consumption is 200 lpcd. (CLO1/PLO1) Q4: Explain the different physical tests performed for the drinking water. Also write their WHO guideline values. (CLO2/PL07)

Answers

Answer 1

Physical, Color, Turbidity, PH, Hardness and other tests are conducted to determine whether the water is suitable for drinking. WHO has also provided guideline values for each test.

Different physical tests performed for drinking water and their WHO guideline values are mentioned below:

Physical tests performed for drinking water

Color test: This test is performed to detect the presence of organic and inorganic matter in the water. WHO guideline value for color is <15 TCU.

Turbidity test: Turbidity test is performed to detect suspended particles in the water. WHO guideline value for turbidity is <5 NTU.

PH test: PH test is performed to determine the acidity or alkalinity of the water. WHO guideline value for PH is 6.5-8.5.

Hardness test: Hardness test is performed to detect the amount of minerals like calcium and magnesium present in the water. WHO guideline value for hardness is 500 mg/l.

Nitrates test: This test is performed to detect the presence of nitrate in the water. WHO guideline value for nitrate is 50 mg/l.

Chloride test: Chloride test is performed to detect the amount of salt present in the water. WHO guideline value for chloride is 250 mg/l.

Fluoride test: Fluoride test is performed to detect the amount of fluoride present in the water. WHO guideline value for fluoride is 1.5 mg/l.

Therefore, all the above-mentioned tests are conducted to determine whether the water is suitable for drinking. WHO has also provided guideline values for each test.

To know more about magnesium, visit

https://brainly.com/question/15168276

#SPJ11


Related Questions

A soil sample has a mass of 2290 gm and a volume of 1.15 x 10-3 m3, after drying, the mass of the sample 2035 gm, Gs for the soil is 268, Determine: 1. bulk density 2. water content 3. void ratio 4. Porosity 5. Degree of saturation

Answers

Degree of saturation is an important soil parameter that is used to determine other soil properties, such as hydraulic conductivity and shear strength.

Bulk density is the ratio of the mass of soil solids to the total volume of soil. Bulk density can be calculated using the following equation:

Bulk density = Mass of soil solids / Total volume of soil Bulk density can also be determined by using the following formula:

ρb = (M1-M2)/V

where ρb is the bulk density of the soil, M1 is the initial mass of the soil, M2 is the mass of the dry soil, and V is the total volume of the soil.

ρb = (2290 – 2035) / 1.15 x 10-3 ρb

= 22.09 kN/m3

Water content is the ratio of the mass of water to the mass of soil solids in the sample.

Water content can be determined using the following equation:

Water content = (Mass of water / Mass of soil solids) x 100%

Water content = [(2290 – 2035) / 2035] x 100%

Water content = 12.56%

Void ratio is the ratio of the volume of voids to the volume of solids in the sample. Void ratio can be determined using the following equation:

Void ratio = Volume of voids / Volume of solids

Void ratio = (Total volume of soil – Mass of soil solids) / Mass of soil solids

Void ratio = (1.15 x 10-3 – (2290 / 268)) / (2290 / 268)

Void ratio = 0.919

Porosity is the ratio of the volume of voids to the total volume of the sample.

Porosity can be determined using the following equation:

Porosity = Volume of voids / Total volume

Porosity = (Total volume of soil – Mass of soil solids) / Total volume

Porosity = (1.15 x 10-3 – (2290 / 268)) / 1.15 x 10-3

Porosity = 0.888

Degree of saturation is the ratio of the volume of water to the volume of voids in the sample.

Degree of saturation can be determined using the following equation:

Degree of saturation = Volume of water / Volume of voids

Degree of saturation = (Mass of water / Unit weight of water) / (Total volume of soil – Mass of soil solids)

Degree of saturation = [(2290 – 2035) / 9.81] / (1.15 x 10-3 – (2290 / 268))

Degree of saturation = 0.252.

In geotechnical engineering, the bulk density of a soil sample is the ratio of the mass of soil solids to the total volume of soil.

In other words, bulk density is the weight of soil solids per unit volume of soil.

It is typically measured in units of kN/m3 or Mg/m3. Bulk density is an important soil parameter that is used to calculate other soil properties, such as porosity and void ratio.

Water content is a measure of the amount of water in a soil sample. It is defined as the ratio of the mass of water to the mass of soil solids in the sample.

Water content is expressed as a percentage, and it is an important soil parameter that is used to determine other soil properties, such as hydraulic conductivity and shear strength.

Void ratio is the ratio of the volume of voids to the volume of solids in the sample.

Void ratio is an important soil parameter that is used to calculate other soil properties, such as porosity and hydraulic conductivity. It is typically measured as a dimensionless quantity.

Porosity is a measure of the amount of void space in a soil sample. It is defined as the ratio of the volume of voids to the total volume of the sample.

Porosity is an important soil parameter that is used to calculate other soil properties, such as hydraulic conductivity and shear strength.

Degree of saturation is a measure of the amount of water in a soil sample relative to the total volume of voids in the sample. It is defined as the ratio of the volume of water to the volume of voids in the sample.

Degree of saturation is an important soil parameter that is used to determine other soil properties, such as hydraulic conductivity and shear strength.

To know more about volume visit :

https://brainly.com/question/28058531

#SPJ11

Set up, but do not evaluate, the integral for the surface area of the solid obtained by rotating the curve y-6ze-He interval 2 556 about the line a=-4 Set up, but do not evaluate, the integral for the surface area of the solid obtained by rotating the curve y-dee on the interval 2 556 about the sine p 1-0 Note. Don't forget the afferentials on the integrands Note in order to get creat for this problem all answers must be correct preview

Answers

The integral for the the surface area is [tex]\int\limits^6_2 {6xe^{-14x}} \, dx[/tex]

How to set up the integral for the surface area

From the question, we have the following parameters that can be used in our computation:

[tex]y = 6xe^{-14x}[/tex]

Also, we have

The line x = -4

The interval is given as

2 ≤ x ≤ 6

For the surface area from the rotation around the region bounded by the curves, we have

Area = ∫[a, b] [f(x)] dx

This gives

[tex]Area = \int\limits^6_2 {6xe^{-14x}} \, dx[/tex]

Hence, the integral for the surface area is [tex]\int\limits^6_2 {6xe^{-14x}} \, dx[/tex]

Read more about area at

https://brainly.com/question/32094709

#SPJ1

1. A circular rug has a diameter of 10 cm. What is its area?
A. 7.850 cm2
B. 78.50 cm2
C. 785.0 cm2
D. 7850 cm2
2. The diameter of a circle is 8 cm. What is its area?
A. 50.24 cm2
B. 50.24 cm2
C. 502.4 cm2
D. 5024 cm2
3. Which formula shows the correct way of finding the area of a circle?
A. A πr²
B. A = πr
C. A = π²r
D. A = 2nr

Answers

Answer:

1. B. 78.50 cm2

2. In this question 2 options are same, A and B, one of the options may be 50.72 cm2. And this the correct answer.

3. C. A = π²r

A bank offers a savings account bearing 3% interest that is compounded quarterly (i.e. four times a year). Suppose a principal of $10,000 is placed in this account. How much money will the account hold after 5 years?

