The total number of calories needed is,Q = Q1 + Q2 = 3,750 cal + 28,500 cal = 32,250 cal .
Mass of water (m) = 100.0 g
Specific heat of water (c) = 1.00 cal/g °C
Change in temperature (ΔT) = 56.0°C - 27.7°C = 28.3°C
The heat absorbed by the water can be calculated using the formula:
Q = m * c * ΔT
Q = (100.0 g) * (1.00 cal/g °C) * (28.3°C)
Q = 2,830 cal
Therefore, the amount of heat absorbed by the 100.0 g sample of water is 2,830 cal.
Calculation of Heat of Vaporization of Water:
Mass of water (m) = 5.0 g
Heat absorbed (Q) = 2,830 cal
The heat of vaporization of water can be calculated using the formula:
Q = m * Hv
Hv = Q / m
Hv = 2,830 cal / 5.0 g
Hv = 570 cal/g
Therefore, the heat of vaporization of water is 570 cal/g.
Conversion to Kilocalories-per-Mole:
Conversion factor: 1 cal/g = 4.184 J/g and 1 kcal = 4,184 J
Converting the heat of vaporization from calories per gram to joules per gram:
570 cal/g = (570 cal/g) * (4.184 J/cal) = 2,388.48 J/g
Converting the heat of vaporization from joules per gram to joules per mole:
2,388.48 J/g = (2,388.48 J/g) * (18.02 g/mol) = 43,009.6 J/mol
Converting the heat of vaporization from joules per mole to kilocalories per mole:
43,009.6 J/mol = 43.01 kJ/mol = 10.29 kcal/mol
Therefore, the heat of vaporization of water is 10 kcal/mol.
Additional Heat Required for Vaporization:
Mass of water (m) = 1.00 kg
Heat of vaporization of water (Hv) = 540 kcal/kg
The additional heat required to vaporize all of the water can be calculated as:
Q = m * Hv
Q = (1.00 kg) * (540 kcal/kg)
Q = 540 kcal
Therefore, the additional heat necessary to vaporize all of the water is 540 kcal.
Calculation of Calories Required for Phase Change:
Mass of water (m) = 50.0 g
Specific heat of water (c) = 1.00 cal/g °C
Change in temperature (ΔT) = 100.0°C - 25.0°C = 75.0°C
Heat of vaporization of water (Hv) = 570 cal/g
Step 1: Calculation of heat required to raise the temperature of water to its boiling point:
Q1 = m * c * ΔT
Q1 = (50.0 g) * (1.00 cal/g °C) * (75.0°C)
Q1 = 3,750 cal
Step 2: Calculation of heat required to vaporize the water at its boiling point:
Q2 = m * Hv
Q2 = (50Step 2: The number of calories needed to vaporize the water at 100°C is given by,Q2 = (50.0 g) (570 cal/g)Q2 = 28,500 cal
Therefore, the total number of calories needed is, Q = Q1 + Q2 = 3,750 cal + 28,500 cal = 32,250 cal.
Learn more about heat absorbed:
brainly.com/question/30836915
#SPJ11
Which of the options below correctly describes what happens when a small amount of strong base is added to a buffer solution consisting of the weak acid HA its conjugate base A−? a. The concentration of OH−decreases and the concentration of HA increases. b. The concentration of OH−decreases and the concentration of HA decreases. c. The concentration of OH−increases and the concentration of HA decreases. d. The concentration of OH−increases and the concentration of HA remains the same. e. The concentration of OH−remains the same and the concentration of HA decreases.
A buffer solution is a solution that can resist a change in pH when a small amount of a strong acid or base is added to it. A buffer solution usually consists of a weak acid and its conjugate base.
When a small amount of strong base is added to a buffer solution of a weak acid and its conjugate base, the OH- ions react with the weak acid HA to form A- and water (H2O). Hence, the concentration of the conjugate base increases while the concentration of the weak acid decreases. As a result, the pH of the buffer solution rises slightly.
The pH of the buffer solution remains relatively stable after this small increase. Option c, "The concentration of OH−increases and the concentration of HA decreases" correctly describes what occurs when a small amount of strong base is added to a buffer solution consisting of the weak acid HA and its conjugate base A−. Thus, option c is the correct answer.
To know more about solution visit-
https://brainly.com/question/1616939
#SPJ11
Traveling south along the 180 °from 5° N to 5° S approximately how many nautical miles will you cover? A. 600 B. 300 C. 690 D. 345
The correct answer is A. 600 nautical miles is not the distance you will cover when traveling south along the 180° longitude from 5°N to 5°S. The correct distance is 0 nautical miles since the points are on the same line of longitude.
The distance traveled along a line of longitude can be calculated using the formula:
Distance = (Latitude 1 - Latitude 2) * (111.32 km per degree of latitude) / (1.852 km per nautical mile)
Given:
Latitude 1 = 5°N
Latitude 2 = 5°S
Substituting the values into the formula:
Distance = (5°N - 5°S) * (111.32 km/°) / (1.852 km/nm)
Converting the difference in latitude from degrees to minutes (1° = 60 minutes):
Distance = (0 minutes) * (111.32 km/°) / (1.852 km/nm)
Simplifying the equation:
Distance = 0 * 60 * (111.32 km/°) / (1.852 km/nm)
Distance = 0 nm
Therefore, traveling south along the 180° longitude from 5°N to 5°S, you will cover approximately 0 nautical miles.
Learn more about longitude visit:
https://brainly.com/question/437347
#SPJ11
A sample of xenon gas occupies a volume of 6.56 L at 407 K. If the pressure remains constant, at what temperature will this same xenon gas sample have a volume of 3.38 L ?
Therefore, at a constant pressure, the xenon gas sample will have a volume of 3.38 L at approximately 209.65 K.
To solve this problem, we can use the combined gas law, which states:
(P1 * V1) / T1 = (P2 * V2) / T2
where P1 and P2 are the initial and final pressures, V1 and V2 are the initial and final volumes, and T1 and T2 are the initial and final temperatures.
