The particular solution is .[tex]y_p =[/tex][tex](-1/25)e^(-5t)[/tex]
To find a particular solution, we can use the method of undetermined coefficients.
Since the right-hand side of the equation is [tex]5e^(-5t)[/tex], we can assume a particular solution of the form [tex]y_p =[/tex] [tex]Ae^(-5t)[/tex], where A is a constant to be determined.
We then find the first and second derivatives of [tex]y_p[/tex], which are [tex]y_p' =[/tex][tex]-5Ae^(-5t)[/tex] and [tex]y_p'' = 25Ae^(-5t)[/tex], respectively.
Substituting these expressions into the differential equation, we get an equation in terms of A.
Solving for A, we obtain the value of A as -1/25.
Therefore, the particular solution is [tex]y_p = (-1/25)e^(-5t)[/tex]. The general solution to the differential equation is then given by [tex]y = c_1e^(-5t) + c_2te^(-5t) + (-1/25)e^(-5t)[/tex], where [tex]c_1[/tex] and [tex]c_2[/tex] are arbitrary constants determined by the initial conditions.
For more such questions on differential equation
https://brainly.com/question/28099315
#SPJ11
A 32 1/5 ounce of jelly beans cost $13.99. What is the unit cost?
A function is given. h(t) = 2t2 - t; t = 4, t = 8 (a) Determine the net change between the given values of the variable. 92 (b) Determine the average rate of change between the given values of the variable. -46
If a function is given that h(t) = 2t^2 - t; t = 4, t = 8, then the net change between the given values of the variable is 92 and the average rate of change between the given values of the variable is 23.
Explanation:
Given that: Based on the provided function h(t) = 2t^2 - t and the given values of t = 4 and t = 8.
To determine the net change and average rate of change, follow these steps:
(a) The difference between the two h(x) values is the net change.
To find the net change, we need to evaluate the function at both values of t and then subtract the results:
Net change = h(8) - h(4)
Net change = (2(8)^2 - 8) - (2(4)^2 - 4)
Net change = (128 - 8) - (32 - 4)
Net change = 120 - 28
Net change = 92
(b) The ratio between the net change and the change between the two input values is used to calculate average net change or average rate of change. The average rate of change can be calculated using the same two points and the formula: f(b)-f(a) / b-a .
To determine the average rate of change, we need to divide the net change by the difference in the t values:
Average rate of change = Net change / (t2 - t1)
Average rate of change = 92 / (8 - 4)
Average rate of change = 92 / 4
Average rate of change = 23
So, the net change is 92 and the average rate of change is 23 between the given values of the variable.
Know more about net change and average rate of change click here:
https://brainly.com/question/28716901
#SPJ11
4x - y = 6
- 4x + y = 8
Rectangle ABCD has verticies A(1, 2) B(4, 2) C(1, -2) and D(4, -2). A dialation with a scale factor of 6 and centered at the origin is applied to the rectangle. Which vertex in the dilated image has coordinates of (24, 12)
A’
B’
C’
D’
Answer:
B’
Step-by-step explanation:
You want to know the vertex that has coordinates (24, 12) after dilation by a factor of 6 about the origin.
DilationWhen the center of dilation is the origin, the scale factor multiplies each coordinate value. Then the coordinates of the original point whose dilated location is (24, 12) is ...
6(x, y) = (24, 12)
(x, y) = (24, 12)/6 = (24/6, 12/6) = (4, 2) . . . . . . matches point B
The image point is B'.
A spherical jewelry bead used in crafts has a radius of 6.2 millimeters. Which of the following is the closest to the volume of the bead, in cubic millimeters?
State if the triangle is acute obtuse or right
Answer:
right
D. 6.3 m
Step-by-step explanation:
You want to know if the given triangle is acute, obtuse, or right, and the value of x.
TriangleThe red icon in the corner indicates the triangle is a right triangle. The Pythagorean theorem applies, so ...
x² = 4.8² +4.1² = 39.85
x = √39.85 ≈ 6.3
The value of x in this right triangle is about 6.3 m.
__
Additional comment
The triangle cannot be solved for the remaining side unless you know at least one angle. The marked right angle is sufficient to let you solve for x.
Answer:
➛ The given triangle is a right angle triangle.
➛ Option D) 6.3 in is the correct answer.
Step-by-step explanation :
Here we can see that the one angle of triangle is 90⁰. Therefore, it's a right angle triangle.
Now, Here we have given that the base and altitude of triangle and we need to find the hypotenuse of triangle.
