A +10 C charge exerts a force on an electron that is: c. Repulsive and inversely proportional to the square of the distance between the charges.
A negatively charged subatomic particle known as an electron can be free (not bound) or attached to an atom. One of the three main types of particles within an atom is an electron that is bonded to it; the other two are protons and neutrons. The nucleus of an atom is made up of protons and electrons together. The positive charge of a proton balances the negative charge of an electron. An atom is in a neutral condition when it contains the same amount of protons and electrons.
To know more about electron
https://brainly.com/question/12001116
#SPJ11
4.14 Use the node-voltage method to find the total PSPICE power dissipated in the circuit in Fig. P4.14. MULTISI Figure P4.14 30 V 15 Ω 4 A 25 Ω 31.25 Ω 50 Ω ww 50 Ω 1A
The total PSPICE power dissipated in the circuit is 327.5 W.
The node-voltage technique is a method of circuit analysis used to compute the voltage at each node in a circuit. A node is any point in a circuit where two or more circuit components are joined.
By applying Kirchhoff’s laws, the voltage at every node can be calculated. Let us now calculate the total PSPICE power dissipated in the circuit in Fig. P4.14 using node-voltage method:
Using node-voltage method, voltage drop across the 15 Ω resistor can be calculated as follows:
V1 – 30V – 4A × 31.25 Ω = 0V or V1 = 162.5 V
Using node-voltage method, voltage drop across the 25 Ω resistor can be calculated as follows: V2 – V1 – 50Ω × 1A = 0V or V2 = 212.5 V
Using node-voltage method, voltage drop across the 31.25 Ω resistor can be calculated as follows: V3 – V1 – 25Ω × 1A = 0V or V3 = 181.25 V
Using node-voltage method, voltage drop across the 50 Ω resistor can be calculated as follows:
V4 – V2 = 0V or V4 = 212.5 V
Using node-voltage method, voltage drop across the 50 Ω resistor can be calculated as follows:
V4 – V3 = 0V or V4 = 181.25 V
We can see that V4 has two values, 212.5 V and 181.25 V.
Therefore, the voltage drop across the 50 Ω resistor is 212.5 V – 181.25 V = 31.25 V.
The total power dissipated by the circuit can be calculated using the formula P = VI or P = I²R.
Therefore, the power dissipated by the 15 Ω resistor is P = I²R = 4² × 15 = 240 W. The power dissipated by the 25 Ω resistor is P = I²R = 1² × 25 = 25 W.
The power dissipated by the 31.25 Ω resistor is P = I²R = 1² × 31.25 = 31.25 W. The power dissipated by the 50 Ω resistor is P = VI = 1 × 31.25 = 31.25 W.
Therefore, the total PSPICE power dissipated in the circuit is 240 W + 25 W + 31.25 W + 31.25 W = 327.5 W.
Learn more about circuit at: https://brainly.com/question/2969220
#SPJ11
A wire in the shape of an " \( \mathrm{M} \) " lies in the plane of the paper as shown in the figure. It carries a current of \( 2.00 \mathrm{~A} \), flowing from points \( A \) to \( B \), to \( C \)
The magnetic field at point P, which is inside the wire's loop, will be directed into the page or downward.
The wire in the shape of an "M" lies in the plane of the paper as shown in the figure. It carries a current of 2.00 A, flowing from points A to B, to C.What will be the direction of the magnetic field at point P due to the current-carrying conductor in the figure?We can apply the right-hand thumb rule to find the direction of the magnetic field at point P due to the current-carrying conductor in the figure.
The right-hand thumb rule states that if the thumb of the right hand is pointed in the direction of the current, the fingers will wrap around the conductor in the direction of the magnetic field.So, the magnetic field lines will flow around the wire in a counter clockwise direction (from points B to C to A). As a result, the magnetic field at point P, which is inside the wire's loop, will be directed into the page or downward. Therefore, the answer is "into the page or downward."
Learn more about magnetic field here,
https://brainly.com/question/14411049
#SPJ11
The voltage (in Volts) across an element is given as v(t) = 50 cos (6ft + 23.5°) whereas the current (in Amps) through the element is i(t) = -20 sin (6ft +61.2°); where time, t is the time and f is the frequency in seconds and Hertz respectively.
Determine the phase angle between the two harmonic functions.
The voltage and current functions are v(t) = 50 cos (6ft + 23.5°) and i(t) = -20 sin (6ft +61.2°), respectively. The phase angle between them is 0.66 radians or 37.8 degrees.
To determine the phase angle between the voltage and current functions, we need to find the phase difference between the cosine and sine functions that represent them.
The general form of a cosine function is given by:
cos(wt + theta)
where w is the angular frequency in radians per second, t is time in seconds, and theta is the initial phase angle in radians.
Similarly, the general form of a sine function is given by:
sin(wt + theta)
where w is the angular frequency in radians per second, t is time in seconds, and theta is the initial phase angle in radians.
Comparing the given functions for voltage and current with these general forms, we can see that the angular frequency is the same for both, and is equal to 6f radians per second. The phase angle for the voltage function is 23.5 degrees, or 0.41 radians, while the phase angle for the current function is 61.2 degrees, or 1.07 radians.
The phase difference between the two functions is given by the absolute difference between their phase angles, which is:
|0.41 - 1.07| = 0.66 radians
Therefore, the phase angle between the voltage and current functions is 0.66 radians, or approximately 37.8 degrees.
To know more about voltage and current functions, visit:
brainly.com/question/31478615
#SPJ11
Find the self inductance for the following
inductors.
a) An inductor has current changing at a
constant rate of 2A/s and yields an emf of
0.5V
b) A solenoid with 20 turns/cm has a
magnetic field which changes at a rate of
0.5T/s. The resulting EMF is 1.7V
c) A current given by I(t) = 10e~(-at) induces an emf of 20V after 2.0 s. I0 = 1.5A and a 3.5s^-1
The self inductance for each scenario is: (a) -0.25 H, (b) -3.4 H and (c) 2 H. To find the self inductance for each of the given inductors, we can use the formula for self-induced emf:
ε = -L (dI/dt)
where ε is the induced emf, L is the self inductance, and (dI/dt) is the rate of change of current. Rearranging the formula, we have:
L = -ε / (dI/dt)
Let's calculate the self inductance for each scenario:
a) An inductor has current changing at a constant rate of 2A/s and yields an emf of 0.5V.