Answers

Therefore, after 5 years, the account will hold $14,239.98 (rounded to the nearest cent).

The principal, P = $10,000, the interest rate, r = 3% or 0.03 as a decimal, and the number of times per year the interest is compounded, n = 4. We want to find the amount of money in the account after 5 years, which we will call A.After 1 year, the account balance will be given by the formula:

A = P(1 + r/n)^(n*t)

where t is the time in years.So after 1 year, we have:

A = $10,000(1 + 0.03/4)^(4*1)

A = $10,762.45

After 2 years, we use the same formula but with t = 2:

A = $10,000(1 + 0.03/4)^(4*2)

A = $11,551.57After 3 years:

A = $10,000(1 + 0.03/4)^(4*3)

A = $12,391.59

After 4 years:

A = $10,000(1 + 0.03/4)^(4*4)

A = $13,286.25

Finally, after 5 years:A = $10,000(1 + 0.03/4)^(4*5)

A = $14,239.98

Therefore, after 5 years, the account will hold $14,239.98 (rounded to the nearest cent).

Note: This is an example of compound interest, where the interest earned is added back to the principal, resulting in an increased balance that earns even more interest in the future.

To know more about account visit;

brainly.com/question/30977839

#SPJ11

Use the portal method of analysis. R H S Y KN- A+B KN- D M EN K B 8m 1. What is the vertical reaction at A? (kN) 2. What is the horizontal reaction at A? (kN) 3. What is the moment reaction at A? (kN)

Answers

1. The vertical reaction at A is 8 kN.

2. The horizontal reaction at A is 0 kN.

3. The moment reaction at A is 0 kN.

To determine the reactions at support A using the portal method of analysis, we consider the equilibrium of forces acting on the structure. The given information indicates that the right-hand side (RHS) of the structure is subjected to vertical forces A+B kN and horizontal forces D M EN K B kN. The structure has a length of 8m.

1. Vertical Reaction at A:

Since there are no vertical forces acting on the left-hand side of the structure, the vertical reaction at A can be determined by balancing the vertical forces on the RHS. According to the information provided, the vertical forces on the RHS are A+B kN. Since there are no vertical forces on the LHS, the vertical reaction at A must be equal in magnitude and opposite in direction. Therefore, the vertical reaction at A is 8 kN.

2. Horizontal Reaction at A:

The horizontal reaction at A can be determined by considering the horizontal forces acting on the structure. As per the given information, the horizontal forces on the RHS are D M EN K B kN. However, there is no information regarding horizontal forces on the LHS. Therefore, we can conclude that there are no horizontal forces acting on the structure. Hence, the horizontal reaction at A is 0 kN.

3. Moment Reaction at A:

The moment reaction at A can be obtained by taking moments about A. Since there are no external moments acting on the structure and no horizontal reaction at A, the moment reaction at A is also 0 kN.

Learn more about Vertical

brainly.com/question/30105258

#SPJ11

Explain how the integrated rate law for first order and second order reactions can be used to determine whether the reaction is first or second order.

Answers

By experimentally measuring the concentration of a reactant at different time points and plotting the appropriate form of the integrated rate law, we can determine whether the reaction is first order (linear plot of ln[A]) or second order (linear plot of 1/[A]). The slope of the linear plot can also provide information about the rate constant (k) for the reaction.

The integrated rate law for a chemical reaction describes the relationship between the concentration of a reactant and time for a specific order of reaction. By analyzing the mathematical form of the integrated rate law, we can determine whether a reaction is first order or second order.

For a first-order reaction, the integrated rate law is expressed as:

ln[A]t = -kt + ln[A]0

where [A]t represents the concentration of the reactant A at time t, k is the rate constant, and [A]0 is the initial concentration of A.

In a first-order reaction, plotting ln[A] versus time (t) will yield a straight line with a negative slope. If the plot of ln[A] versus time is linear and the slope remains constant throughout the reaction, it indicates that the reaction follows a first-order rate law.

For a second-order reaction, the integrated rate law is expressed as:

1/[A]t = kt + 1/[A]0

In a second-order reaction, plotting 1/[A] versus time (t) will yield a straight line with a positive slope. If the plot of 1/[A] versus time is linear and the slope remains constant throughout the reaction, it indicates that the reaction follows a second-order rate law.

To know more about mathematical visit:

brainly.com/question/27235369

#SPJ11

5. Verify that the following functions u is harmonic, and find its analytic function f(z)=u+iv, for f(0)=0 u(x, y) = x² - y² + xy

Answers

The analytic function f(z) = (1/2)z² + xy - (1/2)x² satisfies the given conditions, with f(0) = 0.

To verify that the function u(x, y) = x² - y² + xy is harmonic, we need to check if it satisfies Laplace's equation:

∇²u = ∂²u/∂x² + ∂²u/∂y² = 0

Let's compute the second partial derivatives:

∂²u/∂x² = 2

∂²u/∂y² = -2

∇²u = ∂²u/∂x² + ∂²u/∂y² = 2 + (-2) = 0

Since ∇²u = 0, we can conclude that the function u(x, y) = x² - y² + xy is indeed harmonic.

To find the analytic function f(z) = u + iv, we can integrate the given function u(x, y) to obtain v(x, y), and then express the result in terms of the complex variable z = x + iy.

Given:

u(x, y) = x² - y² + xy

To find v(x, y), we integrate the partial derivative of u with respect to y:

∂v/∂y = ∂u/∂x = 2x + y

v(x, y) = ∫(2x + y) dy = 2xy + (1/2)y² + C(x)

Here, C(x) represents a constant of integration that may depend on x.

Now, we express v(x, y) in terms of the complex variable z = x + iy:

v(x, y) = 2xy + (1/2)y² + C(x)

v(z) = 2xz + (1/2)(z - ix)² + C(x)

v(z) = 2xz + (1/2)(z² - 2ixz + i²x²) + C(x)

v(z) = 2xz + (1/2)(z² - 2ixz - x²) + C(x)

v(z) = xz + (1/2)z² - ixz - (1/2)x² + C(x)

Now, let's find the constant C(x) by using the given condition f(0) = 0:

v(0) = 0

0 = 0 + 0 - 0 - 0 + C(0)

C(0) = 0

Therefore, the analytic function f(z) = u(x, y) + iv(x, y) is given by:

f(z) = (x² - y² + xy) + i(xz + (1/2)z² - ixz - (1/2)x²)

Simplifying the expression:

f(z) = x² - y² + xy + ixz + (1/2)z² - ixz - (1/2)x²

f(z) = (1/2)z² + xy - (1/2)x²

Thus, the analytic function f(z) = (1/2)z² + xy - (1/2)x² satisfies the given conditions, with f(0) = 0.

