollachi (address)100 (id)10 (experience)PhD (degree)Pandey (name)Tirupathi (address)200 (id)8 (experience)MSc (degree)grade reduction=15% FILL IN THE BLANKStimulus-Response-Feedback is a method used in _________ analysis.QUESTION 2Performance appraisals are the best research tool to use in person analysis because all employees have them on record.A.TrueB.False A +10 C charge exerts a force on an electron that is: Select one: a. Attractive and inversely proportional to the square of the distance between the charges b. Attractive and directly proportional to the square of the distance between the charges c. Repulsive and inversely proportional to the square of the distance between the charges d. Repulsive and directly proportional to the square of the distance between the charges Write a program to create a link list and occurance of element in existing link list (a) Create user defined data type with one data element and next node pointer (b) Create a separate function for creating link list (c) Create a separate function to remove the first node and return the element removed. PLS HURRY!!dwayne wants a variable called "name" to appear in the output box and does not want a space after it. which of these should be used to make that happen ?A. name,b. name) c. name+ D. name. Graphically illustrate the bond market in equilibrium. Label completely. Note the effect on the graph from an expansion of the business cycle. Discuss the model and outcomes. Q2 (a) Define the following forcing functions with suitable sketches. (ii) Impulse (iii) Sinusoidal (4] The time-domain response of a mechanoreceptor to stretch, applied in the form of a step of magnitude xo (in arbitrary length units), is V(t) = xo (1 - 5)(t) where the receptor potential Vis given in millivolts and ult) is the unit step function (u(t)= 1 fort> 0 and u(t)=0 for t 1. Consider the following solutions. In each case, predict whether the solubility of the solute should be high or low. a.NaOHin pentane(C_5H_12)b.KClinH2Oc. Undecane(C_11H_24)in methanol d.CHCl_3inH2O The electric power consumed each month by a chemical plant is thought to be related to the average ambient temperature (x), the number of days in the month (x2), the average product purity (x3), and the tons of product produced (x4). The past year's historical data are available and are presented in the following table. How many moles of hydrogen will form if 3.0 mole of potassium metal reacts completely with hydrochloric acid? Select correct use of 's to show shared or separate ownership in the sentence.My mother loves mysteries, and my father always reads westerns. Thats why youll find ------------------ books all over the house. which of the following is in L((01)(01)(10)) ? A. 01010101 B. 10101010 C. 01010111 D. 00000010 nE. one of the above with step-by-step solution27. The HS (MW= 34.25) in a 50g sample of crude petroleum was removed by distillation and collected in a solution containing CdCl2. The CdS (MW=144.47) precipitate was filtered, washed and ignited Ending assets for Smith company equal $600,000 and the beginning retained earnings account was $300,000. If net income during the period was $250,000 and dividends were $0,000, what were ending liabilities? $175,000 $250,000 IDON'TKNOW YET A solid steel shaft is to be used to transmit 3,750 W from the motor to which it is attached. The shaft rotates at 175 rpm(rev/min). Determine the required diameter of the shaft to the nearest mm if the shaft has an allowable shearing stress of 100 MPa. Select one: O a. 32 mm O b. 25 mm O c. 36 mm O d. 22 mm