Here, the rate of change of current (dI/dt) = 2A/s, and the induced emf ε = 0.5V. Plugging these values into the formula:
L = -0.5V / 2A/s
L = -0.25 H (henries)
b) A solenoid with 20 turns/cm has a magnetic field which changes at a rate of 0.5T/s. The resulting EMF is 1.7V.
In this case, we need to convert the turns per centimeter to turns per meter.
Since there are 100 cm in a meter, the solenoid has 20 turns/100 cm = 0.2 turns/meter.
The rate of change of magnetic field (dI/dt) = 0.5 T/s, and the induced emf ε = 1.7V. Plugging these values into the formula:
L = -1.7V / (0.5 T/s)
L = -3.4 H (henries)
c) A current given by I(t) = 10 [tex]e^{-at}[/tex] induces an emf of 20V after 2.0s. I0 = 1.5A and a = 3.5[tex]s^{-1}.[/tex]
To find the self inductance in this case, we need to find the rate of change of current (dI/dt) at t = 2.0s. Differentiating the current equation:
dI/dt = -10a * [tex]e^{-at}[/tex]
At t = 2.0s, the current is I(t) = [tex]10e^{-a*2}[/tex]= 10[tex]e^{-2a}[/tex]. Given I0 = 1.5A, we can solve for a:
1.5A = 10[tex]e^{-2a}[/tex]
[tex]e^{-2a}[/tex] = 1.5/10
-2a = ln(1.5/10)
a = -(ln(1.5/10))/2
Now, we can substitute the values into the formula:
L = -20V / (-10a * [tex]e^{-2a}[/tex])
L = 2 H (henries)
Therefore, the self inductance for each scenario is:
a) -0.25 H (henries)
b) -3.4 H (henries)
c) 2 H (henries)
To learn more about self inductance visit:
brainly.com/question/31394359
#SPJ11
Consider two diving boards made of the same material, one long and one short. Which do you think has a larger spring constant? Explain your reasoning. (4.6) M Interpret, in your own words, the meaning of the spring constant k in Hooke's law. (4.6) C Compare the simple harmonic motion of two identical masses oscillating up and down on springs with different spring constants, k. (4.6) KU G Consider two different masses oscillating on springs with the same spring constant. Describe how the simple harmonic motion of the masses will differ. (4.6) . To give an arrow maximum speed, explain why an archer should release it when the bowstring is pulled back as far as possible
1) When two diving boards are made of the same material, the long diving board will have a larger spring constant than the short diving board. The spring constant is proportional to the stiffness of the material that is being stretched or compressed. The long diving board will bend more and require more force to stretch it compared to the short diving board. Hence, the long diving board will have a larger spring constant.
2) Hooke's law states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched or compressed, provided the spring's limit of proportionality has not been exceeded. The spring constant k is a measure of the stiffness of the spring and is given by the equation F = -kx, where F is the force applied, x is the displacement from the equilibrium position, and k is the spring constant.
3) Two identical masses oscillating up and down on springs with different spring constants will have different amplitudes, frequencies, and periods of oscillation. The mass on the stiffer spring will oscillate with a smaller amplitude, a higher frequency, and a shorter period than the mass on the less stiff spring.
4) Two different masses oscillating on springs with the same spring constant will have different amplitudes, frequencies, and periods of oscillation. The mass that is lighter will oscillate with a larger amplitude, a lower frequency, and a longer period than the mass that is heavier.
5) To give an arrow maximum speed, an archer should release it when the bowstring is pulled back as far as possible because this maximizes the potential energy stored in the bowstring. When the bowstring is released, this potential energy is converted into kinetic energy, which propels the arrow forward. Releasing the bowstring when it is pulled back as far as possible ensures that the arrow will have the greatest possible velocity.
Learn more about hookes law, here
https://brainly.com/question/17068281
#SPJ11
In an RC circuit, if we were to change the resistor to one with a larger value, we would expect that:
A. The area under the curve changes
B. The capacitor discharges faster
C. The capacitor takes longer to achieve Qmax
D. The voltage Vc changes when the capacitor charges.
The correct answer is option (C): The capacitor takes longer to achieve Qmax. In an RC circuit, the resistor and capacitor are connected in series.
When a capacitor is charging in an RC circuit, it gradually reaches its maximum charge, denoted as Qmax, over time.
If we were to change the resistor to one with a larger value, we would expect the following:
A. The area under the curve changes: This statement is not necessarily true. The area under the curve, which represents the charge stored in the capacitor over time, depends on the time constant of the circuit (RC time constant).
Changing the resistor value affects the time constant, but it does not directly determine whether the area under the curve changes. Other factors, such as the voltage applied and the initial charge on the capacitor, can also influence the area under the curve.
B. The capacitor discharges faster: This statement is not applicable to changing the resistor value. The discharge rate of a capacitor in an RC circuit is primarily determined by the value of the resistor when the capacitor is being discharged, not when it is being charged.
C. The capacitor takes longer to achieve Qmax: This statement is true. In an RC circuit, the time constant (τ) is determined by the product of the resistance (R) and the capacitance (C) values (τ = RC).
A larger resistor value will increase the time constant, which means it will take longer for the capacitor to charge to its maximum charge (Qmax). So, the capacitor will indeed take longer to achieve Qmax.
D. The voltage Vc changes when the capacitor charges: This statement is true. When a capacitor charges in an RC circuit, the voltage across the capacitor (Vc) gradually increases until it reaches the same value as the applied voltage.
Changing the resistor value affects the charging time constant, which in turn affects the rate at which the voltage across the capacitor changes during charging. Therefore, changing the resistor value will impact the voltage Vc during the charging process.
In summary, the correct answer is C. The capacitor takes longer to achieve Qmax.
To learn more about RC circuit visit:
brainly.com/question/2741777
#SPJ11
The mass spectrometer (see Figure 4 of the text), is a device one uses to measure the mass of an ion. The ion of mass m, and electric charge q is accelerated through a region of potential difference V, before entering a chamber, where a magnetic field B is applied. Here, B is directed, perpendicularly, from behind of this sheet toward the front of it. a) The ions captured in the magnetic field, draw circular orbits, within the chamber; then land at a distance x from their entrance location to the chamber, on a photographic plate, so that one can measure easily the given landing location, due to the emission of a light photon, following the collision of the ion with the photographic plate of concern. Under the B²q. circumstances, show that the ion mass m is given by m ¹x². 8V b) Calculate the ion mass, in terms of the proton mass, i.e. m₂= 1.67 x 10-27 kg, The following data is provided: B = 0.01 Tesla, V = 0.5 Volt, q = 1.6 x 10-19 Coulomb, x = 4 cm. Make certain you use coherent units.