In this case, the pressure remains constant, so we can simplify the equation to:
(V1 / T1) = (V2 / T2)
Plugging in the given values:
V1 = 6.56 L
T1 = 407 K
V2 = 3.38 L
We can rearrange the equation to solve for T2:
T2 = (V2 * T1) / V1
Substituting the values:
T2 = (3.38 L * 407 K) / 6.56 L
Calculating the result:
T2 ≈ 209.65 K
To know more about pressure,
https://brainly.com/question/29697633
#SPJ11
What is 7 and 1/8% expressed as a decimal? Select one: a. 7.8 b. Not Here c. 7.0125 d. 7.145 e. 7.18 Clear my choice 17.71÷0.322= Select one: a. 5.50 b. 550 c. 0.55 d. Not Here e. 0.055 Clear my choice What are the three consecutive integers whose sum totals 36 ? Select one: a. 10,12,14 b. 12,13,14 c. 9,11,13 d. 11,12,13 If 5x−3=2+6x, then x= Select one: a. 2 b. 1 C. 5 d. Not Here e. 5/11
Subtracting 6x from both sides gives:-x = 5
Dividing both sides by -1 gives :x = -5
Therefore, the correct option is Not Here.
This division problem can be solved using long division or a calculator. When dividing 17.71 by 0.322, we get 55.029498525073746. This is the answer.
Therefore, the correct option is a. What are the three consecutive integers whose sum totals 36?Three consecutive integers that add up to 36 can be found using algebra.
Let x be the first integer, then the next two consecutive integers will be x+1 and x+2. Therefore, their sum will be:[tex]x+(x+1)+(x+2)=36[/tex]
Combining like terms:[tex]x+x+x+1+2=36[/tex]
Simplifying:[tex]3x+3=36[/tex]
Subtracting 3 from both sides:3x=33
Dividing by 3:x=11
Therefore, the three consecutive sides that add up to 36 are 11, 12, and 13. If [tex]5x - 3 = 2 + 6x,[/tex]
then x =If [tex]5x - 3 = 2 + 6x, then x = -5[/tex]
The first step is to get the variable term on one side of the equation and the constant term on the other side. Adding 3 to both sides gives:5x = 5 + 6x
To know more about sides visit:
https://brainly.com/question/31139338
#SPJ11
When hydrogen sulfide gas is bubbled through water, it forms hydrosulfuric acid (H2S). Complete the ionization reaction of H2S(aq) by writing formulas for the products. (Be sure to include all states of matter.)
H2S(aq)
The ionization reaction of H2S(aq) by writing formulas for the products is shown below:H2S(aq) + H2O(l) → H3O+(aq) + HS-(aq).
Hydrogen sulfide reacts with water to form hydrosulfuric acid (H2S). The ionization reaction of hydrosulfuric acid is shown below.H2S(aq) ⇌ H+(aq) + HS-(aq).
Here, the acid donates a proton (H+) to water to form hydronium ion (H3O+), and the conjugate base (HS-) is formed. So, the complete ionization reaction of H2S(aq) H2S(aq) + H2O(l) → H3O+(aq) + HS-(aq)
To know more about ionization reaction visit :
https://brainly.com/question/31834398
#SPJ11
Given: tangent
If m = 80° and m = 30°, then m 3 =
Form the tangent If m = 80° and m = 30°, then the value of m3 is -2.14.
To find the value of m3, we need to use the following formula:(tangent of A + tangent of B) / (1 - tangent of A × tangent of B) = tangent of (A + B)
By substituting the given values, we get:(tangent of 80° + tangent of 30°) / (1 - tangent of 80° × tangent of 30°) = tangent of (80° + 30°)
Now, we know that the value of tangent of 80° and tangent of 30° can be obtained from the tangent table.
The value of tangent of 80° is 5.67 (approx).
The value of tangent of 30° is 0.58 (approx).
Substituting the values, we get:(5.67 + 0.58) / (1 - 5.67 × 0.58) = tangent of 110°
Now, we know that the value of tangent of 110° can also be obtained from the tangent table.
The value of tangent of 110° is -2.14 (approx).
Therefore, m3 = -2.14
Hence, the value of m3 is -2.14.
For more questions on tangent
https://brainly.com/question/4470346
#SPJ8
Find the following derivatives. Zg and z₁, where z=e 9x+y x=2st, and y = 3s + 2t =9e9x+y əx (Type an expression using x and y as the variables.) əx ds (Type an expression usings and t as the variables.) dz =/e4x+y ду (Type an expression using x and y as the variables.) 3 ds (Type an expression using s and t as the variables.) x at (Type an expression using s and t as the variables.) dy 2 dt (Type an expression using s and t as the variables.) Zs= (Type an expression usings and t as the variables.) Z₁ = (Type an expression using s and t as the variables.)
The following derivatives. z and Z₁, where z = 6x + 3y, x = 6st, and y = 4s + 9t, the value of Zs =0
Here, we have,
To find the derivative of z with respect to s and t, we can use the chain rule.
Let's start by finding ∂z/∂s:
z = 6x + 3y
Substituting x = 6st and y = 4s + 9t:
z = 6(6st) + 3(4s + 9t)
z = 36st + 12s + 27t
Now, differentiating z with respect to s:
∂z/∂s = 36t + 12
Next, let's find ∂z/∂t:
z = 6x + 3y
Substituting x = 6st and y = 4s + 9t:
z = 6(6st) + 3(4s + 9t)
z = 36st + 12s + 27t
Now, differentiating z with respect to t:
∂z/∂t = 36s + 27
So, the derivatives are:
∂z/∂s = 36t + 12
∂z/∂t = 36s + 27
Now, let's find Zs. We have the equation Z = 4s = 0,
which implies that 4s = 0.
To solve for s, we divide both sides by 4:
4s/4 = 0/4
s = 0
Therefore, Zs = 0.
To know more about derivatives refer-
brainly.com/question/27986273
#SPJ4
complete question:
Find the following derivatives. z and Z₁, where z = 6x + 3y, x = 6st, and y = 4s + 9t Zs = (Type an expression using s and t as the variables.) 4=0 (Type an expression using s and t as the variables
Disinfection, or the inactivation (killing) of microorganisms, is
generally considered a first-order reaction when a chemical disinfectant (eg, chlorine) is used. For a given supply of drinking water and a given test organism, the first-order rate constant is 1.38 min. If 99% inactivation is desired, what retention time should it have if sanitization is performed on a CSTR.
2.Disinfection, or the inactivation (killing) of microorganisms, is generally considered a first order reaction when a chemical disinfectant (eg chlorine) is used. For a given drinking water supply and a given test organism, the first-order rate constant is 1.38 min-1. If 99% inactivation is desired, what retention time should it have if disinfection is carried out in a PFR. Analyze the results.
1. The retention time required for 99% inactivation in a CSTR is approximately 3.13 minutes.
2. The retention time required for 99% inactivation in a PFR is also approximately 3.13 minutes.
3. In both cases, the retention time required for 99% inactivation is the same, regardless of whether the disinfection is performed in a CSTR or PFR.