↠ Base = 4.8 in↠ Altitude = 4.1 in↠ Hypotenuse = xSo, by using Pythagoras Theorem we will find the hypotenuse of triangle :
[tex] \sf{\longrightarrow{{(Hypotenuse)}^{2} = {(Altitude)}^{2} + {(Base)}^{2}}}[/tex]
Substituting all the given values in the formula to find hypotenuse :
[tex] \sf{\longrightarrow{{(x)}^{2} = {(4.1)}^{2} + {(4.8)}^{2}}}[/tex]
[tex] \sf{\longrightarrow{{(x)}^{2} = {(4.1 \times 4.1)} + {(4.8 \times 4.8)}}}[/tex]
[tex] \sf{\longrightarrow{{(x)}^{2} = {(16.81)} + {(23.04)}}}[/tex]
[tex] \sf{\longrightarrow{{(x)}^{2} = 16.81 + 23.04}}[/tex]
[tex] \sf{\longrightarrow{{(x)}^{2} = 39.85}}[/tex]
[tex] \sf{\longrightarrow{x = \sqrt{39.85}}}[/tex]
[tex]\sf{\longrightarrow{\underline{\underline{x \approx 6.3 \: in}}}}[/tex]
Hence, the value of x is 6.3 in.
————————————————(Chapter 7 Polynomials Questions)
What would be the answer be?
The coefficients of the polynomial are 6 and 15 and the width of the rectangle is 3x
Selecting the coefficients of the polynomialHere, we have
3x³(2x² - x + 5)
Expand
6x⁵ - 3x⁴ + 15x³
So, the coefficients of the polynomial are 6, -3 and 15
The area of the squareHere, we have
Length = 4x⁵
The area is calculated as
Area = (4x⁵)²
Evaluate
Area = 16x¹⁰
The length of the rectangleHere, we have
Area = 12x²
Length = 4x
So, we have
Width = 12x²/4x
Evaluate
Width = 3x
Hence, the width of the rectangle is 3x
Read more about polynomial at
https://brainly.com/question/7693326
#SPJ1
identify the open intervals on which the function is increasing or decreasing. (enter your answers using interval notation.) y = x 100 − x2
The function y = x(100 - x²) is increasing on the intervals (-∞, -10/√3) ∪ (10/√3, ∞), and decreasing on the interval (-10/√3, 10/√3).
How to identify the open intervals on which function is increasing and decreasing?To determine the intervals on which the function y = x(100 - x^2) is increasing or decreasing, we need to find its first derivative and determine its sign.
y' = 100 - 3x²
To find the critical points, we set y' = 0 and solve for x:
100 - 3x² = 0x^2 = 100/3x = ±10/[tex]^\sqrt3[/tex]These are the critical points.
Now, we test the intervals between them:
When x < -10/[tex]^\sqrt(3)[/tex], y' < 0, so the function is decreasing.When -10/[tex]^\sqrt (3)[/tex] < x < 0, y' > 0, so the function is increasing.When 0 < x < 10/[tex]^\sqrt (3)[/tex], y' < 0, so the function is decreasing.When x > 10/[tex]^\sqrt (3)[/tex], y' > 0, so the function is increasing.Therefore, the function is
increasing on the interval (-∞-10/[tex]^\sqrt (3)[/tex], 0) ∪ (10/[tex]^\sqrt (3)[/tex], ∞) and decreasing on the interval (, -10/[tex]^\sqrt (3)[/tex]) ∪ (0, 10/[tex]^\sqrt (3)[/tex]).Learn more about intervals function increasing or decreasing
brainly.com/question/29197921
#SPJ11
Let , , , … be the sequence defined by the following recurrence relation: • = • = ⋅ − + for ≥ Prove that = + − for any nonnegative integer .
Proved that [tex]a_n[/tex] = a(n-1) + [tex]3^n[/tex] - 2n - 1 for all non-negative integers n.
How to prove that [tex]a_n[/tex] = a(n-1) + [tex]3^n[/tex] - 2n - 1 for all non-negative integers n?We will use mathematical induction.
Base Case:
For n = 0, we have:
a0 = 1 - 0 = 1
And
a(-1) = 0 //Since a sequence is not defined for negative indices.
Therefore, the statement is true for the base case.