Mass spectrometer is a scientific instrument that helps to identify the molecular mass of a sample. It's based on the principle that ions of differing mass-to-charge ratios are deflected by an electromagnetic field in different ways.
The ion mass is 3.83 times the proton mass.
The mass spectrometer, a device used to measure the mass of an ion, is an essential tool in the field of science. When an ion of mass m and electric charge q is accelerated through a region of potential difference V, it enters a chamber where a magnetic field B is applied.
In this case, B is directed from behind the sheet toward the front of it, and the ions captured in the magnetic field draw circular orbits within the chamber. They land at a distance x from their entrance location to the chamber on a photographic plate that emits a light photon following the collision of the ion with the photographic plate.
The ion mass m is given by
m = B²q. x² / 8V.
Thus, if the given data, such as
B = 0.01 Tesla,
V = 0.5 Volt,
q = 1.6 x 10-19 Coulomb,
x = 4 cm, are substituted, the ion mass can be calculated as follows:
Given,
B = 0.01 Tesla,
V = 0.5 Volt,
q = 1.6 x 10-19 Coulomb,
x = 4 cm
From the above expression, the mass of the ion is given by m = B²q. x² / 8V.
Substituting the given values, m = (0.01 Tesla)² (1.6 x 10-19 Coulomb) (0.04 m)² / (8 × 0.5 Volt)
Therefore, m = 6.4 x 10-26 kg.
Converting the above value into terms of the proton mass, we get
m / m₂ = 6.4 × 10⁻²⁶ kg / 1.67 × 10⁻²⁷ kg
= 3.83
Hence, the ion mass is 3.83 times the proton mass.
Learn more about Mass spectrometer here
https://brainly.com/question/12670019
#SPJ11
R1 ww Ra Μ R₁ = 3,65 Ω R2 = 5.59 Ω If resistors R₁ and R₂ are connected as shown in the figure, What is the equivalent resistance? Ο 0.45 Ω Ο 2.21 Ω Ο 9.24 Ω Ο 0.11 Ω
The equivalent resistance of the given circuit, with resistors R₁ and R₂ connected as shown in the figure, is 2.21 Ω.
To calculate the equivalent resistance, we need to determine the total resistance when R₁ and R₂ are combined. In this case, the resistors are connected in parallel, so we can use the formula for calculating the total resistance of parallel resistors:
[tex]1/R_{total = 1/R_1 + 1/R_2[/tex]
Substituting the given resistance values:
[tex]1/R_{total = 1/3.65[/tex] Ω [tex]+ 1/5.59[/tex] Ω
To simplify the calculation, we can find the least common denominator (LCD) of the fractions:
[tex]1/R_{total = (5.59 + 3.65)/(3.65 *5.59)[/tex]
[tex]1/R_{total = 9.24/20.4035[/tex]
[tex]R_{total = 20.4035/9.24[/tex]
[tex]R_{total =2.21[/tex]Ω
Therefore, the equivalent resistance of the circuit is approximately 2.21 Ω.
Learn more about resistance here:
https://brainly.com/question/29427458
#SPJ11
If an R = 1-k2 resistor, a C = 1-uF capacitor, and an L = 0.2-H inductor are connected in series with a V = 150 sin (377t) volts source, what is the maximum current delivered by the source? 0 0.007 A 0 27 mA 0 54 mA 0 0.308 A 0 0.34 A
The maximum current delivered by the source is 0.34 A. This is determined by calculating the impedance of the series circuit, considering the resistance (R), inductance (L), and capacitance (C). By finding the reactance values for the inductor and capacitor and plugging them into the impedance formula, we can determine the maximum current.
In this case, the inductive reactance (Xl) is calculated using the frequency (377 Hz) and inductance (0.2 H), resulting in Xl = 474.48 Ω. The capacitive reactance (Xc) is determined using the frequency and capacitance (1 uF converted to Farads), resulting in Xc = 424.04 Ω. By applying these values to the impedance formula, Z = √(R^2 + (Xl - Xc)^2), we find that the impedance is complex, indicating a reactive circuit. The maximum current is delivered when the impedance is at its minimum, which in this case is 0.34 A.
Therefore, the maximum current delivered by the source is 0.34 A in this series circuit configuration with the given resistor, capacitor, inductor, and voltage source.
Learn more about inductance here;
https://brainly.com/question/30417307
#SPJ11
When the spin direction of the disk was changed, the direction of the precession also changed. Why?
When the add-on mass was placed on the opposite end of the gyroscope axle, the gyroscope rotated in reverse. Why?
Hint: direction of angular momentum of the disk, direction of torque
The change in the spin direction of the disk results in a change in the direction of precession due to the conservation of angular momentum.
Angular momentum is a vector quantity, meaning it has both magnitude and direction. It is given by the product of the moment of inertia and the angular velocity.
When the spin direction of the disk is changed, the angular momentum vector of the disk also changes direction. According to the conservation of angular momentum, the total angular momentum of the system must remain constant if no external torques act on it.
In the case of a gyroscope, the angular momentum is initially directed along the axis of rotation of the spinning disk.
When the spin direction of the disk is reversed, the angular momentum vector of the disk changes direction accordingly. To maintain the conservation of angular momentum, the gyroscope responds by changing the direction of its precession. This change occurs to ensure that the total angular momentum of the system remains constant.
Regarding the second scenario with the add-on mass placed on the opposite end of the gyroscope axle, the gyroscope rotates in reverse due to the torque applied to the system. Torque is the rotational equivalent of force and is responsible for changes in angular momentum. Torque is given by the product of the applied force and the lever arm distance.
By placing the add-on mass on the opposite end of the gyroscope axle, the torque acts in a direction opposite to the previous scenario. This torque causes the gyroscope to rotate in reverse, changing the direction of its precession. The direction of the torque determines the change in the gyroscope's rotational behavior.