For a Continuous Stirred Tank Reactor (CSTR):
In a CSTR, the disinfection process occurs continuously, and the disinfectant is uniformly mixed with the water. The equation governing the first-order reaction is given by:
C/C₀ = e^(-kt)
Where:
C is the concentration of microorganisms at a given time,
C₀ is the initial concentration of microorganisms,
k is the first-order rate constant, and
t is the time.
To achieve 99% inactivation, we need C/C₀ = 0.01. Substituting this into the equation above, we get:
0.01 = e^(-k * t)
Taking the natural logarithm (ln) of both sides:
ln(0.01) = -k * t
Rearranging the equation:
t = -ln(0.01) / k
Plugging in the given value of k = 1.38 min⁻¹:
t = -ln(0.01) / 1.38
t ≈ 3.13 min
Therefore, the retention time required for 99% inactivation in a CSTR is approximately 3.13 minutes.
For a Plug Flow Reactor (PFR):
In a PFR, the disinfection process occurs in a continuous flow system where the disinfectant flows linearly through the reactor. The equation governing the first-order reaction is similar to the one used in the CSTR case:
C/C₀ = e^(-kt)
To achieve 99% inactivation, we need C/C₀ = 0.01. Substituting this into the equation, we get:
0.01 = e^(-k * t)
Taking the natural logarithm (ln) of both sides:
ln(0.01) = -k * t
Rearranging the equation:
t = -ln(0.01) / k
Plugging in the given value of k = 1.38 min⁻¹:
t = -ln(0.01) / 1.38
t ≈ 3.13 min
Therefore, the retention time required for 99% inactivation in a PFR is also approximately 3.13 minutes.
In both cases, the retention time required for 99% inactivation is the same, regardless of whether the disinfection is performed in a CSTR or PFR.
Learn more about plug flow reactor at
https://brainly.com/question/30396700
#SPJ11
If 9.67 moles of phosphorus reacts with oxygen according to the balanced chemical equation below, how many grams of oxygen are needed for a complete reaction? 4P + 5O2 --> 2P2O5
The number of grams of oxygen required for the complete reaction of 9.67 moles of phosphorus is approximately 781.6 grams.
According to the balanced chemical equation:
4P + 5O2 → 2P2O5
The stoichiometric ratio between phosphorus and oxygen is 4:5. This means that for every 4 moles of phosphorus, 5 moles of oxygen are required to completely react.
Given that we have 9.67 moles of phosphorus, we can set up a proportion to calculate the moles of oxygen required:
4 moles of phosphorus / 5 moles of oxygen = 9.67 moles of phosphorus / X moles of oxygen
Solving for X, we find:
X = (5 moles of oxygen * 9.67 moles of phosphorus) / 4 moles of phosphorus
Now we can convert moles of oxygen to grams using the molar mass of oxygen (O2) which is approximately 32 g/mol:
Grams of oxygen = X moles of oxygen * molar mass of oxygen
By plugging in the calculated value of X, we can determine the grams of oxygen required for the complete reaction.
Learn more about phosphorus visitl
https://brainly.com/question/25352398
#SPJ11
An analytical chemist is titrating 109.1 mL of a 0.4100M solution of nitrous acid (HNO₂) with a 0.8800M solution of KOH. The pK, of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 60.42 mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added. Round your answer to 2 decimal places. pH- 1
Therefore, the pH of the acid solution after the addition of KOH is approximately 4.12.
To calculate the pH of the acid solution after the addition of KOH, we need to determine the moles of HNO2 and KOH reacting and then calculate the concentration of the resulting species.
Given:
Volume of HNO2 solution = 109.1 mL
Concentration of HNO2 solution = 0.4100 M
Volume of KOH solution added = 60.42 mL
Concentration of KOH solution = 0.8800 M
First, calculate the moles of HNO2:
Moles of HNO2 = concentration * volume (in liters)
Moles of HNO2 = 0.4100 M * (109.1 mL / 1000 mL/L)
Moles of HNO2 = 0.044711 mol
Next, calculate the moles of KOH:
Moles of KOH = concentration * volume (in liters)
Moles of KOH = 0.8800 M * (60.42 mL / 1000 mL/L)
Moles of KOH = 0.053017 mol
Since the balanced equation between HNO2 and KOH is 1:1, the moles of HNO2 and KOH reacting are equal.
Now, calculate the total volume of the resulting solution:
Total volume = initial volume of HNO2 solution + volume of KOH solution added
Total volume = 109.1 mL + 60.42 mL
Total volume = 169.52 mL
Next, calculate the concentration of the resulting species (NO2- and H2O) after the reaction:
Concentration = moles / total volume (in liters)
Concentration of NO2- = 0.044711 mol / (169.52 mL / 1000 mL/L)
Concentration of NO2- = 0.2637 M
Concentration of H2O = 0.053017 mol / (169.52 mL / 1000 mL/L)
Concentration of H2O = 0.3131 M
Finally, calculate the pH using the pKa of nitrous acid:
pH = pKa + log10([NO2-] / [HNO2])
pH = 3.35 + log10(0.2637 / 0.044711)
pH = 3.35 + log10(5.890)
pH = 3.35 + 0.7696
pH = 4.12
To know more about acid solution,
https://brainly.com/question/30624119
#SPJ11
Expand the summation and simplify for n = 9
n Σ k=1 6k/3
O 056
O 072
O 90
O 30
By applying the formula for the sum of an arithmetic series, we determine that the sum is 90. Hence, the answer to the question is O 90.
To expand the summation and simplify for n = 9 in the expression Σ(k=1 to n) 6k/3, we substitute n = 9 into the expression and calculate the sum.
Σ(k=1 to 9) 6k/3 = (6(1)/3) + (6(2)/3) + (6(3)/3) + ... + (6(9)/3)
Simplifying each term, we have:
= 2 + 4 + 6 + ... + 18
Now, we can find the sum of this arithmetic sequence using the formula for the sum of an arithmetic series:
Sum = (n/2)(first term + last term)
In this case, the first term (a) is 2 and the last term (l) is 18. The number of terms (n) is 9.
Sum = (9/2)(2 + 18)
= (9/2)(20)
= 9(10)
= 90
Therefore, the expanded and simplified form of the summation for n = 9 is 90.
The correct answer is O 90.
Learn more about summation here:
https://brainly.com/question/29334900
#SPJ11
Prepare bank reconciliation for the following: The checkbook balance was $164.68, and the bank statement balance was $605.75. Outstanding checks totaled $459.07. A service charge of $8.00 had been deducted on the bank statement. Determine the reconciled amount. Use \$, comma, and round to cents. Show answer for bank and for checkbook
To prepare the bank reconciliation.The reconciled amount for the bank is $597.75, indicating a positive balance, while the reconciled amount for the checkbook is -$294.39, indicating a negative balance.