Inductive Hypothesis:
Assume that the statement is true for some non-negative integer k:
[tex]a_k = ak-1 + 3^k - 2k - 1[/tex]
Inductive Step:
We will prove that the statement is also true for k+1:
[tex]ak+1 = ak + 3^{k+1} - 2(k+1) - 1[/tex]
= (ak-1 + 3^k - 2k - 1) + 3^(k+1) - 2(k+1) - 1 //Using inductive hypothesis.
= ak-1 + 3^(k+1) - 2(k+1) + 3^k - 2k - 2
Now, we will show that ak+1 can be written in the form ak+1 = ak + 3^(k+1) - 2(k+1) - 1:
[tex]a_{k+1} = (ak-1 + 3^k - 2k - 1) + 3^{k+1} - 2(k+1) - 1[/tex]
[tex]= (a_k-1 + 3^{k+1} - 3.3^k - 2k - 2) + 3^{k+1} - 2(k+1) - 1[/tex]
[tex]= (a_k-1 + 3^{k+1} - 2.3^k - 2(k+1)) + 3^{k+1} - 2(k+1) - 1[/tex]
[tex]= a_k-1 + 2.3^{k+1} - 2(k+2) - 1[/tex]
[tex]= a_k + 3^{k+1} - 2(k+1) - 1[/tex]
Therefore, the statement is also true for k+1, completing the inductive step.
By the principle of mathematical induction, the statement is true for all non-negative integers n. Hence, we have proved that [tex]a_n = a_{n-1} + 3^n - 2n - 1[/tex] for all non-negative integers n.
Learn more about non-negative integers.
brainly.com/question/16155009
#SPJ11
Chipwich Summer Camp surveyed 100 campers to determine which lake activity was their favorite. The results are given in the table.
Lake Activity Number of Campers
Kayaking 15
Wakeboarding 11
Windsurfing 7
Waterskiing 13
Paddleboarding 54
If a circle graph was constructed from the results, which lake activity has a central angle of 39.6°?
Kayaking
Wakeboarding
Waterskiing
Paddleboarding
The correct option to the above question is Wakeboarding with a central angle of 39.6°.
What is the central angle?A central angle is an angle formed by two radii (lines) in a circle, where the vertex of the angle is at the centre of the circle and the sides of the angle intersect the circle. In other words, it is an angle that spans from the centre of a circle to a point on the circle's circumference.
According to the given information:
To calculate the central angle for each lake activity in a circle graph, we need to find the percentage of campers who chose each activity out of the total number of campers surveyed (100). Then we can convert that percentage to degrees using the formula:
Central angle (in degrees) = Percentage * 360°
Let's calculate the percentages for each activity:
Kayaking: 15 campers out of 100, so the percentage is 15%.
Wakeboarding: 11 campers out of 100, so the percentage is 11%.
Windsurfing: 7 campers out of 100, so the percentage is 7%.
Waterskiing: 13 campers out of 100, so the percentage is 13%.
Paddleboarding: 54 campers out of 100, so the percentage is 54%.
Now, let's calculate the central angle for Wakeboarding:
Central angle for Wakeboarding = Percentage of Wakeboarding * 360°
Central angle for Wakeboarding = 11% * 360°
Central angle for Wakeboarding= 39.6°
So, Wakeboarding has a central angle of 39.6° in the circle graph, which is the activity with the highest percentage of campers surveyed. Therefore, the correct answer is "Wakeboarding".
To know more about central angle visit: https://brainly.com/question/15698342
#SPJ1
Solve for the value of k that makes the series converge. ∑=4/n^k
The value of k that makes the series converge is k > 1.
To solve for the value of k that makes the series ∑(4/ [tex]n^k[/tex] ) converge, we need to apply the convergence test for series with positive terms, known as the p-series test. A p-series is of the form ∑(1/[tex]n^p[/tex]) and converges if p > 1, and diverges if p ≤ 1.
In our case, the given series is ∑(4/ [tex]n^k[/tex]), which is 4 times the p-series
∑(1/ [tex]n^k[/tex]). Since the convergence properties of a series are not affected by multiplying by a constant (4 in this case), we can focus on the series ∑(1/ [tex]n^k[/tex]).
According to the p-series test, this series converges if k > 1. Therefore, the value of k that makes the original series converge is k > 1.
To know more about convergence test click on below link:
https://brainly.com/question/31258239#
#SPJ11
factor 7x^-2/3 for the given expression. write your final answer with positive exponents
Expression: 7x^(-2/3), the factored expression with positive exponents is: 7 * (1 / x^(2/3))
Expression: 7x^(-2/3)
Step 1: Identify the given terms.
In this expression, we have a constant (7) and a variable term (x^(-2/3)).