To learn more about angular momentum visit:
brainly.com/question/29563080
#SPJ11
5 kg of water at 68°C is put into a refrigerator with a compressor with power of 100 W. The water is frozen to ice at 0°C in 64.34 mins. Calculate the COP of the refrigerator. a) 11.0 12. e) 23.0 b) 35.0 c) 20.0 d) 32.0 g) 29.0 h) 14.0 | i) 17.0 f) 8.0 j) 26.0
The closest option from the given choices is (f) 8.0. To calculate the coefficient of performance (COP) of the refrigerator, we need to use the formula:
COP = (Useful cooling effect)/(Work input)
First, let's calculate the useful cooling effect. The water is initially at 68°C and is cooled down to 0°C. The specific heat capacity of water is approximately 4.186 J/g°C.
Useful cooling effect = mass of water × specific heat capacity of water × change in temperature
= 5000 g × 4.186 J/g°C × (68°C - 0°C)
= 1,129,240 J
Next, let's calculate the work input. The power of the compressor is given as 100 W, and the time taken for the water to freeze is 64.34 minutes. We need to convert the time to seconds.
Work input = power × time
= 100 W × (64.34 mins × 60 s/min)
= 38,604 J
Now we can calculate the COP:
COP = Useful cooling effect / Work input
= 1,129,240 J / 38,604 J
≈ 29.2
The closest option from the given choices is (f) 8.0.
Learn more about work here:
https://brainly.com/question/30073908?
#SPJ11
a) A flat roof is very susceptible to wind damage during a thunderstorm and/or tornado. If a flat roof has an area of 780 m2 and winds of speed 41.0 m/s blow across it, determine the magnitude of the force exerted on the roof. The density of air is 1.29 kg/m3.
N
(b) As a result of the wind, the force exerted on the roof is which of the following?
upward
downward
During a thunderstorm or tornado, a flat roof with an area of 780 m2 is at risk of wind damage. The magnitude of the force exerted on the roof is 679,024.7 N. The force exerted on the roof is in the downward direction.
To calculate the force exerted on the flat roof, we need to determine the wind pressure first. Wind pressure can be calculated using the equation: [tex]Pressure = 0.5 * density * velocity^2[/tex], where the density of air is given as [tex]1.29 kg/m^3[/tex] and the velocity is 41.0 m/s. Plugging in these values, we find the wind pressure to be approximately 872.485 Pa.
Next, we can calculate the force exerted on the roof by multiplying the wind pressure by the area of the roof. The area of the roof is given as [tex]780 m^2[/tex]. Therefore, the force exerted on the roof can be calculated as: Force = Pressure * Area. Substituting the values, we get: Force = [tex]872.485 Pa * 780 m^2 = 679,024.7 N[/tex].
The force exerted on the flat roof during the thunderstorm/tornado is downward since the wind blows across the roof and exerts a pressure on it in the downward direction. Therefore, the correct answer is (b) downward.
Learn more about force here:
https://brainly.com/question/30507236
#SPJ11
(a) How many minutes does it take a photon to travel from the Sun to the Earth? imin (b) What is the energy in eV of a photon with a wavelength of 513 nm ? eV (c) What is the wavelength (in m ) of a photon with an energy of 1.58eV ? m
(a) It takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.
(b) A photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.
(c) A photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters.
(a) Calculation of the time it takes a photon to travel from the Sun to the Earth:
The average distance from the Sun to the Earth is approximately 93 million miles or 150 million kilometers. Convert this distance to meters by multiplying it by 1,000, as there are 1,000 meters in a kilometer. So, the distance is 150,000,000,000 meters.
The speed of light in a vacuum is approximately 299,792 kilometers per second or 299,792,458 meters per second. To find the time it takes for a photon to travel from the Sun to the Earth, divide the distance by the speed of light:
Time = Distance / Speed of Light
Time = 150,000,000,000 meters / 299,792,458 meters per second
This gives approximately 499.004 seconds. To convert this to minutes, we divide by 60:
Time in minutes = 499.004 seconds / 60 = 8.3167 minutes
Therefore, it takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.
(b) Calculation of the energy of a photon with a wavelength of 513 nm:
The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.
Planck's constant (h) is approximately 4.1357 × 10^-15 eV·s.
The speed of light (c) is approximately 299,792,458 meters per second.
The given wavelength is 513 nm, which can be converted to meters by multiplying by 10^-9 since there are 1 billion nanometers in a meter. So, the wavelength is 513 × 10^-9 meters.
Substituting the values into the equation,
E = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / (513 × 10^-9 m)
Simplifying the equation, we get:
E = (1.2457 × 10^-6 eV·m) / (513 × 10^-9 m)
By dividing the numerator by the denominator,
E ≈ 2.42 eV
Therefore, a photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.
(c) Calculation of the wavelength of a photon with an energy of 1.58 eV:
To find the wavelength of a photon given its energy, we rearrange the equation E = hc/λ to solve for λ.
We have the given energy as 1.58 eV.
Substituting the values into the equation,
1.58 eV = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / λ
To isolate λ, we rearrange the equation:
λ = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / 1.58 eV
By dividing the numerator by the denominator,
λ ≈ 7.83 × 10^-7 meters
Therefore, a photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters or 783 nm.
These calculations assume that the photons are traveling in a vacuum.
Learn more about photon here:
https://brainly.com/question/33017722
#SPJ11
heavy uniform beam of mass 25 kg and length 1.0 m is supported at rest by two ropes, as shown. The left rope is attached at the left end of the beam while the right rope is secured 3/4 of the beam's length away to the right. Determine the fraction of the beam's weight being supported by the rope on the right. In other words, determine: TR Wbeam 0 0 0.5 0.67 0.83 0.75
The rope on the right can support the entire weight of the beam, so the fraction of the beam's weight being supported by that rope is 1 or 100%.
The fraction of the beam's weight being supported by the rope on the right can be determined by analyzing the torque equilibrium of the beam.
Let's denote the weight of the beam as W_beam.
Since the beam is uniform, we can consider its weight to act at its center of mass, which is located at the midpoint of the beam.
To calculate the torque, we need to consider the distances of the two ropes from the center of mass of the beam.
The left rope is attached at the left end of the beam, so its distance from the center of mass is 0.5 m.
The right rope is secured 3/4 of the beam's length away to the right, so its distance from the center of mass is 0.75 m.
In torque equilibrium, the sum of the torques acting on the beam must be zero.
The torque exerted by the left rope is TR (tension in the rope) multiplied by its distance from the center of mass (0.5 m), and the torque exerted by the right rope is TR multiplied by its distance from the center of mass (0.75 m).
Since the beam is at rest, the sum of these torques must be zero.
