The equilibrium position for the third charge, Q₃, held fixed on a line between charges Q₁ and Q₂ with values -3C and -5C respectively, can be determined to be an unstable equilibrium.
To determine the stability of the equilibrium position for Q₃, we can examine the forces acting on it. The force experienced by Q₃ due to the electric fields created by Q₁ and Q₂ is given by Coulomb's law:
[tex]\[ F_{13} = k \frac{{Q_1 Q_3}}{{r_{13}^2}} \][/tex]
[tex]\[ F_{23} = k \frac{{Q_2 Q_3}}{{r_{23}^2}} \][/tex]
where F₁₃ and F₂₃ are the forces experienced by Q₃ due to Q₁ and Q₂, k is the electrostatic constant, Q₁, Q₂, and Q₃ are the charges, and r₁₃ and r₂₃ are the distances between Q₁ and Q₃, and Q₂ and Q₃, respectively.
In this case, both Q₁ and Q₂ are negative charges, indicating that the forces experienced by Q₃ are attractive towards Q₁ and Q₂. Since Q₃ is free to move along the line, any slight displacement from the equilibrium position would result in an imbalance of forces, causing Q₃ to experience a net force that drives it further away from the equilibrium position.
This indicates an unstable equilibrium, as the system is inherently unstable and any perturbation leads to an increasing displacement. Therefore, the equilibrium position for Q₃ in this configuration is determined to be an unstable equilibrium.
Learn more about equilibrium here:
https://brainly.com/question/31833470
#SPJ11
Blood flows through a 1.66 mm diameter artery at 26 mL/min and then passes into a 600 micron diameter vein where it flows at 1.2 mL/min. If the arterial blood pressure is 120 mmHg, what is the venous blood pressure? Ignore the effects of potential energy. The density of blood is 1,060 kg/m³ 1,000 L=1m³
a. 16,017,3 Pa b. 138.551 Pa c. 121.159 Pa d. 15,999.9 Pa
Answer: The answer is (a) 16,017,3 Pa.
The continuity equation states that the flow rate of an incompressible fluid through a tube is constant, so: Flow rate of blood in the artery = Flow rate of blood in the vein26 × 10⁻⁶ m³/s = 1.2 × 10⁻⁶ m³/s.
The velocity of blood in the vein is less than that in the artery.
Velocity of blood in the artery = Flow rate of blood in the artery / Area of artery.
Velocity of blood in the vein = Flow rate of blood in the vein / Area of vein
Pressure difference between the artery and vein = (1/2) × Density of blood × (Velocity of blood in the artery)² × (1/Area of artery² - 1/Area of vein²)
Pressure difference between the artery and vein = 120 - Pressure of vein.
The pressure difference between the artery and vein is equal to the change in potential energy.
However, we are ignoring the effects of potential energy, so the pressure difference between the artery and vein can be calculated as follows:
120 = (1/2) × 1,060 × (26 × 10⁻⁶ / [(π/4) × (1.66 × 10⁻³ m)²])² × (1/[(π/4) × (1.66 × 10⁻³ m)²] - 1/[(π/4) × (600 × 10⁻⁶ m)²])
120 = (1/2) × 1,060 × 12,580.72 × 10¹² × (1/1.726 × 10⁻⁶ m² - 1/1.1317 × 10⁻⁷ m²)120 = 16,017,300 Pa.
Therefore, the venous blood pressure is:
Pressure of vein = 120 - Pressure difference between the artery and vein
Pressure of vein = 120 - 16,017,300Pa
Pressure of vein = -16,017,180 Pa.
The answer is (a) 16,017,3 Pa.
Learn more about continuity equation: https://brainly.com/question/19566865
#SPJ11
The flywheel of an engine has moment of inertia 190 kg⋅m² about its rotation axis. Part A What constant torque is required to bring it up to an angular speed of 400 rev/minin 8.00 s, starting from rest? Express your answer with the appropriate units
T = Value ___________ Units ___________
The constant torque required to bring the flywheel up to an angular speed of 400 rev/min in 8.00 s, starting from rest, is 995.688 N⋅m.