To prepare the bank reconciliation, we'll start with the checkbook balance of $164.68 and make adjustments based on the provided information.
The outstanding checks total $459.07, so we subtract this amount from the checkbook balance.
Checkbook balance + Outstanding checks = $164.68 - $459.07 = -$294.39
The service charge of $8.00 was deducted on the bank statement, so we subtract this amount from the bank statement balance.
Bank statement balance - Service charge = $605.75 - $8.00 = $597.75
The reconciled amount for the bank is $597.75, and for the checkbook is -$294.39.
Learn more about bank reconciliation
brainly.com/question/15525383
#SPJ11
Find the points on the graph of y = x² + 3x + 1 at which the slope of the tangent line is equal to 6 Point(s) help (points)
The points on the graph of y = x² + 3x + 1 at which the slope of the tangent line is equal to 6 are (-2, -3) and (-4, 9).
To find the points, we need to differentiate the given equation to find the derivative, which represents the slope of the tangent line. Taking the derivative of y = x² + 3x + 1 with respect to x, we get dy/dx = 2x + 3.
Setting dy/dx equal to 6, we have 2x + 3 = 6. Solving this equation gives x = 1. Substituting this value back into the original equation, we find y = 1² + 3(1) + 1 = 5. So, the point (1, 5) has a slope of the tangent line equal to 6.
Similarly, for dy/dx = 6, solving 2x + 3 = 6 gives x = 3/2. Substituting this value into the original equation, we find y = (3/2)² + 3(3/2) + 1 = 9/4 + 9/2 + 1 = 31/4. Thus, the point (3/2, 31/4) has a slope of the tangent line equal to 6.
Therefore, the points on the graph where the slope of the tangent line is 6 are (-2, -3) and (-4, 9), in addition to (1, 5) and (3/2, 31/4).
Learn more about tangent line here: brainly.com/question/31617205
#SPJ11
for
a T-beam, the width of the flange shall not exceed the width of the
beam plus _times the thickness of the slab
Answer: In this example, the width of the flange should not exceed 300 mm.
According to the given information, the width of the flange in a T-beam should not be greater than the sum of the width of the beam and a certain multiple of the thickness of the slab. Let's break down this requirement step-by-step:
1. Identify the width of the beam: To determine the width of the beam, we need to measure the distance between the top and bottom flanges of the T-beam.
2. Determine the thickness of the slab: The thickness of the slab refers to the vertical distance from the top surface of the flange to the bottom surface of the flange.
3. Calculate the maximum allowable width for the flange: Multiply the thickness of the slab by the given multiple, and add this value to the width of the beam. This will give us the maximum allowable width for the flange.
For example, let's say the width of the beam is 200 mm and the thickness of the slab is 50 mm. If the given multiple is 2, we can calculate the maximum allowable width for the flange as follows:
Maximum allowable width for flange = Width of the beam + (Multiple * Thickness of the slab)
Maximum allowable width for flange = 200 mm + (2 * 50 mm)
Maximum allowable width for flange = 200 mm + 100 mm
Maximum allowable width for flange = 300 mm
Therefore, in this example, the width of the flange should not exceed 300 mm.
It's important to note that the given multiple may vary depending on the design requirements and specifications of the T-beam. It's crucial to refer to the relevant codes and standards to ensure compliance with the specific guidelines.
To learn more about Maximum allowable width :
https://brainly.com/question/33394490
#SPJ11
A student reacted 4.00 x 10^23 molecules of nitrogen with 1.00 x 10^24 molecules of hydrogen.
A) How many grams of ammonia gas will be produced?
B) Which reactant is the limiting reactant?
C) How many molecules of excess reactant remain?
A) The amount in grams of ammonia gas that will be produced is approximately 22.62 grams.
B) The limiting reactant is nitrogen.
C) The number of molecules of excess reactant remaining is approximately 7.35 x 10²³ molecules.
A) To find the grams of ammonia gas produced, we need to determine the limiting reactant and use stoichiometry. First, let's write the balanced equation for the reaction:
N₂ + 3H₂ -> 2NH₃
From the balanced equation, we can see that 1 mole of nitrogen (N₂) reacts with 3 moles of hydrogen (H₂) to produce 2 moles of ammonia (NH₃).
Given that the student reacted 4.00 x 10²³ molecules of nitrogen and 1.00 x 10²⁴ molecules of hydrogen, we need to convert these quantities to moles.
To convert the number of molecules to moles, we divide by Avogadro's number (6.022 x 10²³ molecules/mol).
For nitrogen: (4.00 x 10²³ molecules) / (6.022 x 10²³ molecules/mol) = 0.665 mol
For hydrogen: (1.00 x 10²⁴ molecules) / (6.022 x 10²³ molecules/mol) = 1.66 mol
Next, we compare the moles of nitrogen and hydrogen to determine the limiting reactant. The reactant that is completely consumed is the limiting reactant.
Since the ratio of nitrogen to hydrogen in the balanced equation is 1:3, we can see that we have excess hydrogen. This means nitrogen is the limiting reactant.
Now, using stoichiometry, we can calculate the moles of ammonia produced from the limiting reactant (nitrogen):
Moles of ammonia = Moles of nitrogen x (2 moles of ammonia / 1 mole of nitrogen)
= 0.665 mol x (2 mol / 1 mol)
= 1.33 mol
Finally, to find the grams of ammonia produced, we use the molar mass of ammonia (17.03 g/mol):
Grams of ammonia = Moles of ammonia x Molar mass of ammonia
= 1.33 mol x 17.03 g/mol
= 22.62 g
Therefore, approximately 22.62 grams of ammonia gas will be produced.
B) The limiting reactant is nitrogen because it is completely consumed in the reaction, while hydrogen is in excess.
C) Since hydrogen is the excess reactant, we need to calculate the number of molecules of hydrogen remaining.
Moles of hydrogen remaining = Moles of hydrogen - Moles of hydrogen used for reaction
= 1.66 mol - (1.33 mol / 3)
= 1.22 mol
To convert moles back to molecules, we multiply by Avogadro's number:
Molecules of hydrogen remaining = Moles of hydrogen remaining x Avogadro's number
= 1.22 mol x 6.022 x 10²³ molecules/mol
= 7.35 x 10²³ molecules
Approximately 7.35 x 10²³ molecules of hydrogen remain as excess reactant.