Therefore, we can set up the equation:
TR * 0.5 - TR * 0.75 = 0
Simplifying the equation, we find:
-0.25TR = 0
Since the left side of the equation is zero, the tension in the right rope (TR) can be any value.
This means that the right rope can support the entire weight of the beam, so the fraction of the beam's weight being supported by the rope on the right is 1.
In summary, the rope on the right can support the entire weight of the beam, so the fraction of the beam's weight being supported by that rope is 1 or 100%.
Learn more about torque here:
https://brainly.com/question/31323759
#SPJ11
A baseball bat traveling rightward strikes a ball when both are moving at 30.1 m/s (relative to the ground) toward each other. The bat and ball are in contact for 1.10 ms, after which the ball travels rightward at a speed of 42.5 m/s relative to the ground. The mass of the bat and the ball are 850 g and 145 g, respectively. Define rightward as the positive direction.
Calculate the impulse given to the ball by the bat
Calculate the impulse given to the bat by the ball.
What average force ⃗ avg does the bat exert on the ball?
The impulse given to the ball by the bat is equal to the change in momentum of the ball during their interaction. The impulse can be calculated by subtracting the initial momentum of the ball from its final momentum.
The initial momentum of the ball is given by the product of its mass (m_ball) and initial velocity (v_initial_ball): p_initial_ball = m_ball * v_initial_ball. The final momentum of the ball is given by: p_final_ball = m_ball * v_final_ball.
To calculate the impulse, we can use the equation: Impulse = p_final_ball - p_initial_ball. Substituting the values, we have Impulse = (m_ball * v_final_ball) - (m_ball * v_initial_ball).
Similarly, we can calculate the impulse given to the bat by the ball using the same principle of conservation of momentum. The impulse given to the bat can be obtained by subtracting the initial momentum of the bat from its final momentum.
The average force (F_avg) exerted by the bat on the ball can be calculated using the equation: F_avg = Impulse / Δt, where Δt is the time of contact between the bat and the ball.
Learn more about momentum here;
https://brainly.com/question/18798405
#SPJ11
The fastest speed a human has ever run was 11.9 m/s. At what temperature would a nitrogen molecule (MM = 0.0280 kg/mole) travel at that speed? [?]=K. R = 8.31 J/(mol-K)
The temperature at which a nitrogen molecule would travel at the fastest human running speed of 11.9 m/s is approximately 348 Kelvin. So the temperature will be 348K.
To determine the temperature at which a nitrogen molecule would travel at the fastest human running speed, we can use the root mean square (RMS) velocity formula:
v_rms = √((3 * k * T) / m)
Where:
v_rms is the root mean square velocity,
k is the Boltzmann constant (1.38 × 10⁻²³ J/K),
T is the temperature in Kelvin,
m is the molar mass of the nitrogen molecule.
Given that the fastest human running speed is 11.9 m/s and the molar mass of nitrogen is 0.0280 kg/mol, we can rearrange the formula to solve for the temperature:
T = (m * v_rms²) / (3 * k)
Substituting the values, we have:
T = (0.0280 kg/mol * (11.9 m/s)²) / (3 * 8.31 J/(mol-K))
Calculating this expression, we find:
T ≈ 348 K
Therefore, the temperature at which a nitrogen molecule would travel at the same speed as the fastest human running speed is approximately 348 Kelvin.
To know more about Kelvin,
https://brainly.com/question/14132731
#SPJ11
10 2,7.90 2 and 3.13 resistors are connected in parallel to a 12V battery. What is the total current in this circuit (i.e., the current leaving the positive battery terminal)? Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8
The total current in this circuit is 6.554A for the resistors connected in parallel with a battery.
Given that 10 2, 7.90 2 and 3.13 resistors are connected in parallel to a 12V battery. We are to find the total current in this circuit. (i.e., the current leaving the positive battery terminal).Formula to calculate the total current in the circuit is as follows;IT = I1 + I2 + I3Where IT is the total current, I1, I2 and I3 are the currents in each branch respectively, and I stands for current.
In a parallel circuit, the voltage across all branches is equal, but the currents may be different depending on the resistance of the individual branch. Hence, we use the following formula to calculate the current flowing through each branch in a parallel circuit;I = V / RI is the current flowing through the branch, V is the voltage across the branch, and R is the resistance of the branch.
Putting the values, we have;V = 12V, andR1 = 10Ω, R2 = 7.902Ω and R3 = 3.13ΩTherefore,I1 = V / R1 = 12V / 10Ω = 1.2AI2 = V / R2 = 12V / 7.902Ω = 1.518AI3 = V / R3 = 12V / 3.13Ω = 3.836A
Hence,Total current, IT = I1 + I2 + I3 = 1.2A + 1.518A + 3.836A = 6.554A
The total current in this circuit is 6.554A.
Learn more about circuit here:
https://brainly.com/question/12608516
#SPJ11
A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x = 0.830 m. Find the magnitude and direction of the electric field at each of the following points on the x axis. Part A
x₂ = 18.0 cm E(x₂) = _______ N/C
Part B
The field at point x₂ is directed in the a. +x direction.
b. -x direction.
A point charge of -4.00 nC is at the origin. Second point charge of 6.00 nC is on the x-axis at x = 0.830 m.
Electric field due to a point charge, k = 9 × 10^9 Nm²/C².
E = k * (q/r²) Where E is the electric field due to the point charge q is the charge of the point charger is the distance between the two charges k is Coulomb's constant = 9 × 10^9 Nm²/C²a)
To calculate the electric field at point x₂ = 18.0 cm, we need to find the distance between the two charges. It is given that one point charge is at the origin and the other is at x = 0.830 m. So, the distance between the two charges = (0.830 m - 0.180 m) = 0.65 m = 65 cm
The distance between the two charges is 65 cm = 0.65 m.
Electric field at point x₂ = E(x₂) = k * (q/r²) Where, k = Coulomb's constant = 9 × 10^9 Nm²/C²q = 6.00 nC = 6 × 10⁻⁹ C (positive as it is a positive charge) and r = distance between the two charges = 65 cm = 0.65 m
Putting the given values in the above formula we get, E(x₂) = (9 × 10^9 Nm²/C²) × (6 × 10⁻⁹ C)/(0.65 m)²E(x₂) = 123.86 N/C ≈ 124 N/C
Therefore, the electric field at point x₂ = 18.0 cm is 124 N/C (approx).
The direction of the electric field is towards the positive charge. Hence, the field at point x₂ is directed in the a. +x direction.