Step 1:
We need to determine the final angular velocity of the flywheel before we can determine the torque required. We can use the formula ωf = ωi + αt, where ωi is the initial angular velocity and α is the angular acceleration. In this case, ωi = 0 because the flywheel is starting from rest. We convert 400 rev/min to radians/s using the conversion factor 2π radians/1 rev.
ωf = (400 rev/min) (2π radians/1 rev) / (60 s/1 min) = 41.89 rad/s
We now know that the final angular velocity of the flywheel is 41.89 rad/s.
Step 2:
We can use the formula τ = Iα to determine the torque required. Rearranging the formula gives us α = τ/I. We can then use the formula ωf = ωi + αt to determine α, which we can then use to determine τ.
α = (ωf - ωi) / t
α = (41.89 rad/s - 0) / 8 s
α = 5.23625 rad/s²
τ = Iα
τ = (190 kg⋅m²) (5.23625 rad/s²)
τ = 995.688 N⋅m
Therefore, the constant torque required to bring the flywheel up to an angular speed of 400 rev/min in 8.00 s, starting from rest, is 995.688 N⋅m.
Learn more about torque: https://brainly.com/question/17512177
#SPJ11
In one study of hummingbird wingbeats, the tip of a 5.4-cm-long wing moved up and down in simple harmonic motion through a total distance of 2.7 cm at a frequency of 40 Hz. Part A What was the maximum speed of the wing tip?
À Value Request Answer What was the maximum acceleration of the wing tip?
Given the details that the tip of a 5.4-cm-long wing moved up and down in simple harmonic motion through a total distance of 2.7 cm at a frequency of 40 Hz.
We are to find the maximum speed of the wingtip and the maximum acceleration of the wing tip.
Part A:
Maximum speed of the wing tip
The amplitude of the wing tip is given as,
A= 2.7/2 = 1.35 cm
Maximum speed can be given by:
v = 2πAf
Maximum speed of the wing tip is given by:
v = 2π × 40 × 1.35v = 339 cm/s
Therefore, the maximum speed of the wing tip is 339 cm/s.
Part B:
Maximum acceleration of the wing tip
Maximum acceleration can be given by:
a = 4π²Af²
Maximum acceleration of the wing tip is given by:
a = 4π² × 40 × 40 × 1.35a = 27,324 cm/s²
Therefore, the maximum acceleration of the wing tip is 27,324 cm/s².
Answer: Maximum speed of the wing tip = 339 cm/s
Maximum acceleration of the wing tip = 27,324 cm/s².
Learn more about simple harmonic motion here
https://brainly.in/question/959827
#SPJ11
A ball is thrown at a 37° angle above the horizontal across level ground. It is released from a height of 3.00 m above the ground with a speed of 20 m/s. Calculate the maximum height reached by the ball from the ground.
A ball is thrown at a 37° angle above the horizontal across level ground. It is released from a height of 3.00 m above the ground with a speed of 20 m/s. Therefore, the maximum height reached by the ball from the ground is approximately 9.15 m.
To calculate the maximum height reached by the ball from the ground, we can use the equations of motion for projectile motion.
We can start by breaking down the initial velocity of the ball into its horizontal and vertical components.
Given that the ball is thrown at an angle of 37° above the horizontal, the horizontal component of the velocity is given by v_x = v cos θ, and the vertical component is given by v_y = v sin θ, where v is the initial speed of the ball, and θ is the angle of the velocity vector.
Therefore, we have:v_x = 20 cos 37° = 15.92 m/sv_y = 20 sin 37° = 12.06 m/sNext, we can use the equation for the maximum height reached by a projectile, which is given by:y_max = y_0 + v_y^2 / (2g),where y_0 is the initial height of the projectile, and g is the acceleration due to gravity, which is approximately equal to 9.81 m/s².