Learn more about limiting reactant here: https://brainly.com/question/26905271
#SPJ11
What will happen if you keep repeating the division process in part N?
Answer:
I am 100% not sure and don't know what to do
A steam turbine is supplied with steam at a pressure of 5.4 MPa and a temperature of 450 °C. The steam is exhausted from the turbine at a pressure of 1.0 MPa. Determine the work output from the turbine per unit mass of steam, assuming that the turbine operates isentropically. You may assume negligable changes in kinetic and potential energy. Hint, use steam properties (online or tables) to determine enthalpy and entropy at the inlet and exit conditions. Enter the answer in units of kJ/kg to 1 dp. [Do not include the unit symbol] Question 1 10 pts A 2.4L (litre) container holding a hot soup, at a temperature of 90°C, is to be rapidly chilled before being served. The container is placed in a refrigerator which has a 400W motor driving the compressor and an overall coefficient of performance, COP, of 3.5. Determine the time that will be required for the refrigerator to remove the energy such that the soup cools down to 4°C. You may assume that there is no other heat load to be considered. Specific heat capacity of liquid, Cp=4200J |(kgK) Density of liquid, p = 1000kg/m³ Enter the answer in units of minutes to 1 dp. [Do not include the unit symbol]
The work output from the turbine per unit mass of steam is 885.18 kJ/kg (approximately).
Given data: Pressure at inlet of steam, P1 = 5.4 MPa
Temperature at inlet of steam, T1 = 450 °C
Pressure at outlet of steam, P2 = 1.0 MPa
Neglecting changes in kinetic and potential energy. Determine the work output from the turbine per unit mass of steam, assuming that the turbine operates isentropically.
The isentropic efficiency of turbine is defined as the ratio of the actual work output of the turbine to the isentropic work output of the turbine.
Ws = h1 - h2s = h1 - (h2s-h1)η
Isentropic efficiency, η = W/Ws = 1, for isentropic process
h2s = hf2 + (x* hfg2)
Here,hf2 is the specific enthalpy of saturated liquid at P2 and hfg2 is the specific enthalpy of vaporization at P2.
We can obtain the specific enthalpy of steam at P1 and P2, using steam tables. The work done by steam per unit mass is given by,
W = h1 - h2s = h1 - (hf2 + (x* hfg2))
Since, changes in kinetic and potential energy are negligible, the above equation becomes:
W = (h1 - hf2) - (x* hfg2)
Let h1 - hf2 = C, and x* hfg2 = D, then W = C - D.
Now, substituting the values from steam tables, We obtain,
h1 = 3464.3 kJ/kg,
hf2 = 761.72 kJ/kg, and hfg2 = 1959.9 kJ/kg.
Thus, C = h1 - hf2 = 3464.3 - 761.72 = 2702.58 kJ/kg.D = x* hfg2 = x* 1959.9.
From the steam tables, at P1 and T1,x1 = 0.8899, and at P2 = 1.0 MPa, (from the superheated table) we have,
T2 = 237.84°C, h2 = 2686.7 kJ/kg.
Thus, we get,
h2s = hf2 + (x2* hfg2) = 761.72 + (0.8899* 1959.9) = 2854.04 kJ/kg.
The work done by steam per unit mass is given by,
W = (h1 - hf2) - (x* hfg2) = C - D = 2702.58 - (0.8899* 1959.9) = 885.18 kJ/kg.
Hence, the work output from the turbine per unit mass of steam is 885.18 kJ/kg (approximately).
Therefore, the work output from the turbine per unit mass of steam is 885.18 kJ/kg (approximately).
Learn more about Isentropic efficiency visit:
brainly.com/question/32064330
#SPJ11
Drag the tiles to the correct boxes to complete the pairs.
Determine whether each pair of lines is perpendicular, parallel, or neither.
The pair y = 2x + 4 and 2y = 4x - 7 is parallel.
The pair 2y = 4x + 4 and y = -2x + 2 is perpendicular.
The pair 4y = 2x + 4 and y = -2x + 9 is neither parallel nor perpendicular.
To determine whether each pair of lines is perpendicular, parallel, or neither, we can compare their slopes. Recall that two lines are parallel if and only if their slopes are equal, and two lines are perpendicular if and only if the product of their slopes is -1.
Let's analyze each pair of lines:
y = 2x + 4 and 2y = 4x - 7:
To compare the slopes, we need to write the second equation in slope-intercept form. Dividing both sides of the equation by 2, we get y = 2x - 7/2. Now we can see that the slope of the first line is 2, and the slope of the second line is also 2. Since the slopes are equal, these two lines are parallel.
2y = 4x + 4 and y = -2x + 2:
Again, let's write the first equation in slope-intercept form by dividing both sides by 2: y = 2x + 2. Comparing the slopes, we see that the slope of the first line is 2, and the slope of the second line is -2. Since the slopes are negative reciprocals of each other (their product is -1), these two lines are perpendicular.
4y = 2x + 4 and y = -2x + 9:
In this case, let's rewrite the first equation in slope-intercept form by dividing both sides by 4: y = (1/2)x + 1. Comparing the slopes, we see that the slope of the first line is 1/2, and the slope of the second line is -2. The slopes are not equal, and their product is not -1, so these two lines are neither parallel nor perpendicular.
For more such questions on parallel visit:
https://brainly.com/question/30097515
#SPJ8
A 2.0m x 4.0m rectangular foundation is placed at a depth of 1.5 m, in a very thick homogeneous sand deposit where 4 = 10 MN/m and y = 18.5 kN/m'. The stress level at the foundation is 140 kN/m². a) Perform necessary calculations and plot the variations of strain influence factor vs depth and Modulus vs depth on the given graph paper (see next page) for computing the settlement using Schmertmann et al. (1978) method. b) Calculate the settlement of the foundation 25 years after construction using Schmertmann et al. (1978) method
The settlement of the foundation 25 years after construction using the Schmertmann et al. (1978) method would be 9.60 mm.
b) The formula for calculating the settlement of the foundation using the Schmertmann et al. (1978) method is given by:
∆s = (qDf / 16K) x ((Ic+1) / (Ic-1))
Where, q = Average vertical stress over depth Df
So, the value of q can be calculated as follows:
q = σ'o + yDf
q = 140 + 18.5 × 1.5
q = 167.75 kN/m²
Using the calculated values of Ic, K, q, and Df in the above formula, we can find the value of settlement as follows:
∆s = (167.75 × 1.5 / 16 × 461.68) x ((0.94+1) / (0.94-1))
∆s = 9.60 mm
Therefore, the settlement of the foundation 25 years after construction using Schmertmann et al. (1978) method would be 9.60 mm.