Step 2: Factor out the constant.
Since there's only one term, the constant (7) is already factored out.
Step 3: Convert negative exponent to positive.
To convert the negative exponent (-2/3) to a positive exponent, we can rewrite the expression as a fraction:
7x^(-2/3) = 7/x^(2/3)
Step 4: Simplify the expression.
In this case, the expression is already simplified, and there is no further factoring needed.
Final Answer: 7/x^(2/3)
Explanation:
The given expression is 7x^(-2/3), which is a single term composed of a constant (7) and a variable term (x^(-2/3)). Since there's only one term, the constant 7 is already factored out. The exponent of the variable term is negative, so we rewrite it as a fraction to make the exponent positive. The expression becomes 7/x^(2/3), which is the final factored form with positive exponents.
To know more about positive exponent refer here:
https://brainly.com/question/1773695
#SPJ11
Expressions Add parentheses to the following expressions to indicate how Java will interpret them. (a) a b-cd/e (b) a - b c %d-e (c)-a-b*c/d/e (d) a/b%c+d-e
Here are answers to adding parentheses to the expressions to indicate how Java will interpret them.
(a) a * b - c * d / e
Java interpretation: (a * b) - ((c * d) / e)
(b) a - b * c % d - e
Java interpretation: (a - ((b * c) % d)) - e
(c) -a - b * c / d / e
Java interpretation: (-a) - (((b * c) / d) / e)
(d) a / b % c + d - e
Java interpretation: (((a / b) % c) + d) - e
Note: Adding parentheses to expressions helps to clearly indicate the order in which Java will interpret them. This is important for ensuring the desired outcome of the expression.
Learn more about Java:https://brainly.com/question/18554491
#SPJ11
Alexis earns $31,350 per year. According to the banker's rule, how much money can she afford to borrow for a house?
The amount she can afford to borrow for a house is $111,316.77
We are given that;
Amount earned per year= $31,350
Now,
Formula for calculating the monthly mortgage payment is:
M=Pr/1−(1+r)−n
We can rearrange this formula to solve for P:
P=M(1−(1+r)−n)/r
Plugging in the values we have, we get:
P=531.75(1−(1+0.04/12)−30×12)/0.04/12
Using a calculator, we get:
P≈111,316.77
Therefore, by unitary method the answer will be $111,316.77.
Learn more about the unitary method, please visit the link given below;
https://brainly.com/question/23423168
#SPJ1
Let X = the number of nonzero digits in a randomly selected 4-digit PIN that has no restriction on the digits. What are the possible values of X?(multiple choice)(a) 0, 1, 2, 3, 4, ...(b) 1, 2, 3, 4, ...(c) 1, 2, 3, 40, 1, 2, 3(d) 0, 1, 2, 3, 4For the following possible outcomes, give their associated X values.PIN | associated value1020 | ?2478 | ?7130 | ?
Step-by-step explanation:
in a 4-digit number : how many 0 can there be ?
can there be five 0s ?
no, how could there be ? there is no space for five 0s, when there are only 4 positions for digits.
it is said that there are no restrictions on the digits.
so, any digit can occur at any position.
that means simply that there can be
no 0s : e.g. 1234
one 0 : e.g. 1204
two 0s : e.g. 1030
three 0s : e.g. 0030 or 7000 ...
four 0s - only one possibility : 0000
so, the possible values for X are
0, 1, 2, 3, 4
please pick the corresponding answer in your list, as you clearly made some typos there. I cannot tell the difference between some of the options you provided.
the X value for 1020 is 2
the X value for 2478 is 0
the X value for 7130 is 1
if there are more numbers, you did not list them.
tom ran from his home to the bus stop and waited.he realized that he had missed the bus so he walked home
Tom ran from his home to the bus stop and waited. He realized that he had missed the bus so he walked home. The correct distance time graph describing this is graph G.
The distance that an object has come in a certain amount of time is displayed on a distance-time graph. The graph that shows the results of the distance vs time analysis is a straightforward line graph. When analysing the motion of bodies, we work with the distance-time graph.
A distance-time graph related to a body's motion can be created if we measure a body's motion's distance and time and plot the resulting data on a rectangle graph. Tom ran from his home to the bus stop and waited. He realized that he had missed the bus so he walked home. The correct distance time graph describing this is graph G.