Learn more about electric fields: https://brainly.com/question/19878202
#SPJ11
AP1: a) Write down the Electric and Magnetic fields for a plane wave travelling in +z direction that is linearly polarized in the x direction. b) Calculate the Poynting vector for this EM wave c) Calculate the total energy density for this wave d) Verify that the continuity equation is satisfied for this wave.
a) Electric and Magnetic fields for a plane wave travelling in +z direction is
E₀ cos(kz - ωt) î and B₀ cos(kz - ωt) ĵ.
b)Poynting vector for this EM wave is (1/μ₀) E₀ B₀ (cos)² (k z - - ω t ) k
c)total energy density for this wave is (1/2μ₀) (E₀² + B₀²) cos²(kz - ωt)
d)continuity equation for this wave is ∂u/∂t + ∇ · S = 0
a) For a plane wave traveling in the +z direction that is linearly polarized in the x direction, the electric field (E) and magnetic field (B) can be written as:
Electric field: E(x, y, z, t) = E₀ cos(kz - ωt) î
Magnetic field: B(x, y, z, t) = B₀ cos(kz - ωt) ĵ
where,
E₀ and B₀ are the amplitudes of the electric and magnetic fields
k is the wave number
ω is the angular frequency
î and ĵ are unit vectors in the x and y directions, respectively.
b) The Poynting vector (S) for this electromagnetic wave can be calculated as:
S(x, y, z, t) = (1/μ₀) E(x, y, z, t) × B(x, y, z, t)
where
μ₀ is the permeability of free space
× denotes the cross product.
Since E and B are perpendicular to each other, their cross product will be in the z direction.
S(x, y, z, t) = (1/μ₀) E₀ B₀ (cos)² (k z - - ω t ) k
where,
k is the unit vector in the z direction.
c) The total energy density (u) for this wave can be calculated using the equation:
u(x, y, z, t) = (1/2μ₀) (E(x, y, z, t)² + B(x, y, z, t)²)
Substituting the values of E and B into the equation, we get:
u(x, y, z, t) = (1/2μ₀) (E₀² + B₀²) cos²(kz - ωt)
d) The continuity equation for electromagnetic waves states that the rate of change of energy density with respect to time plus the divergence of the Poynting vector should be zero.
Mathematically, it can be written as:
∂u/∂t + ∇ · S = 0
Taking the derivatives and divergence of the expressions obtained in parts b) and c) we can verify if the continuity equation is satisfied for this wave.
learn more about magnetic field :
https://brainly.com/question/19542022
#SPJ4
A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What net centripetal force must she exert to stay on if she is 1.64 m from its center? (Hint: it's more than double her weight). Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23,-2, 106, 5.23e-8 Enter answer here
A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. The net centripetal force the child must exert to stay on the merry-go-round is 603.56 N.
The centripetal force is the radial force responsible for keeping an object in circular motion
To find the net centripetal force the child must exert to stay on the merry-go-round, we can use the formula for centripetal force:
F = m * ω^2 * r
where F is the centripetal force, m is the mass of the child, ω is the angular velocity in radians per second, and r is the distance from the center of rotation.
First, we need to convert the angular velocity from rev/min to radians per second.
There are 2π radians in one revolution, and 60 seconds in one minute:
ω = (40.0 rev/min) * (2π rad/rev) * (1 min/60 s) = 4.1888 rad/s
Now we can calculate the centripetal force:
F = (22.0 kg) * (4.1888 rad/s)^2 * (1.64 m) = 603.56 N
Therefore, the net centripetal force the child must exert to stay on the merry-go-round is 603.56 N.
Learn more about centripetal force here:
https://brainly.com/question/14021112
#SPJ11
(Please can you add the whole procedure, I do not understand this topic very well and I would like to learn and understand it completely. Thank you so much!)
A 20 MHz uniform plane wave travels in a lossless material with the following features:
\( \mu_{r}=3, \quad \epsilon_{r}=3 \)
Calculate:
a)The phase constant of the wave.
b) The wavelength.
c)The speed of propagation of the wave.
d) The intrinsic impedance of the medium.
e) The average power of the Poynting vector or Irradiance, if the amplitude of the electric field Emax = 100V/m
d) If the wave reaches an RF field detector with a square area of 1 cm x 1 cm, how much power in
Watts would be read on screen?
In a lossless material, a uniform plane wave with a frequency of 20 MHz propagates. The material has a relative permeability (μr) of 3 and a relative permittivity (εr) of 3. We need to calculate the phase constant of the wave, the permeability, the speed of propagation.
The intrinsic impedance of the medium, the average power of the Poynting vector or Irradiance, and the power reading on an RF field detector with a specific area.
To calculate the phase constant of the wave, we can use the formula β = ω√(με), where β is the phase constant, ω is the angular frequency (2πf), μ is the permeability of the medium, and ε is the permittivity of the medium.
The wavelength can be calculated using the formula λ = v/f, where λ is the wavelength, v is the speed of propagation, and f is the frequency.
The speed of propagation can be calculated using the formula v = c / √(μrεr), where c is the speed of light in vacuum.
The intrinsic impedance of the medium can be calculated using the formula Z = √(μ/ε), where Z is the intrinsic impedance, μ is the permeability of the medium, and ε is the permittivity of the medium.
The average power of the Poynting vector or Irradiance can be calculated using the formula Pavg = 0.5 * Z * |Emax|^2, where Pavg is the average power, Z is the intrinsic impedance, and |Emax| is the maximum amplitude of the electric field.
To calculate the power reading on an RF field detector, we can use the formula Power = Irradiance * Area, where Power is the power reading, Irradiance is the average power of the Poynting vector, and Area is the area of the detector.
By applying the appropriate formulas and calculations, the values for the phase constant, wavelength, speed of propagation, intrinsic impedance, average power, and power reading can be determined.
Learn more about permeability here:
https://brainly.com/question/32006333
#SPJ11
At which points in space does destructive interference occur for coherent electromagnetic waves (EM waves) with a single wavelength λ ? A. where their path length differences are 2λ B. where their path length differences are λ C. where their path length differences are even integer multiples of λ/2 D. where their path length differences are odd integer multiples of λ/2
Therefore, the correct option is D, where their path length differences are odd integer multiples of λ/2.
The correct answer to the given question is option D, where their path length differences are odd integer multiples of λ/2.In interference, two waves meet with each other, and the amplitude of the resultant wave depends on the phase difference between the two waves.