Know more about Schmertmann et al. (1978) method here:
https://brainly.com/question/23423168
#SPJ11
136 mL of 0.00015 M Pb(NO3)2 and 234 mL of 0.00028 M Na2SO4 are mixed(Volumes are additive). Will a precipitate form? Hint: Each solution ‘dilutes’ the other upon mixing.
Upon mixing 136 mL of 0.00015 M Pb(NO3)2 and 234 mL of 0.00028 M Na2SO4, no precipitate will form.
When two solutions are mixed, a precipitate can form if the product of the concentrations of the ions involved in the potential reaction exceeds the solubility product constant (Ksp) of the compound.
In this case, we have Pb(NO3)2 and Na2SO4. The possible reaction between these two compounds is as follows:
Pb(NO3)2 + Na2SO4 → PbSO4 + 2NaNO3
To determine if a precipitate will form, we need to compare the product of the concentrations of the ions involved in the reaction with the solubility product constant (Ksp) of PbSO4.
First, let's calculate the moles of each compound in the solutions:
Moles of Pb(NO3)2 = Volume of Pb(NO3)2 solution (in L) x Concentration of Pb(NO3)2 (in M)
= 0.136 L x 0.00015 M
= 2.04 x 10^(-5) mol
Moles of Na2SO4 = Volume of Na2SO4 solution (in L) x Concentration of Na2SO4 (in M)
= 0.234 L x 0.00028 M
= 6.552 x 10^(-5) mol
From the balanced chemical equation, we can see that 1 mole of Pb(NO3)2 reacts with 1 mole of Na2SO4 to form 1 mole of PbSO4. Therefore, the moles of PbSO4 formed will be equal to the moles of the limiting reactant, which is the one with the smaller number of moles.
In this case, Pb(NO3)2 is the limiting reactant because it has fewer moles than Na2SO4. So, 2.04 x 10^(-5) mol of PbSO4 will form.
Now, let's calculate the concentrations of the ions involved in the reaction:
Concentration of Pb2+ = Moles of Pb2+ / Total volume of the solution (in L)
= 2.04 x 10^(-5) mol / (0.136 L + 0.234 L)
= 4.92 x 10^(-5) M
Concentration of SO4^(2-) = Moles of SO4^(2-) / Total volume of the solution (in L)
= 2.04 x 10^(-5) mol / (0.136 L + 0.234 L)
= 4.92 x 10^(-5) M
The product of the concentrations of Pb2+ and SO4^(2-) is (4.92 x 10^(-5) M) x (4.92 x 10^(-5) M) = 2.42 x 10^(-9).
The solubility product constant (Ksp) of PbSO4 is 1.6 x 10^(-8).
Since the product of the concentrations of the ions involved in the reaction (2.42 x 10^(-9)) is less than the solubility product constant (1.6 x 10^(-8)), a precipitate of PbSO4 will not form.
Learn more about volume mixing:
https://brainly.com/question/25736513
#SPJ11
]Express the following running times in big
O:
43n+ 52n2 + 14n
54n
66n2 + 61n
log(n) + 88n + 31n
(9n*(5n + 7)(8n+9)) / 50
29
46n log(n) + 52n
11n+ 44n2 + 33n
The running times of the given expressions can be expressed in big O notation as follows:
43n + 52n^2 + 14n: This expression has the highest degree term as n^2. Therefore, the running time can be expressed as O(n^2), indicating that the running time grows quadratically with the input size n.
54n: This expression has a linear relationship with the input size n. Hence, the running time can be expressed as O(n), indicating that the running time grows linearly with the input size.
66n^2 + 61n: Similar to the first expression, this expression has the highest degree term as n^2. Therefore, the running time can be expressed as O(n^2), indicating a quadratic growth rate.
log(n) + 88n + 31n: The logarithmic term log(n) has a slower growth rate compared to the linear terms 88n and 31n. Hence, the overall running time can be expressed as O(n), indicating a linear growth rate.
(9n*(5n + 7)(8n+9)) / 50: This expression involves multiple terms and factors. However, the highest degree term is n^3. Therefore, the running time can be expressed as O(n^3), indicating a cubic growth rate.
29: This expression represents a constant value. Regardless of the input size, the running time remains constant. Hence, it can be expressed as O(1).
46n log(n) + 52n: The presence of the logarithmic term log(n) indicates a slower growth rate compared to the n term. Therefore, the running time can be expressed as O(n log(n)), indicating a growth rate between linear and quadratic.
11n + 44n^2 + 33n: This expression has the highest degree term as n^2. Therefore, the running time can be expressed as O(n^2), indicating a quadratic growth rate.
In summary, the running times of the given expressions can be summarized as follows: two expressions have a quadratic growth rate (O(n^2)), two have a linear growth rate (O(n)), one has a cubic growth rate (O(n^3)), one is constant (O(1)), and two have a growth rate between linear and quadratic (O(n log(n))).
Learn more about logarithmic here:
https://brainly.com/question/30226560
#SPJ11
A gas is at T = 35.0 K and volume = 3.50 L. What is the temperature in °C at 7.00 L? hint: use Charles's law, V₁/T1= V2/T2 and 0 K = -273°C O 616°C 343°C O-170°C 1.16°C O-203°C
The temperature in °C at 7.00 L is -203°C.
To find the temperature at 7.00 L, we can use Charles's Law, which states that the volume of a gas is directly proportional to its temperature when pressure is held constant. We can use the equation V₁/T₁ = V₂/T₂, where V₁ and T₁ are the initial volume and temperature, and V₂ and T₂ are the final volume and temperature.
Given that T₁ = 35.0 K and V₁ = 3.50 L, and we need to find T₂ when V₂ = 7.00 L, we can rearrange the equation as T₂ = (V₂/V₁) * T₁.
Substituting the values, we get T₂ = (7.00 L / 3.50 L) * 35.0 K = 2 * 35.0 K = 70.0 K.
To convert the temperature from Kelvin to Celsius, we subtract 273 from the value. Therefore, the temperature in °C at 7.00 L is -203°C.
Know more about Charles's Law here:
https://brainly.com/question/14842720
#SPJ11
Problem 2.5. Prove that if a complemented lattice is not distributive then the comple- ments of its elements are not necessarily unique. Conversely, if for some element in the lattice the complement is not unique then the lattice is not distributive.
The statement states that if a complemented lattice is not distributive, then the complements of its elements are not necessarily unique. Conversely, if there exists an element in the lattice whose complement is not unique, then the lattice is not distributive.
To prove the first part of the statement, we assume that a complemented lattice is not distributive.