To know more about distance-time graph, here:
https://brainly.com/question/19836052
#SPJ1
Your question is incomplete but most probably your full question was,
Coordinate
Algebra
The equation for the speed of a ball that is thrown straight up in the air is given by
y=46-321 where v is the velocity (feet per second) and t is the number of seconds after
the ball is thrown. What does the y-intercept represent in this context?
A The y-intercept indicates that when the ball was released at t=0, it was thrown upward
at 46 feet per second.
B The y-intercept indicates that when the ball was released at t=0, it was thrown upward
at 32 feet per second.
C The y-intercept indicates that when the ball was released at t= 1, it was thrown upward
at 46 feet per second.
D The y-intercept indicates that when the ball was released at t= 1, it was dropped from
32 feet.
The y-intercept indicates that when the ball was released at t=0, it was thrown upward at 46 feet per second.
What does the y-intercept represent in this context?The equation given for the speed of a ball that is thrown straight up in the air is:
v(t) = 46 - 32t
where v is the velocity (feet per second) and t is the number of seconds after the ball is thrown.
The y-intercept of this equation is the value of v when t = 0. To find the y-intercept, we can substitute t = 0 into the equation:
v(0) = 46 - 32(0) = 46
So, the y-intercept of this equation is 46, which means that when the ball was released at t=0, it was thrown upward at 46 feet per second.
Therefore, option A is the correct answer: The y-intercept indicates that when the ball was released at t=0, it was thrown upward at 46 feet per second.
Read more about linear relation at
https://brainly.com/question/30318449
#SPJ1
the waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 5 minutes. find the probability that a randomly selected passenger has a waiting time less than 2.75 minutes.
Therefore, the probability that a randomly selected passenger has a waiting time less than 2.75 minutes is 0.55.
Since the waiting times between subway departure schedule and passenger arrival are uniformly distributed between 0 and 5 minutes, the probability density function of the waiting time can be expressed as:
f(x) = 1/5 for 0 <= x <= 5
0 otherwise
To find the probability that a randomly selected passenger has a waiting time less than 2.75 minutes, we need to calculate the area under the probability density function from 0 to 2.75:
P(X < 2.75) = ∫[0, 2.75] f(x) dx
= ∫[0, 2.75] (1/5) dx
= (1/5) [x]_[0, 2.75]
= (1/5) * 2.75
= 0.55
To know more about probability,
https://brainly.com/question/30034780
#SPJ11
Find f. (Use C for the constant of the first antiderivative and D for the constant of the second antiderivative.) f ''(x) = 24x3 − 15x2 + 8x
The function f(x) that satisfies f ''(x) = 24x³ − 15x² + 8x is:
f(x) = (6/5)x⁵ - (5/4)x⁴ + (4/3)x³ + C₁x + C₂ [where C₁ and C₂ are arbitrary constants].
What is integration?Integration is a fundamental concept in calculus that involves finding the antiderivative or the indefinite integral of a function.
More specifically, integration is the process of determining a function whose derivative is the given function.
To find f(x) from f ''(x), we need to integrate f ''(x) twice, since the first antiderivative will give us the derivative of the function f(x), and the second antiderivative will give us f(x) up to two arbitrary constants of integration.
First, we integrate f ''(x) with respect to x to get the first antiderivative f '(x):
f '(x) = ∫ f ''(x) dx = 24∫ x³ dx - 15∫ x² dx + 8∫ x dx
f '(x) = 24(x⁴/4) - 15(x³/3) + 8(x²/2) + C₁
f '(x) = 6x⁴ - 5x³ + 4x² + C₁
where C₁ is the constant of integration.
Next, we integrate f '(x) with respect to x to get f(x):
f(x) = ∫ f '(x) dx = ∫ (6x⁴ - 5x³ + 4x² + C₁) dx
f(x) = (6/5)x⁵ - (5/4)x⁴ + (4/3)x³ + C₁x + C₂
where C₂ is the constant of integration.
To know more about antiderivative visit:
https://brainly.com/question/30764807
#SPJ1
The function f(x) that satisfies f ''(x) = 24x³ − 15x² + 8x is:
f(x) = (6/5)x⁵ - (5/4)x⁴ + (4/3)x³ + C₁x + C₂ [where C₁ and C₂ are arbitrary constants].
What is integration?Integration is a fundamental concept in calculus that involves finding the antiderivative or the indefinite integral of a function.
More specifically, integration is the process of determining a function whose derivative is the given function.
To find f(x) from f ''(x), we need to integrate f ''(x) twice, since the first antiderivative will give us the derivative of the function f(x), and the second antiderivative will give us f(x) up to two arbitrary constants of integration.