Substituting the known values into the equation, we get:y_max = 3.00 m + (12.06 m/s)² / (2 × 9.81 m/s²)≈ 9.15 m
Therefore, the maximum height reached by the ball from the ground is approximately 9.15 m.
Learn more about projectile motion here:
https://brainly.com/question/12860905
#SPJ11
The position vector of a particle of mass 2.20 kg as a function of time is given by ř = (6.00 i + 5.40 tſ), whereř is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time. k) kg · m²/s
The angular momentum of the particle about the origin as a function of time is L = (32.40)k kg · m²/s. The angular momentum does not depend on time and remains constant throughout the motion.
The angular momentum of a particle about the origin is given by L = m(ř × v), where m is the mass of the particle, ř is the position vector, and v is the velocity vector. To calculate the angular momentum as a function of time, we need to find the time derivative of the position vector and the velocity vector.
Given that ř = (6.00 i + 5.40 t), the velocity vector v is the derivative of ř with respect to time: v = dř/dt = (0 + 5.40) i = 5.40 i m/s.
Now we can calculate the cross product of ř and v. The cross product of two vectors in three dimensions is given by the formula (a × b) = (a_yb_z - a_zb_y)i + (a_zb_x - a_xb_z)j + (a_xb_y - a_yb_x)k. In this case, since both vectors ř and v have only i-components, the cross product simplifies to L = m(0 - 0)i + (0 - 0)j + (6.00 * 5.40 - 0)k = (0)i + (0)j + (32.40)k.
Learn more about angular momentum here:
https://brainly.com/question/29563080
#SPJ11
2. Earth is closest to the Sun about January 4 and farthest from the Sun about July 5. Use Kepler's second law to determine on which of these dates Earth is travelling most rapidly and least rapidly.
Kepler's Second Law states that a line drawn between the Sun and a planet sweeps out equal areas in equal amounts of time. That is to say, a planet moves faster when it is nearer to the Sun and slower when it is farther away from it. On January 4th, the Earth is traveling most rapidly and on July 5th, the Earth is traveling least rapidly.
Let's see how Kepler's second law helps us determine the date on which the Earth is traveling most rapidly and least rapidly. Earth is closest to the Sun about January 4 and farthest from the Sun about July 5. Since the Earth is closer to the Sun during January, it is moving faster than when it is farther away from the Sun in July.
Learn more about Kepler's law:
https://brainly.com/question/16705471
#SPJ11
One long wire lies along an x axis and carries a current of 60 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0, 6.6 m, 0), and carries a current of 69 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point(0, 1.6 m, 0)? Number ___________ Units _______________
The magnitude of the resulting magnetic field at the point (0, 1.6 m, 0) is approximately 3.58 × 10⁻⁶ T (Tesla).
To calculate the magnetic field at the given point, we can use the Biot-Savart law. The Biot-Savart law states that the magnetic field created by a current-carrying wire is directly proportional to the current and inversely proportional to the distance from the wire.
Considering the first wire along the x-axis, the magnetic field it produces at the given point will have only the y-component. Using the Biot-Savart law, we find that the magnetic field magnitude is given by,
B1 = (μ₀I₁)/(2πr₁)
For the second wire perpendicular to the xy plane, the magnetic field it produces at the given point will have only the x-component. Using the Biot-Savart law again, we find that the magnetic field magnitude is given by,
B2 = (μ₀ * I₂) / (2π * r₂)
To find the resulting magnetic field, we use vector addition,
B = √(B₁² + B₂²)
Substituting the given values,
B = √(((4π × 10⁻⁷)60) / (2π1.6))² + ((4π × 10⁻⁷)69)/(2π * 6.6 m))²)
B ≈ 3.58 × 10⁻⁶ T
Therefore, the magnitude of the resulting magnetic field at the given point is approximately 3.58 × 10⁻⁶ T.