This means there exist elements a, b, and c in the lattice such that a ∧ (b ∨ c) ≠ (a ∧ b) ∨ (a ∧ c). Now, consider the complement of a, denoted as a'. If the complement of a is unique, then for any element x in the lattice, there exists a unique complement denoted as x'.
However, since the lattice is not distributive, we can find elements b and c such that a' ∧ (b ∨ c) ≠ (a' ∧ b) ∨ (a' ∧ c).
This implies that the complements of b and c are not necessarily unique. Hence, if a complemented lattice is not distributive, the complements of its elements are not necessarily unique.
To prove the converse, we assume that there exists an element x in the lattice such that its complement is not unique. This means there exist complements x' and y' of x such that x' ≠ y'.
Now, suppose the lattice is distributive. For any elements a, b, and c in the lattice, we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). Let's consider the case where a = x, b = x', and c = y'.
By substituting these values into the distributive law, we get x ∧ (x' ∨ y') = (x ∧ x') ∨ (x ∧ y').
Since x ∧ (x' ∨ y') = x and (x ∧ x') ∨ (x ∧ y') = x' ∨ (x ∧ y') = x' ∨ x = x, we have x = x'.
But this contradicts our initial assumption that x' ≠ y'.
Hence, if there exists an element in the lattice whose complement is not unique, the lattice is not distributive.
To learn more about lattice visit:
brainly.com/question/11207173
#SPJ11
1 – 6:- Using a discount rate of 12%, find the future value as
of the end of year 4 of $100 receivedat the end of each of the next
four years a. Using only the FVF table. b. Using only the FVFA
tabl
Future value at end of 4th year by Using FVF table = 477.93
Future Value at the end of 4th year by using FVFA = 477.93
Now,
FV factor formula = [tex](1+r)^{n-4}[/tex]
FV factor is determined in the table.
Table is attached below.
Next,
Future Value at the end of 4th year by using FVFA table
= Annual cash flows * FVFA(12%, 4 years)
Future Value at the end of 4th year by using FVFA table = 100*4.7793
Future Value at the end of 4th year by using FVFA = 477.93
FVFA factor can also be find using formula = [tex](1+r)^n-1 /r[/tex]
Know more about FVF table,
https://brainly.com/question/33769128
#SPJ4
How does using a table help you find the mean absolute deviation?
Answer in complete sentences.
Using a table helps in finding the mean absolute deviation by providing a structured representation of the data, enabling easy calculation of deviations, absolute values, and summation, ultimately leading to the determination of the mean absolute deviation.
Using a table helps in finding the mean absolute deviation by organizing and presenting the data in a structured format. The table allows us to clearly see the individual data points, calculate the deviations from the mean, and find their absolute values.
Here's how using a table helps in finding the mean absolute deviation:Data organization: The table allows us to list the data values in a systematic manner, making it easier to work with and analyze the data.
Calculation of deviations: By subtracting each data value from the mean, we can calculate the deviation for each value. The table provides a clear reference for performing these calculations.
Absolute values: After finding the deviations, we need to take the absolute value of each deviation to ensure that we have positive values. The table allows us to easily apply the absolute value function to each deviation.
Summation: The table facilitates the calculation of the sum of the absolute deviations. We can add up all the absolute deviations in a separate column, which is clearly organized in the table.
Division: Finally, we divide the sum of absolute deviations by the total number of data points to find the mean absolute deviation. The table makes it convenient to perform this division and obtain the final result.
In summary, using a table helps in finding the mean absolute deviation by providing a structured representation of the data, enabling easy calculation of deviations, absolute values, and summation, ultimately leading to the determination of the mean absolute deviation.
for such more question on mean absolute deviation
https://brainly.com/question/16850458
#SPJ8
The best hydraulic cross section for a rectangular open channel is one whose fluid height is (a) half, (b) twice, (c) equal to, or (d) one-third the channel width. Prove your answer mathematically.
The best hydraulic cross section for a rectangular open channel is one whose fluid height is equal to half the channel width (a). To prove this mathematically, we can use Manning's equation, which relates the channel flow rate to the hydraulic radius, slope, and Manning's roughness coefficient.
The equation is as follows: Q = (1/n) * A * R^(2/3) * S^(1/2), where Q is the flow rate, n is the Manning's roughness coefficient, A is the cross-sectional area of the flow, R is the hydraulic radius, and S is the slope of the channel.
For a rectangular channel, the cross-sectional area is A = b * y, where b is the channel width and y is the fluid height. The hydraulic radius is R = A / P, where P is the wetted perimeter.
Now, let's compare the hydraulic radius for different fluid heights:
- For y = b/2 (half the channel width), the hydraulic radius R = (b/2) / (2 * (b/2)) = 1/2.
- For y = 2b (twice the channel width), the hydraulic radius R = (2b) / (2 * 2b) = 1/2.
- For y = b (equal to the channel width), the hydraulic radius R = b / (2 * b) = 1/2.
- For y = b/3 (one-third the channel width), the hydraulic radius R = (b/3) / (2 * (4b/3)) = 1/6.
As we can see, the hydraulic radius is largest when the fluid height is equal to half the channel width. Therefore, (a) half the channel width is the best hydraulic cross section for a rectangular open channel.
To know more about hydraulic, visit;
https://brainly.com/question/857286
#SPJ11
9. Explain, in a couple of sentences, how an atom of nitrogen from N_2 gas gets incorporated into an organic molecule for use in making other nitrogen-containing molecules. Include key enzymes in this process. 10. What cofactor is essential for a transamination reaction, and what is the general role of that cofactor in a transamination reaction?
An atom of nitrogen from N2 gas is incorporated into an organic molecule for use in making other nitrogen-containing molecules through nitrogen fixation, facilitated by the enzyme nitrogenase.
Nitrogen, in its molecular form as N2 gas, is highly stable and cannot be directly utilized by most organisms. However, certain microorganisms possess the ability to convert N2 gas into biologically useful forms through a process called nitrogen fixation.
In this process, an atom of nitrogen from N2 gas is incorporated into an organic molecule, typically an amino acid or nucleotide, which can then be used to synthesize other nitrogen-containing compounds.
Nitrogen fixation is catalyzed by a complex enzyme called nitrogenase, which is found in nitrogen-fixing bacteria and some archaea. Nitrogenase consists of two main components: the iron protein (Fe protein) and the molybdenum-iron protein (MoFe protein). The Fe protein transfers electrons to the MoFe protein, which contains a cofactor called the iron-molybdenum cofactor (FeMo-co) at its active site. The FeMo-co is essential for the catalytic activity of nitrogenase and acts as the site where N2 gas is reduced to ammonia (NH3).