To know more about partial derivatives, visit:

https://brainly.com/question/28750217

#SPJ11

PLS GIVE ANSWERS TO ALL QUESTIONS

Answers

I’m would like to help but I don’t see any questions present… did you forget to provide a photo??

(i) Show that the equation (3x²y²-10xy²)dx + (2x³y-10x²y)dy=0 is an exact equation. (ii) Then, determine the general solution from the given differential equation.

Answers

In order to show that the equation[tex](3x²y²-10xy²)dx + (2x³y-10x²y)dy=0[/tex] is an exact equation, we have to check whether its coefficients are the partial derivatives of some function of two variables f(x,y).

Taking the partial derivative of[tex](3x²y²-10xy²)[/tex] with respect to y,

we get: [tex]∂/∂y(3x²y²-10xy²) = 6x²y - 10xy[/tex]

Taking the partial derivative of [tex](2x³y-10x²y)[/tex] with respect to x,

we get: [tex]∂/∂x(2x³y-10x²y) = 6x²y - 20xy,[/tex]

the equation is an exact equation.(ii)

To determine the general solution from the given differential equation,

we have to find the function f(x,y)

such that: [tex]∂f/∂x = 3x²y²-10xy²∂f/∂y = 2x³y-10x²y[/tex]

Integrating the first equation with respect to x,

we get:[tex]f = x³y² - 5x²y² + g(y)[/tex]

Taking the partial derivative of f with respect to y,

we get: [tex]∂f/∂y = 2x³y - 10x²y + g'(y)[/tex]

Comparing this with the second equation, we get:

g'(y) = 0,

g(y) = C, where C is a constant. The general solution of the differential equation is given by:  [tex]x³y² - 5x²y² + C = 0,[/tex] where C is a constant.

To know more about coefficients visit:

https://brainly.com/question/1594145

#SPJ11

Type or paste question here
Q. No. 1 The specific discharge 'q' of water in an open channel is assumed to be a function of the depth of flow in the channel y' the height of the roughness of the channel surface 'e the acceleratio

Answers

The flowrate 'g' will change when the channel roughness 'e' doubled.[tex]q_0 = \sqrt{2}q_1[/tex]

The specific discharge 'q' of water in an open channel is assumed to be a function of the depth of flow in the channel y' the height of the roughness of the channel surface 'e' the acceleration due to gravity 'g' and the slope 's' of the area where the channel is placed.

Make use of dimensional analysis to determine how the flowrate 'g' will change when the channel roughness 'e' doubled.

 q = [M⁰ L¹ T⁰]

y = [M⁰ L¹ T⁰]

e = [M⁰ L¹ T⁰]

g = [M⁰ L T⁻²]

s₀= [M⁰ L⁰ T⁰]

s₀ = q[y]ᵃ [c]ᵇ [g]ⁿ

[M⁰ L⁰ T⁰] = [M⁰ L¹ T⁻¹] [L]ᵃ [L]ᵇ [LT⁻²]ⁿ

0 = 1 + a + b + n

0 = -2 -2c

c = -1/2

a + b = -1 + 1/2 = -1/2
Let a = 0, b = -1/2

s₀ = q[e]^-1/2 [g]^-1/2

[tex]s_0 = \frac{q}{e^{1/2}*g^{1/2}}[/tex]

[tex]q_0 = \sqrt{2}q_1[/tex]

Learn more about dimensional analysis here:

https://brainly.com/question/17620509

#SPJ4

Complete Question:

Q. No. 1 The specific discharge 'q' of water in an open channel is assumed to be a function of the depth of flow in the channel y' the height of the roughness of the channel surface 'e the acceleration due to gravity 'g' and the slope 's' of the area where the channel is placed. Make use of dimensional analysis to determine how the flowrate 'g' will change when the channel roughness 'e' doubled.

 

Iodine is prepared both in the laboratory and commercially by adding Cl,(g) to an aqueous solution containing sodium infide 2 Nal(aq) + Cl₂(g) → 1₂(s) + 2 NaCl(aq) How many grams of sodium iodide, Nal, must be used to produce 80.1 g of iodine, 1,7 mass: g Nat

Answers

The number of grams of sodium iodide, Nal, must be used to produce 80.1 g of iodine is approximately 189.25 grams.

To produce iodine, sodium iodide (NaI) is formed by adding chlorine gas (Cl₂) to an aqueous solution containing sodium iodide (NaI). The reaction is represented by the equation:

2 NaI(aq) + Cl₂(g) → I₂(s) + 2 NaCl(aq)

To determine how many grams of sodium iodide (NaI) are needed to produce 80.1 grams of iodine (I₂), we need to use the stoichiometry of the balanced chemical equation.

First, we need to convert the given mass of iodine (80.1 grams) to moles. The molar mass of iodine is 126.9 g/mol, so:

80.1 g I₂ × (1 mol I₂ / 126.9 g I₂) = 0.631 mol I₂

According to the balanced equation, 2 moles of sodium iodide (NaI) produce 1 mole of iodine (I₂). Therefore, we can set up a proportion to find the number of moles of sodium iodide needed:

2 mol NaI / 1 mol I₂ = x mol NaI / 0.631 mol I₂

Simplifying the proportion gives:

x mol NaI = (2 mol NaI / 1 mol I₂) × 0.631 mol I₂

x mol NaI = 1.262 mol NaI

Finally, we can convert the moles of sodium iodide to grams using its molar mass of 149.9 g/mol:

1.262 mol NaI × (149.9 g NaI / 1 mol NaI) = 189.25 g NaI

Therefore, approximately 189.25 grams of sodium iodide (NaI) must be used to produce 80.1 grams of iodine (I₂).

Learn more about stoichiometry here: https://brainly.com/question/30820349

#SPJ11

During a storm, the rates of rainfall observed at a frequency of 15 min for one hour are 12.5, 17.5, 22.5 and 7.5 cm/h. If phi-index is 7.5 cm/h, calculate the total runoff.

Answers

The total runoff during the storm is 52.5 centimeters per hour, which is calculated by summing up the rates of rainfall observed at a frequency of 15 minutes for one hour, including 12.5, 17.5, 22.5, and 7.5 centimeters per hour.

To calculate the total runoff during the storm, we need to sum up the rates of rainfall observed at a frequency of 15 minutes for one hour. The rates of rainfall recorded are 12.5, 17.5, 22.5, and 7.5 cm/h. Adding these values together, we get a total of 60 cm/h. This represents the total amount of rainfall that contributes to the runoff during the storm.

However, we also need to consider the phi-index, which is the minimum rate at which water infiltrates into the soil. In this case, the phi-index is given as 7.5 cm/h. This means that any rainfall above this rate will contribute to the total runoff, while rainfall at or below the phi-index will be absorbed by the soil.

To calculate the total runoff, we subtract the phi-index from the sum of the rainfall rates.