First, we integrate f ''(x) with respect to x to get the first antiderivative f '(x):
f '(x) = ∫ f ''(x) dx = 24∫ x³ dx - 15∫ x² dx + 8∫ x dx
f '(x) = 24(x⁴/4) - 15(x³/3) + 8(x²/2) + C₁
f '(x) = 6x⁴ - 5x³ + 4x² + C₁
where C₁ is the constant of integration.
Next, we integrate f '(x) with respect to x to get f(x):
f(x) = ∫ f '(x) dx = ∫ (6x⁴ - 5x³ + 4x² + C₁) dx
f(x) = (6/5)x⁵ - (5/4)x⁴ + (4/3)x³ + C₁x + C₂
where C₂ is the constant of integration.
To know more about antiderivative visit:
https://brainly.com/question/30764807
#SPJ1
Hi can someone plssss help me with this it asks to find x y and z. they also can be no solution or infinitely solution.
6) The solution is: x = 1, y = -4, z = -3
7) The solution is: x = 1, y = 3, z = 5/7
8) The solution to the system of equations is: x = -11, y = 0, z = -5.
What is Quadratic equation?A quadratic equation is a polynomial equation of the second degree, which means it has a degree of two.
6.) To solve the systems of equations, we can use the Gaussian elimination method.
We will rewrite this system in the augmented matrix form:
[ 3 -1 2 | -4 ]
[ 6 -2 4 | -8 ]
[ 2 -1 3 | -10]
[ 3 -1 2 | -4 ]
[ 0 0 -4/3 | 4 ]
[ 0 1/3 7/3 | -14/3]
Then, we can add (1/3) times the second row to the third row:
[ 3 -1 2 | -4 ]
[ 0 0 -4/3 | 4 ]
[ 0 1/3 21/9 | -10/3]
[ 3 -1 2 | -4 ]
[ 0 0 -4/3 | 4 ]
[ 0 3 7 | -30 ]
7.) We can rewrite this system in the augmented matrix form:
[ 1 1 -1 | 4 ]
[ 3 2 4 | -17 ]
[-1 5 1 | 8 ]
[ 1 1 -1 | 4 ]
[ 0 -1 7 | -29 ]
[ 0 6 0 | 12 ]
Then, we can multiply the second row by -1 and add it to the third row:
[ 1 1 -1 | 4 ]
[ 0 -1 7 | -29 ]
[ 0 0 -42 | -150]
8.) To solve for x, y, and z in the system of equations:
x + 5y - 2z = -1 (equation 1)
-x - 2y + z = 6 (equation 2)
-2x - 7y + 3z = 7 (equation 3)
(1) + (2): 3y - z = 5
2(1) + (3): 13y - z = 5
3y - z = 5 (equation A)
13y - z = 5 (equation B)
10y = 0
3(0) - z = 5
z = -5
x + 5(0) - 2(-5) = -1
x + 10 = -1
x = -11
To know more about matrix visit:
https://brainly.com/question/27572352
#SPJ1
3 What is the product of 2x³ +9 and x³ +7?
I need an answer ASAP AND HELP ME TO SHOW MY WORK to get full credit
Ms. Follis and Mr. Jackamonis start in the middle of the football field in the exact same spot. Ms. Follis walks 5 feet directly north. Mr. Jackamonis walks directly east. Ms. Follis and Mr. Jackamonis are now exactly 13 feet apart. How far did Mr. Jackamonis walk?
The distance in the east direction Mr. Jackamonis after Ms Follis walks 5 feet directly north and the distance between them is 13 feet, obtained using Pythagorean Theorem is 12 feet
What is Pythagorean Theorem?Pythagorean Theorem states that the square of the length of the hypotenuse side of a right triangle is equivalent to the sum of the squares of the lengths of the other two sides of the right triangle.
Let a represent the length of the hypotenuse side, and let b and c represent the lengths of the other two sides, then according to the Pythagorean Theorem, we get;
a² = b² + c²
The direction Ms. Follis walks = 5 feet directly north
The direction Mr. Jackamonis walks = Directly east
The distance between Ms. Follis and Mr. Jackamonis = 13 feet apart
The distance Mr. Jackamonis walks, d, can be found using Pythagorean Theorem as follows;
13² = 5² + d²
Therefore;
d² = 13² - 5² = 144
d = √(144) = 12
d = ± 12
Distances are measured using natural numbers, therefore;
d = 12 feet
The distance Mr. Jackamonis walks, d = 12 feetLearn more on Pythagorean Theorem here: https://brainly.com/question/231802
#SPJ1
State if the triangle is acute obtuse or right
Answer:
right as there is a point of 90 degrees
find area 10.7cm 15.1cm 18.4cm use a=h×(base1+base2)
The area of the trapezoid is approximately 237.312 square centimeters.