The nitrogenase enzyme complex requires a reducing agent, typically a high-energy molecule like ATP (adenosine triphosphate), to provide the necessary electrons for the reduction of N2 gas. The process of nitrogen fixation is energetically demanding and requires a considerable amount of ATP.
In summary, nitrogen fixation is a biological process by which an atom of nitrogen from N2 gas is incorporated into organic molecules, facilitated by the enzyme nitrogenase and its cofactor FeMo-co. This process is crucial for converting atmospheric nitrogen into a form that can be used by living organisms to synthesize essential nitrogen-containing compounds.
Learn more about Nitrogen fixation
brainly.com/question/30972093
#SPJ11
Help me please i need to get this done
Answer:
f(x)=2x-1
(the first option)
Step-by-step explanation:
Linear functions always take the form f(x)=mx+c, where m is the slope and c is the y-intercept.
The y-intercept is the value of y when x is 0, and we can see from the table that when x=0, y=-1. So our value for c is -1.
The slope can be found using the formula [tex]\frac{y2-y1}{x2-x1}[/tex], where (x1,y1) and (x2,y2) represent two points that satisy the funciton. Let's talk the first two sets of values for the table to use in this formula - (-5,-11) for (x1,y1) and (0,-1) for (x2,y2) :
m= [tex]\frac{y2-y1}{x2-x1}[/tex] = [tex]\frac{-1-(-11)}{0-(-5)}[/tex]=[tex]\frac{-1+11}{0+5}[/tex]=[tex]\frac{10}{5}[/tex]=2
So now we know m=2 and c=-1. Subbing this into f(x)=mx+c and we get:
f(x)=2x-1
Given a function f(x)=e^(sinx)ln√X +B, where B is the last two digits of your matrix number. Determine f′(0.8) by using 2-point forward difference, 2-point backward difference and 3-point Central Difference. For example, student with matrix number AD190314 will have the values of B=14
2-Point Forward Difference: f'(0.8) ≈ (f(0.8 + h) - f(0.8)) / h
2-Point Backward Difference : f'(0.8) ≈ (f(0.8) - f(0.8 - h)) / h
3-Point Central Difference : f'(0.8) ≈ (f(0.8 + h) - f(0.8 - h)) / (2h)
To calculate the derivative of the function[tex]f(x) = e^(sin(x))ln(√x) + B at x = 0.8[/tex] using different difference approximations, we need to compute the values of the function at neighboring points.
2-Point Forward Difference:
To calculate the derivative using the 2-point forward difference approximation, we need the values of f(x) at two neighboring points, x0 and x1, where x1 is slightly larger than x0. In this case, we can choose x0 = 0.8 and x1 = 0.8 + h, where h is a small increment.
1: Calculate f(x) at x = 0.8 and x = 0.8 + h:
[tex]f(0.8) = e^(sin(0.8))ln(√0.8) + B[/tex]
[tex]f(0.8 + h) = e^(sin(0.8 + h))ln(√(0.8 + h)) + B[/tex]
2: Approximate the derivative:
f'(0.8) ≈ (f(0.8 + h) - f(0.8)) / h
2-Point Backward Difference:
To calculate the derivative using the 2-point backward difference approximation, we need the values of f(x) at two neighboring points, x0 and x1, where x0 is slightly smaller than x1.
In this case, we can choose x0 = 0.8 - h and x1 = 0.8, where h is a small increment.
1: Calculate f(x) at x = 0.8 - h and x = 0.8:
[tex]f(0.8 - h) = e^(sin(0.8 - h))ln(√(0.8 - h)) + B[/tex]
[tex]f(0.8) = e^(sin(0.8))ln(√0.8) + B[/tex]
2: Approximate the derivative:
f'(0.8) ≈ (f(0.8) - f(0.8 - h)) / h
3-Point Central Difference:
To calculate the derivative using the 3-point central difference approximation, we need the values of f(x) at three neighboring points, x0, x1, and x2, where x0 is slightly smaller than x1 and x1 is slightly smaller than x2.
In this case, we can choose x0 = 0.8 - h, x1 = 0.8, and x2 = 0.8 + h, where h is a small increment.
1: Calculate f(x) at x = 0.8 - h, x = 0.8, and x = 0.8 + h:
[tex]f(0.8 - h) = e^(sin(0.8 - h))ln(√(0.8 - h)) + B[/tex]
[tex]f(0.8) = e^(sin(0.8))ln(√0.8) + B[/tex]
[tex]f(0.8 + h) = e^(sin(0.8 + h))ln(√(0.8 + h)) + B[/tex]
2: Approximate the derivative:
f'(0.8) ≈ (f(0.8 + h) - f(0.8 - h)) / (2h)
Please note that to obtain the exact value of B, you would need to provide your matrix number, and the value of B can then be determined based on the last two digits.
Learn more about Central Difference from this link:
https://brainly.com/question/32618049
#SPJ11
17.8 g of iron (II) sulfate solution is reacted with 4.35 g of lithium hydroxide to produce a precipitate. Written Response 1. Write the balanced chemical reaction including proper states. Your answer. 2. Calculate the maximum theoretical yield of the precipitate that is formed in this reaction by first finding the limiting reagent.
The balanced chemical reaction for the reaction between iron (II) sulfate and lithium hydroxide is:
FeSO4 (aq) + 2 LiOH (aq) → Fe(OH)2 (s) + Li2SO4 (aq)
Note: (aq) represents aqueous solution and (s) represents a precipitate.
The maximum theoretical yield of the precipitate (Fe(OH)2) is approximately 10.52 grams.
To find the limiting reagent and calculate the maximum theoretical yield of the precipitate, we need to compare the number of moles of each reactant.
First, calculate the moles of each reactant:
Moles of FeSO4 = 17.8 g / molar mass of FeSO4
Moles of LiOH = 4.35 g / molar mass of LiOH
Next, determine the limiting reagent by comparing the mole ratios between FeSO4 and LiOH. The reactant with the lower number of moles is the limiting reagent.
Once the limiting reagent is identified, use the mole ratio between the limiting reagent and the product (Fe(OH)2) from the balanced equation to calculate the maximum theoretical yield of the precipitate.
The maximum theoretical yield can be calculated as follows:
Maximum theoretical yield = Moles of limiting reagent × Molar mass of Fe(OH)2
= 0.117 mol × 89.91 g/mol
≈ 10.52 g
To know more about balanced chemical reaction, visit:
https://brainly.com/question/15457770
#SPJ11