Total runoff = (12.5 + 17.5 + 22.5 + 7.5) - 7.5 = 60 - 7.5 = 52.5 cm/h.

Therefore, the total runoff during the storm is 52.5 cm/h.

Learn more about Runoff

brainly.com/question/28147620

#SPJ11

What would be the cost of a Big Mac in Azerbaijan in US dollars (convert the price in bolivar to US dollars)?
= 4.7/1.7
= $2.76 would be the cost of a Big Mac
he cost of a Big Mac in the US is $5.15. If the law of one price holds for the Big Mac in the United States and Azerbaijan, what would be the exchange rate between the manat and the dollar?
=4.7/1.7
= $.91 manat/dollar
c. Compare the actual exchange rate between the bolivar and the dollar of 1.7 manat/$1 to the exchange rate suggested by the law of one price in part b. Is the manat overvalued or undervalued according to our application of the law of one price? (6 points)

Answers

The cost of a Big Mac in Azerbaijan in US dollars would be $2.76 and The exchange rate between the Azerbaijani manat and the US dollar would be approximately 0.91 manat per dollar.

To calculate the cost of a Big Mac in US dollars in Azerbaijan, we need to convert the price in Azerbaijani manat (AZN) to US dollars (USD) using the exchange rate. If the price of a Big Mac in Azerbaijan is 4.7 AZN and the exchange rate is 1.7 AZN/USD, we can calculate the cost in US dollars as follows:

Cost in USD = Price in AZN / Exchange rate

= 4.7 AZN / 1.7 AZN/USD

≈ $2.76 USD

Therefore, the cost of a Big Mac in Azerbaijan in US dollars would be approximately $2.76.

Given that the cost of a Big Mac in the US is $5.15, we can use the law of one price to determine the exchange rate between the Azerbaijani manat (AZN) and the US dollar (USD). By equating the cost of a Big Mac in both countries, we can set up the following equation:

Price in Azerbaijan (in AZN) = Price in the US (in USD)

4.7 AZN = $5.15 USD

To find the exchange rate, we can rearrange the equation as follows:

Exchange rate = Price in Azerbaijan / Price in the US

= 4.7 AZN / $5.15 USD

≈ 0.91 AZN/USD

Therefore, the exchange rate between the Azerbaijani manat and the US dollar would be approximately 0.91 manat per dollar.

Learn more about exchange rate: https://brainly.com/question/10187894

#SPJ11

Problem 3. (10 points) Evaluate the line integral [ (2³y. (x³y + 4x + 6) dy, where C is the portion of the curve y = x³ that joins the point A = (-1,-1) to the point B = (1, 1).

Answers

The line integral of the given vector field along the curve joining points A = (-1,-1) to B = (1,1) is 10. This indicates the total "flow" of the vector field along the curve C.

To evaluate the line integral, we need to parametrize the curve C, which is given by y = x³. We can express the parametric form of the curve as r(t) = (t, t³), where -1 ≤ t ≤ 1.

Next, we calculate the differential of y with respect to t: dy = 3t² dt. Substituting this into the given vector field, we get:

F = (2³y) * (x³y + 4x + 6) dy

= (2³t³) * (t³(t³) + 4t + 6) * 3t² dt

= 24t^7 + 12t^5 + 6t³ dt

Now, we can evaluate the line integral using the parametric form of the curve:

∫C F · dr = ∫[from -1 to 1] (24t^7 + 12t^5 + 6t³) dt

Evaluating this integral, we get the value of the line integral as 10.

In summary, the line integral of the given vector field along the curve joining points A = (-1,-1) to B = (1,1) is 10. This indicates the total "flow" of the vector field along the curve C.

Learn more about  vector here: brainly.com/question/30508591

#SPJ11

solubility of a hypothetical compound, A2B, is 0.131 mol/L A2B (s) <==> 2 A+ (aq) + B-2 (aq) Calculate the Ksp of this compound
What is the pH of a solution prepared by adding 97.42 mL of 0.100 M sodium hydroxide to 60.18 mL of 0.503 M benzoic acid (Kg = 6.14 x 10-5)?

Answers

The Ksp of compound A2B can be calculated using the given solubility expression: A2B (s) <==> 2 A+ (aq) + B-2 (aq). The solubility of A2B is given as 0.131 mol/L. Since there are 2 A+ ions and 1 B-2 ion produced for every A2B molecule that dissolves, the concentration of A+ ions and B-2 ions will both be twice the solubility of A2B. Therefore, the concentration of A+ ions and B-2 ions will be 2 * 0.131 = 0.262 mol/L. The Ksp of A2B can be calculated by multiplying the concentrations of the ions raised to their stoichiometric coefficients: Ksp = [A+]^2 * [B-2] = (0.262)^2 * 0.262 = 0.018 mol^3/L^3.

The solubility product constant (Ksp) of compound A2B is calculated by multiplying the concentrations of the ions raised to their stoichiometric coefficients. In this case, since there are 2 A+ ions and 1 B-2 ion produced for every A2B molecule that dissolves, the concentration of A+ ions and B-2 ions will both be twice the solubility of A2B. Therefore, the concentration of A+ ions and B-2 ions will be 0.262 mol/L. By plugging in these values into the Ksp expression, we can calculate the Ksp of A2B: Ksp = (0.262)^2 * 0.262 = 0.018 mol^3/L^3.

In this case, the main answer is the calculation of the Ksp of compound A2B, which is 0.018 mol^3/L^3. The supporting explanation provides the step-by-step process of how to calculate the Ksp using the given solubility expression and the stoichiometry of the compound.

Know more about ions here:

https://brainly.com/question/30663970

#SPJ11

2. Draw an example of a system of equations (of conic sections) which has a. four real solutions ( 3 pts.) b. no real solutions (3 pts.) Inis Photo by Unknown Author is licensed under CC

Answers

The given system of equations satisfies the condition for having no real solutions.

On solving the system of equations, we get four real solutions (which means both x and y are real) for the system of equations. Therefore, the given system of equations satisfies the condition for having four real solutions.

b) Example of a system of equations (of conic sections) which has no real solutions:

Consider the following system of equations, consisting of two equations:

On solving the system of equations, we find that both x and y are not real, which means that the given system of equations has no real solutions.

To know more about consisting visit:

https://brainly.com/question/30321733

#SPJ11

Which of these is NOT a required device/information for the horizontal angle measurement? a) Reference line/point b) Theodolite c) Reflector d) All of the given answer e) Direction of turning f) None

Answers

Correct option is d) All of the given answers.all are required for horizontal angle measurement, including a reference line/point, theodolite, reflector, and direction of turning.

The horizontal angle measurement requires several devices and information for accurate readings. These include a reference line or point, a theodolite (an instrument used for measuring angles), a reflector (to reflect the line of sight), and the direction of turning. Each of these elements plays a crucial role in the measurement process. The reference line or point provides a fixed starting point for the measurement, allowing for consistency and accuracy.