In the case of constructive interference, the phase difference between the two waves is a multiple of 2π, and in destructive interference, the phase difference is a multiple of π. For electromagnetic waves, destructive interference occurs when the path length difference between two waves is an odd integer multiple of half of the wavelength.
The expression for destructive interference can be written as follows:Δx = (2n + 1)λ/2Here, Δx represents the path length difference, n represents an integer, and λ represents the wavelength of the wave.Therefore, the correct option is D, where their path length differences are odd integer multiples of λ/2.
to know more about wavelength
https://brainly.com/question/1206358
#SPJ11
A 2.4 kg rock has a horizontal velocity of magnitude v=2.1 m/s when it is at point P in the figure, where r=4.1 m and θ= 45 degree. If the only force acting on the rock is its weight, what is the rate of change of its angular momentum relative to point O at this instant?
Therefore, the rate of change of the angular momentum relative to point O is zero.Answer: 0
The angular momentum of the rock relative to point O is given byL = r × p,where r is the position vector of the rock relative to point O, and p is the momentum of the rock relative to point O.We can express the momentum p in terms of the velocity v. Since the rock has a horizontal velocity of magnitude v=2.1 m/s, its momentum has a horizontal component of p = mv = (2.4 kg)(2.1 m/s) = 5.04 kg · m/s. There is no vertical component of the momentum, since the rock is moving horizontally, so we have p = (5.04 kg · m/s) i. Using the position vector r = (4.1 m) i + (4.1 m) j and the momentum p, we find thatL = r × p= [(4.1 m) i + (4.1 m) j] × (5.04 kg · m/s i)= 20.2 kg · m²/s k. where k is a unit vector perpendicular to the plane of the paper, pointing out of the page. The rate of change of the angular momentum relative to point O is given byτ = dL/dtwhere τ is the torque on the rock. Since the only force acting on the rock is its weight, which is directed downward, the torque on the rock is zero, so we haveτ = 0. Therefore, the rate of change of the angular momentum relative to point O is zero.Answer: 0
To know more about magnitude visit:
https://brainly.com/question/29665153
#SPJ11
What is the minimum amount of work required in joules (by this I mean forget about friction and drag forces) to get a 5.07 kg object to accelerate from a speed of 11.4 m/s to 43.4 m/s?
The minimum amount of work required to accelerate a 5.07 kg object from a speed of 11.4 m/s to 43.4 m/s is approximately 5,562.84 Joules.
The work-energy principle states that the work done on an object is equal to the change in its kinetic energy. The formula for work is W = ΔKE, where W is the work done and ΔKE is the change in kinetic energy.
The initial kinetic energy (KEi) of the object can be calculated using the formula KEi = 1/2 * m * v1^2, where m is the mass and v1 is the initial velocity. Substituting the given values, we find KEi = 1/2 * 5.07 kg * (11.4 m/s)^2.
Similarly, the final kinetic energy (KEf) of the object can be calculated using the formula KEf = 1/2 * m * v2^2, where v2 is the final velocity. Substituting the given values, we find KEf = 1/2 * 5.07 kg * (43.4 m/s)^2.
The change in kinetic energy (ΔKE) is given by ΔKE = KEf - KEi. Substituting the calculated values, we find ΔKE = 1/2 * 5.07 kg * (43.4 m/s)^2 - 1/2 * 5.07 kg * (11.4 m/s)^2.
Learn more about kinetic energy here:
https://brainly.com/question/999862
#SPJ11
If the magnetic field at the center of a single loop wire with radius of 8.08cm in 0.015T, calculate the magnetic field if the radius would be 3.7cm with the same current. Express your result in units of T with 3 decimals.
Answer:
The magnetic field if the radius would be 3.7cm with the same current is 0.0069T.
Let B1 be the magnetic field at the center of a single loop wire with radius of 8.08cm and B2 be the magnetic field if the radius would be 3.7cm with the same current.
Now,
The magnetic field at the center of a single loop wire is given by;
B = (μ₀I/2)R
Where μ₀ is the magnetic constant,
I is the current and
R is the radius.
The magnetic field at the center of a single loop wire with radius of 8.08cm is given as,
B1 = (μ₀I/2)R1 …(i)
Similarly, the magnetic field at the center of a single loop wire with radius of 3.7cm is given as,
B2 = (μ₀I/2)R2 …(ii)
As given, current I is same in both the cases,
i.e., I1 = I2 = I
Also, μ₀ is a constant, hence we can write equation (i) and (ii) as, B1 ∝ R1 and B2 ∝ R2
Thus, the ratio of magnetic field for the two different radii can be written as;
B1/B2 = R1/R2
On substituting the values, we get;
B1/B2 = (8.08)/(3.7)
B2 = B1 × (R2/R1)
B2 = 0.015 × (3.7/8.08)
B2 = 0.00686061947
B2= 0.0069 (approx)
Therefore, the magnetic field if the radius would be 3.7cm with the same current is 0.0069T.
Hence, the answer is 0.0069T.
Learn more about magnetic field, here
https://brainly.com/question/7645789
#SPJ11
The energy of a photon is given by 3600eV. What is the energy of the photon in the unit of J? Answer the value that goes into the blank: The energy of the photon is ×10 −15
J.
The energy of a photon is given as 3600 eV. The electron volt (eV) is a unit of energy commonly used in the field of particle physics and quantum mechanics. It represents the amount of energy gained or lost by an electron when it is accelerated through an electric potential difference of one volt.
To convert this energy to joules (J), we need to use the conversion factor between electron volts and joules. The conversion factor is 1 eV = 1.6 x[tex]10^(-19)[/tex] J. Multiplying the given energy of the photon (3600 eV) by the conversion factor, we can find the energy in joules:
Energy in J = 3600 eV * (1.6 x [tex]10^(-19)[/tex] J/eV)
Calculating this expression, we get:
Energy in J = 5.76 x [tex]10^(-16)[/tex] J
Therefore, the energy of the photon is 5.76 x[tex]10^(-16)[/tex]) J.
The electron volt (eV) is a unit of energy commonly used in the field of particle physics and quantum mechanics. It represents the amount of energy gained or lost by an electron when it is accelerated through an electric potential difference of one volt. On the other hand, the joule (J) is the standard unit of energy in the International System of Units (SI).
The conversion factor between eV and J is based on the charge of an electron and is derived from fundamental constants. Multiplying the energy in eV by the conversion factor allows us to convert it to joules. In this case, the energy of the photon is found to be 5.76 x [tex]10^(-16)[/tex] J.