How to calculate the areaTo use the formula for finding the area of a trapezoid, we need to know the height and the length of the two parallel sides (bases).
Let's assume that 10.7 cm is the length of one base and 15.1 cm is the length of the other base, and 18.4 cm is the height.
Using the formula for the area of a trapezoid, we get:
Area = 0.5 × (10.7 cm + 15.1 cm) × 18.4 cm
Area = 0.5 × 25.8 cm × 18.4 cm
Area = 237.312 cm^2
Therefore, the area of the trapezoid is approximately 237.312 square centimeters.
Learn more about trapezoid at https://brainly.com/question/26487711
#SPJ1
Expand Daniel was recently hired at an electronics call center that receives thousands of incoming calls each day. Assume that the number of daily incoming phone calls is very nearly normally distributed with an unknown mean pu and an unknown standard deviation ơ. Daniel examines the call logs from a simple random sample of n days. He records the total number of calls on each of these days and calculates the mean number of calls per day, I, for the sample. Which of the following describes the sampling distribution of ? A. a t-distribution with n-1 degrees of freedonm B. a t-distribution with mean (u and standard deviation C. a normal distribution with mean 0 and standard deviation 1 D. a t-distribution with n de 71 a normal distribution with mean fi and standard deviation ơ E. a normal distribution with mean μ and standard deviation 72
The sampling distribution of the mean number of calls per day (I) in an electronics call center, given that the number of daily incoming phone calls is nearly normally distributed with an unknown mean (μ) and an unknown standard deviation (σ). Daniel examines the call logs from a simple random sample of n days , the correct answer is E which describes the sampling distribution correctly.
Here's the explanation:
1. The original distribution of daily incoming phone calls is approximately normal.
2. Daniel takes a simple random sample of n days, which is a representative sample of the population.
3. Since the original distribution is normal and the sample is large enough, the Central Limit Theorem states that the sampling distribution of the sample mean (I) will also be normally distributed.
4. The mean of the sampling distribution will be equal to the population mean (μ).
5. The standard deviation of the sampling distribution will be equal to the population standard deviation (σ) divided by the square root of the sample size (n). This is because the variability in the sample means decreases as the sample size increases.
know more about the Central Limit Theorem click here;
https://brainly.com/question/898534
#SPJ11
Find the a7 in a geometric sequence which begins with 6,___, 96
Answer:
24576
Step-by-step explanation:
first find the 2nd term, u1 *u3 r u2^2
hence u2 = 24
then find the common ratio
24/ 6 = 96/24 = 4
now complete the formula
6 * 4^(n-1)
now sub in 7 for n
you get 24576
In a large introductory statistics lecture hall, the professor reports that 60% of the students enrolled have never taken a calculus course, 29% have taken only one semester of calculus, and the rest have taken two or more semesters of calculus. The professor randomly assigns students to groups of three to work on a project for the course. You are assigned to be part of a group. What is the probability that of your other two groupmates, neither has studied calculus? both have studied at least one semester of calculus? at least one has had more than one semester of calculus?The probability that neither of your other two groupmates has studied calculus is 0.36. (Round to four decimal places as needed.) The probability that both of your other two groupmates have studied at least one semester of calculus is 0.16. (Round to four decimal places as needed.) The probability that at least one of your other two groupmates has had more than one semester of calculus is 0.4782. (Round to four decimal places as needed.)