The theodolite is the primary instrument used to measure angles and provides the necessary precision for horizontal angle measurements. The reflector reflects the line of sight from the theodolite, making it easier to measure angles. Lastly, the direction of turning indicates the direction in which the theodolite is rotated to measure the horizontal angle. Therefore, all of the given answers (a, b, c, and e) are required for horizontal angle measurement.

Learn more about theodolite

brainly.com/question/1619648

#SPJ11

Let F be any vector field of the form F=f(x)i+g(y)j+h(z)k and let G be any vector field of the form G=f(y,z)i+g(x,z)j+h(x,y)k. Indicate whether the following statements are true or false by placing "T" or "F" to the left of the statement. 1. F is irrotational 2. G is irrotational 3. G is incompressible 4. F is incompressible

Answers

The truth values of the given statements are 1.F is irrotational is False 2. G is irrotational is True 3. G is incompressible is True 4. F is incompressible is False

Let F be any vector field of the form F=f(x)i+g(y)j+h(z)k and let G be any vector field of the form G=f(y,z)i+g(x,z)j+h(x,y)k.

To check whether the given statements are true or false, we need to find the curl and divergence of the vector fields.

1. F is irrotationalCurl of F is given as,curl F = ∂h/∂y - ∂g/∂z i + ∂f/∂z - ∂h/∂x j + ∂g/∂x - ∂f/∂y k

Since the curl of the vector field F is non-zero, it is not irrotational.

Hence, the given statement is false.

2. G is irrotational Curl of G is given as, curl G = ∂h/∂y - ∂g/∂z i + ∂f/∂z - ∂h/∂x j + ∂g/∂x - ∂f/∂y k

Since the curl of the vector field G is zero, it is irrotational.

Hence, the given statement is true.

3. G is incompressible Divergence of G is given as, div G = ∂f/∂x + ∂g/∂y + ∂h/∂z

Since the divergence of the vector field G is zero, it is incompressible.

Hence, the given statement is true.

4. F is incompressible Divergence of F is given as, div F = ∂f/∂x + ∂g/∂y + ∂h/∂z

Since the divergence of the vector field F is non-zero, it is not incompressible.

Hence, the given statement is false.

The truth values of the given statements are:1. False2. True3. True4. False

Learn more about truth values

https://brainly.com/question/29137731

#SPJ11

Consider the following LP problem: minimize z= −X₁+ X2−2x3, subject to X₁ + X₂ + X3 ≤6, - X₁ + 2x₂ + 3x3 ≤9, X1, X2, X3 ≥0. (a) Solve the problem by the Simplex method. (b) Suppose that the vector c= (-1 1-2) is replaced by (-1 1 −2)+^(2 −1 1), where is a real number. Find optimal solution for all values of 2.

Answers

To solve the given LP problem using the Simplex method, let's go through the steps:

1. Convert the problem into standard form:
  - Introduce slack variables: X₄ and X₅ for the two inequality constraints.
  - Rewrite the objective function: z = -X₁ + X₂ - 2X₃ + 0X₄ + 0X₅.
  - Rewrite the constraints:
    X₁ + X₂ + X₃ + X₄ = 6,
    -X₁ + 2X₂ + 3X₃ + X₅ = 9.
  - Ensure non-negativity: X₁, X₂, X₃, X₄, X₅ ≥ 0.

2. Formulate the initial tableau:
  The initial tableau will have the following structure:

  | Cb   | Xb | Xn | X₄ | X₅ | RHS |
  | ---- | -- | -- | -- | -- | --- |
  | 0    | X₄ | X₅ | X₁ | X₂ | 0   |
  | 6    | 1  | 0  | 1  | 1  | 6   |
  | 9    | 0  | 1  | 0  | 3  | 9   |

3. Perform the Simplex iterations:
  - Select the most negative coefficient in the bottom row as the pivot column. In this case, X₂ has the most negative coefficient.
  - Compute the ratio of the right-hand side to the pivot column for each row. The minimum positive ratio corresponds to the pivot row. In this case, X₄ has the minimum ratio of 6/1 = 6.
  - Perform row operations to make the pivot element 1 and other elements in the pivot column 0. Update the tableau accordingly.
  - Repeat the above steps until there are no negative coefficients in the bottom row.

4. The final tableau will be as follows:

  | Cb | Xb | Xn | X₄ | X₅ | RHS |
  | -- | -- | -- | -- | -- | --- |
  | -3 | X₃ | X₅ | 0  | -1 | -3  |
  | 1  | X₁ | 0  | 1  | 0  | 1   |
  | 3  | X₂ | 1  | 0  | 1  | 3   |

  The optimal solution is X₁ = 1, X₂ = 0, X₃ = 3, with a minimum value of z = -3.

To solve the modified LP problem with the updated objective function c = (-1 1 -2) + λ(2 -1 1):

1. Formulate the initial tableau as before, but replace the coefficients in the objective function with the updated values:
  c = (-1 + 2λ, 1 - λ, -2 + λ).

2. Perform the Simplex iterations as before, but with the updated coefficients.

3. The optimal solution and the minimum value of z will vary with the different values of λ. By solving the updated LP problem for different values of λ, you can find the optimal solution and z for each value.

Learn more about LP problem

https://brainly.com/question/32681497

#SPJ11

A Manager of one restaurant claims that their average number of customers is more than 100 a day. Below are the number of customers recorded for a month.
122, 110, 98, 131, 85, 102, 79, 110, 97, 133, 121, 116, 106, 129, 114, 109, 97, 133, 127, 114, 102, 129, 124, 125, 99, 98, 131, 109, 96, 123, 121.
Test the manager's claim at 5% significance level by assuming the population standard deviations is 5.

Answers

The manager's claim that the average number of customers is more than 100 a day cannot be supported at the 5% significance level.

To test the manager's claim, we can use a one-sample t-test. The null hypothesis (H0) is that the average number of customers is 100, and the alternative hypothesis (H1) is that the average number of customers is greater than 100.

Step 1: Calculate the sample mean

We first calculate the sample mean using the given data:

Sample mean = (122 + 110 + 98 + 131 + 85 + 102 + 79 + 110 + 97 + 133 + 121 + 116 + 106 + 129 + 114 + 109 + 97 + 133 + 127 + 114 + 102 + 129 + 124 + 125 + 99 + 98 + 131 + 109 + 96 + 123 + 121) / 31

Sample mean ≈ 112.71

Step 2: Calculate the test statistic

Next, we calculate the test statistic using the formula:

t = (Sample mean - Population mean) / (Population standard deviation / sqrt(sample size))

In this case, the population mean is 100 (according to the null hypothesis) and the population standard deviation is 5 (as given).

t = (112.71 - 100) / (5 / sqrt(31))

t ≈ 4.35

Step 3: Compare with critical value

Since the alternative hypothesis is that the average number of customers is greater than 100, we need to compare the test statistic with the critical value from the t-distribution. At the 5% significance level (one-tailed test), with 30 degrees of freedom, the critical value is approximately 1.699.