The resulting value, written as ×[tex]10^(-15[/tex]) J, indicates that the energy is in the order of [tex]10^(-15[/tex]) J. This represents a very small amount of energy on the scale of everyday experiences, but it is significant in the realm of quantum phenomena, where particles and photons exhibit discrete energy levels.
Learn more about quantum mechanics here:
https://brainly.com/question/23780112
#SPJ11
An AC voltage of the form Av = 100 sin 1 000t, where Av is in volts and t is in seconds, is applied to a series RLC circuit. Assume the resistance is 410 , the capacitance is 5.20 pF, and the inductance is 0.500 H. Find the average power delivered to the circuit.
The average power delivered to the series RLC circuit, given an AC voltage of Av = 100 sin 1 000t with specific circuit parameters is 1.56 watts.
The average power delivered to a circuit can be determined by calculating the average of the instantaneous power over one cycle. In an AC circuit, the power varies with time due to the sinusoidal nature of the voltage and current.
First, let's find the angular frequency (ω) using the given frequency f = 1 000 Hz:
[tex]\omega = 2\pi f = 2\pi(1 000) = 6 283 rad/s[/tex]
Next, we need to calculate the reactance of the inductor (XL) and the capacitor (XC):
[tex]XL = \omega L = (6 283)(0.500) = 3 141[/tex] Ω
[tex]XC = 1 / (\omega C) = 1 / (6 283)(5.20 *10^{(-12)}) = 30.52[/tex] kΩ
Now we can calculate the impedance (Z) of the series RLC circuit:
[tex]Z = \sqrt(R^2 + (XL - XC)^2) = \sqrt(410^2 + (3 141 - 30.52)^2) = 3 207[/tex]Ω
The average power ([tex]P_{avg}[/tex]) delivered to the circuit can be found using the formula:
[tex]P_{avg} = (Av^2) / (2Z) = (100^2) / (2 * 3 207) = 1.56 W[/tex]
Therefore, the average power delivered to the series RLC circuit is 1.56 watts.
Learn more about average power here:
https://brainly.com/question/17008088
#SPJ11
Write down the radar equation and analyze it. Discuss how to use
it to design the radar system
The radar equation is a fundamental equation used in radar systems to calculate the received power at the radar receiver. It relates the transmitted power, antenna characteristics, target properties, and range.
Analyzing the radar equation helps understand the factors that influence radar system design and performance.
The radar equation is given as:
Pr = Pt * Gt * Gr * (λ^2 * σ * A) / (4 * π * R^4)
where:
Pr is the received power at the radar receiver,
Pt is the transmitted power,
Gt and Gr are the gain of the transmitting and receiving antennas respectively,
λ is the wavelength of the radar signal,
σ is the radar cross-section of the target,
A is the effective aperture area of the receiving antenna,
R is the range between the radar transmitter and the target.
By analyzing the radar equation, we can understand the factors that affect the received power and the design of a radar system. The transmitted power and the gains of the antennas influence the strength of the transmitted and received signals. The wavelength of the radar signal determines the resolution and target detection capabilities. The radar cross-section (σ) represents the reflectivity of the target and its ability to scatter the radar signal. The effective aperture area of the receiving antenna (A) determines the ability to capture and detect the weak reflected signals. The range (R) between the radar and the target affects the received power.
To design a radar system, the radar equation can be used to determine the required transmitted power, antenna characteristics, and sensitivity of the receiver to achieve a desired level of received power. The equation helps in optimizing the antenna gain, choosing the appropriate radar frequency, and considering the target characteristics. By understanding the radar equation and its parameters, engineers can design radar systems with the desired range, resolution, and target detection capabilities while considering factors such as power consumption, signal processing, and environmental conditions.
Learn more about radar frequency here:- brainly.com/question/30504997
#SPJ11
A grinding wheel is a uniform cylinder with a radius of 7.20 cm and a mass of 0.350 kg <3 of 3 Constants Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units. Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 6.80 s. Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 62.0 s Express your answer to three significant figures and include the appropriate units.
Plugging in the given values, we have I = (1/2)(0.350 kg)(0.072 m)² = 0.055 kg·m². This is the moment of inertia of the grinding wheel about its center.
To calculate the applied torque (τ) needed to accelerate the wheel, we use the equation τ = Iα, where α is the angular acceleration. The initial angular velocity is 0 (since the wheel starts from rest), and the final angular velocity is (1750 rpm)(2π rad/min) = (1750)(2π/60) rad/s. The time taken (t) is 6.80 s. Using the formula α = (ω - ω₀)/t, where ω is the final angular velocity and ω₀ is the initial angular velocity, we can calculate the angular acceleration. Substituting the values into τ = Iα, we can find the applied torque.
The frictional torque (τ_friction) that slows down the wheel is also given by τ_friction = Iα, where α is the angular acceleration. The initial angular velocity is (1500 rpm)(2π/60) rad/s, the final angular velocity is 0 (since the wheel comes to rest), and the time taken is 62.0 s. Using the formula α = (ω - ω₀)/t, we can calculate the angular acceleration. Substituting the values into τ_friction = Iα, we can find the frictional torque.
The applied torque is the difference between the torque needed for acceleration and the frictional torque: τ_applied = τ - τ_friction.
By performing the calculations, taking into account the given values and equations, we can determine the applied torque needed to accelerate the wheel and the effect of the frictional torque.
Learn more about torque here:
https://brainly.com/question/30338175
#SPJ11
Calculate the work done in SI units on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal.
Work done can be calculated by the formula:
Work = Force × Distance × Cos(θ)
Work done on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal can be calculated as follows:
Given, Force (F) = 350 lbf
Distance (d) = 3 feet
Angle (θ) = 30 degrees
We need to convert force and distance into SI units as Work is to be calculated in SI units.
We know, 1 lbf = 4.44822 N (SI unit of force)
1 feet = 0.3048 meters (SI unit of distance)
So, Force (F) = 350 lbf × 4.44822 N/lbf = 1552.77 N
Distance (d) = 3 feet × 0.3048 meters/feet = 0.9144 meters
Using the formula,
Work = Force × Distance × Cos(θ)
Work = 1552.77 N × 0.9144 m × Cos(30°)
Work = 1208.6 Joules
Therefore, the work done in SI units on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal is 1208.6 Joules.
Learn more about workdone here
https://brainly.com/question/28356414
#SPJ11