The probability that neither of other two studied calculus is 0.36. The probability that both have taken at least one semester is 0.0759. The probability that at least one has had more than one semester) 0.4782
Let's first find the probability that one of your other two groupmates has studied calculus and the other has not. We can do this by multiplying the probabilities of the two events:
P(one studied calculus, one did not) = P(at least one studied calculus) * P(neither studied calculus)
P(one studied calculus, one did not) = (1 - 0.6) * 0.6
P(one studied calculus, one did not) = 0.24
Since we are dealing with three students in the group, there are three ways that one person could have studied calculus and the other two have not. So we need to multiply the above probability by three:
P(neither of other two studied calculus) = 3 * 0.24
P(neither of other two studied calculus) = 0.72
Therefore, the probability that neither of your other two groupmates has studied calculus is 0.36 (as given), and the probability that at least one has studied calculus is:
P(at least one studied calculus) = 1 - 0.36
P(at least one studied calculus) = 0.64
Now let's find the probability that both of your other two groupmates have studied at least one semester of calculus. This is given to be 0.16. We can break this down into two cases: either both of the other two have taken exactly one semester of calculus, or both have taken two or more semesters. So:
P(both have taken exactly one semester) + P(both have taken two or more semesters) = 0.16
Let's use x to represent the probability that a given student has taken two or more semesters of calculus. Then:
P(both have taken exactly one semester) = 0.29 * 0.29 = 0.0841 (since the two events are independent)
P(both have taken two or more semesters) = x^2
So we have:
0.0841 + x^2 = 0.16
x^2 = 0.0759
x = 0.2758 (taking the positive root since we're dealing with probabilities)
Therefore, the probability that both of your other two groupmates have taken two or more semesters of calculus is approximately:
P(both have taken two or more semesters) = 0.2758^2
P(both have taken two or more semesters) = 0.0759
Finally, we can find the probability that at least one of your other two groupmates has had more than one semester of calculus by subtracting the probability that both have taken exactly one semester from the probability that at least one has studied calculus:
P(at least one has had more than one semester) = P(at least one studied calculus) - P(both have taken exactly one semester)
P(at least one has had more than one semester) = 0.64 - 0.0841
P(at least one has had more than one semester) = 0.5559
P(at least one has had more than one semester) = 0.4782 (rounded to four decimal places)
Know more about probability here:
https://brainly.com/question/30034780
#SPJ11
HELP PLEASE ASAP WILL REWARD BRAINLIEST!!!! im in unit test Given the following data,
7, 7, b, 7, 7
If the mean is 7, which number could b be?
Question 10 options:
6
4
7
2
Answer:
7
Step-by-step explanation:
7+7+7+7+7=35
35 ÷ 5
=7( the mean is 7)
The number of people in the auditorium is 3 hours after the doors open is the same as the number of people in the auditorium 5 hours after the doors open.
A function notation for two hours after the open, there are 108 people in the auditorium is N(2) = 108.
A function notation for the number of people in the auditorium 3 hours after the doors open is the same as the number of people in the auditorium 5 hours after the doors open is N(3) = N(5).
What is a function?In Mathematics, a function refers to a mathematical expression which can be used for defining and showing the relationship that exist between two or more variables in a data set.
This ultimately implies that, a function typically shows the relationship between input values (x-values or domain) and output values (y-values or range) of a data set, as well as showing how the elements in a table are uniquely paired (mapped).
Based on the information provided, the number of people in the auditorium can be represented by this function notation;
N(t)
Where:
t represents number of hours.
After 2 hours, we have:
N(2) = 108.
For the last statement, we have:
N(3) = N(5).
Read more on function here: brainly.com/question/12789432
#SPJ1
find the volume of the solid whose base is the region bounded between the curve y = x^2 and the x axis from x = 0 and x = 2 b.) semicircles
To find the volume of the solid whose base is the region bounded between the curve y = x^2 and the x axis from x = 0 and x = 2, we need to use the method of disks or washers. The volume is V = 6.4π cubic units.
First, we need to find the equation of the curve when rotated around the x-axis. This will create a series of circular cross-sections that we can integrate to find the volume.
The equation of the curve when rotated around the x-axis is:
V = ∫[0,2] πy^2 dx
Since the base is the region between y = x^2 and the x-axis, we can rewrite the equation in terms of x:
V = ∫[0,2] π(x^2)^2 dx
V = ∫[0,2] πx^4 dx
Using the power rule of integration, we can simplify this to:
V = π/5 [x^5] from 0 to 2
V = π/5 (32)
V = 6.4π cubic units
b.) If we use semicircles to create the base, we need to split the solid into two parts, since each semicircle will create a half-cylinder.
The radius of each semicircle is equal to the function y = x^2, so the area of each semicircle is:
A = 1/2 π(x^2)^2
A = 1/2 πx^4
To find the volume of each half-cylinder, we integrate the area over the interval [0,2]:
V1 = ∫[0,2] 1/2 πx^4 dx
V1 = π/10 [x^5] from 0 to 2
V1 = π/10 (32)
V1 = 3.2π cubic units
The total volume of the solid is twice this amount:
V = 2V1
V = 6.4π cubic units.
To know more about volume:
https://brainly.com/question/1578538
#SPJ11