The calculated test statistic (4.35) is greater than the critical value (1.699), so we reject the null hypothesis. This means that there is sufficient evidence to support the claim that the average number of customers is more than 100 a day.

Learn more about significance level.

brainly.com/question/4599596

#SPJ11

An electrolytic cell was run at a constant current of 2.10 A. The cell converted copper 2+ lons in solution to 4.10 g of solid copper at the cathode. The time needed to deposit the copper solid at the cathode was hr. Record your final answer to two decimal places (ie. 1.12) and do not include units in your final answer.

Answers

The time needed to deposit 4.10 g of solid copper at the cathode in an electrolytic cell running at a constant current of 2.10 A is approximately 3.14 hours.

Given:

Current, I = 2.10 A

Time, t = ?

Amount of solid copper, m = 4.10 g

Charge on 1 electron, e = 1.6 × 10⁻¹⁹ C

We know that the charge, Q = I × t

In electrolysis, Q = n × F

Where n is the number of moles of electrons.

F is the Faraday constant which has a value of 9.65 × 10⁴ C/mol

From this, we get:

t = n × F / I

Charge on 1 mole of electrons = 1 Faraday

Charge on 1 mole of electrons = 9.65 × 10⁴ C/mol

Charge on 1 electron = 1 Faraday / Nₐ

Charge on 1 electron = 9.65 × 10⁴ C / (6.022 × 10²³) ≈ 1.602 × 10⁻¹⁹ C

Number of moles of electrons, n = m / (Atomic mass of copper × 1 Faraday)

n = 4.10 g / (63.55 g/mol × 9.65 × 10⁴ C/mol)

n = 6.88 × 10⁻⁴ mol

Now, we can find the time taken to deposit copper solid as:

t = n × F / I

t = 6.88 × 10⁻⁴ mol × 9.65 × 10⁴ C/mol / 2.10 A

t ≈ 3.14 h

Therefore, the time needed to deposit 4.10 g of solid copper at the cathode was 3.14 hours.

Learn more about electrolysis :

https://brainly.com/question/12994141

#SPJ11

Circle O is represented by the equation (x+7)² + (y + 7)² = 16. What is the length of the radius of circle O?
OA. 3
OB. 4
O c. 7
O D. 9
OE. 16

Answers

Circle O is represented by the equation (x+7)² + (y + 7)² = 16. The length of the radius of Circle O is 4.

The equation of Circle O, (x+7)² + (y+7)² = 16, is in the standard form of a circle equation: (x - h)² + (y - k)² = r². Comparing it to the given equation, we can determine the values of h, k, and r.

In the given equation:

Center coordinates: (-7, -7) → h = -7, k = -7

Radius squared: 16 → r² = 16

To find the length of the radius, we need to take the square root of r²:

r = √(16)

Calculating the square root, we get:

r = 4

Therefore, the length of the radius of Circle O is 4.

Looking at the answer options, we see that the correct answer is Option B which is equal to 4.

The equation of a circle in the standard form (x - h)² + (y - k)² = r² represents a circle with center (h, k) and radius r. By comparing the given equation to the standard form, we can extract the values of h, k, and r. Taking the square root of r² gives us the length of the radius, which in this case is 4.

For more such questions on Circle, click on:

https://brainly.com/question/28162977

#SPJ8

Dr. Smith owns a company which is organized as a
coreration. In 2015, the revenue of this company is
$760,000; the business-related expenses are $380,000.
Dr. Smith had his personal expenses of $50,00

Answers

The net income of Dr. Smith's corporation for 2015 was $380,000. This represents the profit earned by the company after deducting business expenses from the revenue. Personal expenses, including Dr. Smith's $50,000, are not factored into the calculation of net income for the corporation.

Dr. Smith owns a company that is organized as a corporation. In 2015, the company generated a revenue of $760,000. The business-related expenses for the same year amounted to $380,000. Additionally, Dr. Smith had personal expenses totaling $50,000.

To determine the company's net income, we need to subtract the business expenses from the revenue. Therefore, the net income can be calculated as follows:

Net Income = Revenue - Business Expenses
Net Income = $760,000 - $380,000
Net Income = $380,000

The net income represents the profit earned by the company after deducting all business-related expenses.

It's important to note that personal expenses, such as Dr. Smith's $50,000, are not considered when calculating the company's net income. Personal expenses are separate from business expenses and do not directly impact the financial performance of the corporation.

Learn more about revenue from the link given below:

https://brainly.com/question/16232387

#SPJ11

Find a) any critical values and b) any relative extrema.
1(x)=x+6x+8

Answers

a) The critical value of the function is x = -3.
b) The function has a relative minimum at x = -3.

To find the critical values and relative extrema of the function 1(x) = x^2 + 6x + 8, we need to find the derivative of the function and then solve for where the derivative equals zero.


First, let's find the derivative of the function:
1'(x) = 2x + 6
Now, let's set the derivative equal to zero and solve for x:
2x + 6 = 0
2x = -6
x = -3

The critical value of the function is x = -3.

To determine the relative extrema, we need to analyze the behavior of the function around the critical value.
To the left of x = -3, let's choose x = -4:
1(-4) = (-4)^2 + 6(-4) + 8
1(-4) = 16 - 24 + 8
1(-4) = 0
To the right of x = -3, let's choose x = -2:
1(-2) = (-2)^2 + 6(-2) + 8
1(-2) = 4 - 12 + 8
1(-2) = 0

As both values are 0, we can conclude that the function has a relative minimum at x = -3.

Learn more about critical value:

brainly.com/question/15970126

#SPJ11

several fractions are collected in small test tubes and each tube is analyzed by tlc. Tubes that contained the same substance according to tlc are combined. For the ferrocene, only two large fractions are collected. Explain why collecting several small fractions is unnecessary for the ferrocene reaction.?

Answers

the high degree of separation and distinct behavior of ferrocene on the TLC plate make it unnecessary to collect several small fractions. This saves time and effort during the purification process.

Collecting several small fractions is unnecessary for the ferrocene reaction because ferrocene is a compound that has a high degree of purity and a distinct separation behavior on the TLC plate.

When performing thin layer chromatography (TLC), the compounds in the mixture will move at different rates on the plate due to their different polarities. This allows for the separation and identification of individual compounds.

In the case of ferrocene, it exhibits a high degree of separation on the TLC plate, resulting in only two large fractions. This means that the compound is distinct and easily identifiable, making it unnecessary to collect several small fractions.

The distinct separation behavior of ferrocene can be attributed to its unique structure and properties. Ferrocene is a sandwich complex consisting of two cyclopentadienyl rings bound to a central iron atom. This structure imparts specific characteristics to ferrocene, including its high stability and distinct separation behavior.

By analyzing the TLC plate, chemists can easily determine which fractions contain ferrocene and combine them into two large fractions. This simplifies the purification process and reduces the amount of work required.

In summary, the high degree of separation and distinct behavior of ferrocene on the TLC plate make it unnecessary to collect several small fractions. This saves time and effort during the purification process.

To learn more about thin layer chromatography (TLC):

https://brainly.com/question/32897594

#SPJ11

At what position on the number line is the red dot located?
(Look at photo!)

Answers

Option A would be the correct answer it evaluates to 7.6 which would be the red dot on the line

Answer: [tex]\sqrt{63}[/tex]

Step-by-step explanation:

The graph shows that the red dot is close to 8, but not at 8.

a. [tex]\sqrt{58}[/tex] = 7.62

b. [tex]\sqrt{70}[/tex] = 8.37

c. [tex]\sqrt{67}[/tex] = 8.19

d. [tex]\sqrt{63}[/tex] = 7.94

Therefore, b and c could not be the red dot. d is the closest one to 8.

Salesforce validation rule question.
An object called Student has two picklists. One is percentage and options: 90, 80, 70, 60,50 and other one is grade with options: A, B, C, D, F.
write a validation rule using ispickval when percentage is selected as 90, the grade automatically selects A.

Answers

To create a validation rule in Salesforce that automatically selects grade A when the percentage is set to 90, you can use the ISPICKVAL function. This function allows you to check the selected value of a picklist field and perform actions based on the value. By using ISPICKVAL in the validation rule, you can ensure that the grade field is populated with A when the percentage field is set to 90.

To implement this validation rule, follow these steps:

Go to the Object Manager in Salesforce and open the Student object.

Navigate to the Validation Rules section and click on "New Rule" to create a new validation rule.

Provide a suitable Rule Name and optionally, a Description for the rule.

In the Error Condition Formula field, enter the following formula:

AND(ISPICKVAL(Percentage__c, "90"), NOT(ISPICKVAL(Grade__c, "A")))

This formula checks if the percentage field is selected as 90 and the grade field is not set to A.

In the Error Message field, specify an appropriate error message to be displayed when the validation rule fails. For example, "When percentage is 90, grade must be A."

Save the validation rule.

With this validation rule in place, whenever a user selects 90 in the percentage field, the grade field will automatically be populated with A. If the grade is not set to A when the percentage is 90, the validation rule will be triggered and display the specified error message.

To learn more about percentage visit:

brainly.com/question/29541337

#SPJ11

M
Try it
f(x)
Relating Linear Functions to a Linear Equation
-5-4-3-2
5
4
3
2
1
Y
g(x)
2 3 4
5
x
Determine the input value for which the statement
f(x) = g(x) is true.
From the graph, the input value is approximately
f(x) = 3 and g(x)=2x-2
3=2x-2
5= 3x
The x-value at which the two functions' values are
equal is

Answers

The x-value at which the two functions f(x) and g(x) are equal, based on the given graph and equations, is x = 5/3.

We are given two functions: f(x) and g(x).

From the graph, we can see that f(x) crosses the y-axis at 3, and g(x) is represented by the equation g(x) = 2x - 2.

To find the x-value at which f(x) = g(x), we can set up the equation:

f(x) = g(x)

Substituting the expressions for f(x) and g(x):

3 = 2x - 2

Next, let's isolate the x-term by adding 2 to both sides of the equation:

3 + 2 = 2x

Simplifying:

5 = 2x

Now, to solve for x, we divide both sides of the equation by 2:

5/2 = x

This can also be expressed as x = 5/2.

However, we were asked to find the x-value at which the two functions are equal based on the given graph. From the graph, it appears that the value of x is approximately 5/3, not 5/2.

Therefore, the x-value at which f(x) = g(x) is approximately x = 5/3.

Hence, the answer is x = 5/3.

For more such questions on functions, click on:

https://brainly.com/question/10439235

#SPJ8

Let f: RR and g: R→ R be piecewise differentiable functions that are integrable. Given that the Fourier transform of f is f(w), and the Fourier transform of g is g(w) = f(w)f(w + 1), show that g(t) = f(r)e-¹7 f(t - 7)dr. 8

Answers

Given that the Fourier transform of f is f(w), and the Fourier transform of g is g(w) = f(w)f(w + 1) then,  [tex]g(t) = ∫[0,1] f(r)e^(-1/7)f(t-7)dr[/tex]

To show that g(t) = [tex]f(r)e^(-1/7)f(t-7)dr[/tex], we need to carefully analyze the given information. The Fourier transform of g(w) is defined as the product of the Fourier transforms of f(w) and f(w+1). Let's break down the steps to arrive at the desired expression.

Apply the  trainverse Fouriernsform to g(w) to obtain g(t). This operation converts the function from the frequency domain (w) to the time domain (t).

By definition, the inverse Fourier transform of g(w) can be expressed as:

g(t) = [tex](1/2π) ∫[-∞,+∞] g(w) e^(iwt) dw[/tex]

Substitute g(w) with f(w)f(w+1) in the above equation:

g(t) = [tex](1/2π) ∫[-∞,+∞] f(w)f(w+1) e^(iwt) dw[/tex]

Rearrange the terms to separate f(w) and f(w+1):

g(t) = (1/2π) ∫[-∞,+∞] f(w) e^(iwt) f(w+1) [tex]e^(iwt) dw[/tex]

Apply the Fourier transform properties to obtain:

g(t) = (1/2π) ∫[-∞,+∞] f(w) [tex]e^(iwt)[/tex]dw ∫[-∞,+∞] f(r) [tex]e^(iw(t-1))[/tex] dr

Simplify the exponential terms in the integrals:

g(t) = f(t) ∫[-∞,+∞] f(r) [tex]e^(-iwr)[/tex] dr

Change the variable of integration from w to -r in the second integral:

g(t) = f(t) ∫[+∞,-∞] [tex]f(-r) e^(i(-r)t)[/tex]dr

Change the limits of integration in the second integral:

g(t) =[tex]f(t) ∫[-∞,+∞] f(-r) e^(irt) dr[/tex]

Apply the definition of the Fourier transform to the integral:

g(t) = [tex]f(t) f(t)^(*) = |f(t)|^2[/tex]

Finally, since the magnitude squared of a complex number is equal to the product of the number with its conjugate, we can write:

g(t) = [tex]f(t)f(t)^(*) = f(r)e^(-1/7)f(t-7)dr[/tex]

Learn more about Fourier transform

brainly.com/question/1597221

#SPJ11

The temperature of the organic phase increase the extraction rate, is this statement true? Validate your answer.

Answers

The temperature of the organic phase increase the extraction rate is a true statement.

Organic solvents are widely used for the extraction of natural products. The temperature of the organic phase is an important factor that affects the rate of extraction. The increase in temperature of the organic phase leads to an increase in the extraction rate.This can be explained by the fact that an increase in temperature will cause the solubility of the compound in the organic solvent to increase. This increases the driving force for the transfer of the compound from the aqueous phase to the organic phase. As a result, the extraction rate is increased.

In summary, the statement "The temperature of the organic phase increase the extraction rate" is true.

To know more about extraction rate, click here

https://brainly.com/question/12271319

#SPJ11

Other Questions
the following table was given to candace by her teachers day would not find answer to some question help her in completing the table organic layer - O horizon top soil - A horizon sub-soil - B horizon weathered Rock particle - C Horizon Bedrock - R Horizon 125 moles of gaseous propane are stored in a rigid 22.6 L tank. The temperature is 245C.Determine the pressure inside the tank (atm). Write down the equation that relates the collector current of the bipolar transistor 5 to the base-emitter voltage. Hence prove the relationship g mr be= owhere the ac parameters are transconductance, base-emitter resistance and ac current gain respectively. c) Draw a schematic diagram of a simple current mirror circuit. Show how it can be extended to form a current repeater. How can the current repeater be improved to allow different bias currents to be realised? Q1bb) State what the acronym REACH stands for? Explain what chemical manufacturers, importers and users are required to do under the REACH legislation Question VI: Write a function that parses a binary number into a hexadecimal and decimal number. The function header is: def binaryToHexDec (binaryValue) : Before conversion, the program should check its input. The input should be a binary number that only contains Os and 1s. The function returns both hexadecimal and decimal representations of the binary number as follows: hexval, decVal = binaryToHexDec ("111101") Write a test program that prompts the user to enter binary numbers and displays the corresponding hexadecimal and decimal values. 3. Use Newton-Raphson with absolute tolerance le , other tolerances zero, and an initial estimate zo=4 to find a zero of the function f(x) tan (1)-0.5. (a) Discuss your results. [4 marks] (b) Expl Find solutions for your homeworkFind solutions for your homeworkbusinessaccountingaccounting questions and answersyou are given the following information about ivanhoe plumbing company. revenues in 2020 totaled $988.00, depreciation expenses $84.00, costs of goods sold $399.00, and interest expenses $67.00. at the end of the year, current assets were $137.00 and current liabilities were $113.00. the company has an average tax rate of 29.00 percent. calculate its netThis problem has been solved!You'll get a detailed solution from a subject matter expert that helps you learn core concepts.See AnswerQuestion: You Are Given The Following Information About Ivanhoe Plumbing Company. Revenues In 2020 Totaled $988.00, Depreciation Expenses $84.00, Costs Of Goods Sold $399.00, And Interest Expenses $67.00. At The End Of The Year, Current Assets Were $137.00 And Current Liabilities Were $113.00. The Company Has An Average Tax Rate Of 29.00 Percent. Calculate Its NetHelp Q11student submitted image, transcription available belowstudent submitted image, transcription available belowShow transcribed image textExpert AnswerRevenues = $988 Depreciation expense = $84 Cost of goods sold = $399 Interest expense = $67 Current assets = $137 CurrenView the full answeranswer image blurTranscribed image text:You are given the following information about Ivanhoe Plumbing Company. Revenues in 2020 totaled $988.00, depreciation expenses $84.00, costs of goods sold $399.00, and interest expenses $67.00. At the end of the year, current assets were $137.00 and current liabilities were $113.00. The company has an average tax rate of 29.00 percent. Calculate its net income by setting up an income statement. (Round answers to 2 decimal places, e.g. 15.25.) 0.01000000000 Your friend claims that in the equation y = ax + c. the vertex changes when the value of c changes. Is your friend correct? Explain your reasoning. Consider the differential equation 2xy+(3x)yy=0 Knowing that x=0 is a regular singular point, use Frobenius's method to find the equation's solution in the power series of x. Please help ASAP Show work too please Installation of android studio Creation of first activity with button Creation of second activity with text view Writing Java code in Main Activity Final Output with Two Screen shots CriteriaDescriptionAndroid StudioInstallation and ConfigurationFirst ActivityCreation of first activity with a buttonSecond ActivityCreation of second activity with text viewJava ProgramWriting Java code in Main activityOutputFinal Output with Two screen shots A triangular pyramid is formed from three right triangles as shown below.Use the information given in the figure to find the length AC.If applicable, round your answer to the nearest whole number.The lengths on the figure are not drawn accurately.A41B85 FILL THE BLANK.Universal ethical principles and ideas about morality and justice define Kohlberg's _____ level of development.A. preconventionalb. conventionalc. formal operational4. postconventionalI think is B, is this correct and would you please provide explanation to help me best understand? Create an array containing the values 1-15, reshape it into a 3-by-5 array, then use indexing and slicing techniques to perform each of the following operations: Input Array array([[1, 2, 3, 4, 5]. [6, 7, 8, 9, 10), [11, 12, 13, 14, 15) a. Select row 2. Output: array([11, 12, 13, 14, 15) b. Select column 4. Output array([ 5, 10, 151) c. Select the first two columns of rows 0 and 1. Output: array([1, 2], [6.7]. [11, 12) d. Select columns 2-4. Output: array([[ 3, 4, 5]. [8, 9, 10). [13, 14, 151) e. Select the element that is in row 1 and column 4. Output: 10 f. Select all elements from rows 1 and 2 that are in columns 0, 2 and 4. Output array( 6, 8, 101. [11, 13, 151) A 0.480-kg pendulum bob passes through the lowest part of its path at a speed of 7.46 m/s. (a) What he the magnitude of the tension in the pendulum cable at this point if the pendulum is 79.0 cm lang? N (b) When the pendolum feaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least ane decimat phace.) (c) What is the magnitude of the tertion in the pendulum cable when the pendulum reaches its highest point? P 32) For a car loan of $33,000 at 3.25% paid monthly over 72 months, how much principal is paid off half-way through (after 36 months)? And, how much interest is paid throughthe entire life of the 72 months?A) $6,651 and $1,470B) $2,335 and $12,556C) $15,697 and $3,366D) $11,513 and $2,035 Which explains whether or not the graph represents a direct variation?The graph has a constant of variation of 3, so it represents a direct variation.The graph has a slope of 3, so it represents a direct variation.The graph has a positive slope, so it does not represent a direct variation.O The graph does not begin at the origin, so it does not represent a direct variation.Save and0 Find the general form of the partial fraction decomposition of 2x - 4 (3x - 2)2(x+3)(x + 1) You do NOT need to find the coefficients. (b) Find the partial fraction decomposition of x + 6x + 10 (x + 1)(x+2) You SHOULD find the coefficients in this part. If H(y) = Hejky, find the electric field 1. Distillation of sample mixture of pentane and hexane. Determine which organic compound will distil out first? 2. A student carried out a simple distillation on a compound known to boil at 124C and reported an observed boiling point of 116-117C. Gas chromatographic analysis of the product showed that the compound was pure, and a calibration 1 of the thermometer indicated that it was accurate. What procedural error might the student have made in setting up the distillation apparatus? 3. The directions in an experiment specify that the solvent, diethyl ether, be removed from the product by using a simple distillation. Why should the heat source for this distillation be a steam bath, not an electrical heating mantie?