To know more about magnetic field, visit,
https://brainly.com/question/14411049
#SPJ4
When flip the pages slowly, one page at a time, do you see the images to be
moving? Justify your answer
When we flip the pages slowly, one page at a time, we can see the images moving. This is known as an optical illusion caused by the persistence of vision, which refers to the way our brain processes visual information. An image stays in our retina for approximately 1/16th of a second. When a new image appears before the previous one disappears, the brain blends the two images together, creating the illusion of motion.
Optical illusions can occur when our brain tries to make sense of the information it receives from our eyes. The image on the previous page continues to linger in our mind, and our brain automatically fills in the blanks. It is important to note that this effect is limited by the frame rate of our eyes and the speed at which we flip the pages. When we flip the pages too fast, the brain is unable to process the information and we are left with a blurry image.
Optical illusions are often used in animation and movies to create the illusion of motion. When images are shown in quick succession, it tricks the brain into thinking that the objects are moving. This is the same principle behind flipbooks and zoetropes, where a series of images are displayed in quick succession to create the illusion of motion.
For more such questions on optical illusion, click on:
https://brainly.com/question/28179807
#SPJ8
Consider two sinusoidal sine waves traveling along a string, modeled as: •y₁(x, t) = (0.25 m) sin [(4 m ¹)x+ (3.5 s ¹)t + ] . and • 32 (x, t) = (0.55 m) sin [(12 m ¹) (3 s-¹) t]. What is the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m at time t = 3.0 s? y(x = 1.0 m, t = 3.0 s) = = m
the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s is approximately 0.584 m.
To find the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s, we need to add the individual wave functions at that position and time.
Given:
y₁(x, t) = (0.25 m) sin[(4 m⁻¹)x + (3.5 s⁻¹)t + ϕ₁]
y₂(x, t) = (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)t + ϕ₂]
Position: x = 1.0 m
Time: t = 3.0 s
Substituting the given values into the wave equations, we have:
y₁(1.0 m, 3.0 s) = (0.25 m) sin[(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) + ϕ₁]
y₂(1.0 m, 3.0 s) = (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)(3.0 s) + ϕ₂]
To find the resultant wave height, we add the two wave heights:
y(x = 1.0 m, t = 3.0 s) = y₁(1.0 m, 3.0 s) + y₂(1.0 m, 3.0 s)
Now, substitute the values and evaluate:
y(x = 1.0 m, t = 3.0 s) = (0.25 m) sin[(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) + ϕ₁] + (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)(3.0 s) + ϕ₂]
Calculate the values inside the sine functions:
(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) = 4 m⁻¹ + 10.5 m⁻¹ = 14.5 m⁻¹
(12 m⁻¹)(3 s⁻¹)(3.0 s) = 108 m⁻¹
The phase angles ϕ₁ and ϕ₂ are not given, so we cannot evaluate them. We'll assume they are zero for simplicity.
Substituting the calculated values and simplifying:
y(x = 1.0 m, t = 3.0 s) = (0.25 m) sin[14.5 m⁻¹] + (0.55 m) sin[108 m⁻¹]
Now, calculate the sine values:
sin[14.5 m⁻¹] ≈ 0.303
sin[108 m⁻¹] ≈ 0.924
Substituting the sine values and evaluating:
y(x = 1.0 m, t = 3.0 s) ≈ (0.25 m)(0.303) + (0.55 m)(0.924)
≈ 0.07575 m + 0.5082 m
≈ 0.58395 m
Therefore, the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s is approximately 0.584 m.
Learn more about interference here:
https://brainly.com/question/31857527
#SPJ11
It is known that the voltage measured by the voltmeter is 5 Volt 1. Calculate the value of the current Isot through the battery BAT1 (It is the current that the amperemeter shows) 2. Calculate the value of the Resistance R. 3. Calculate the power provided por the battery to the system 4. Calculate the Power released by each one of the Resistances R1, R2, and R, 5. Explain if there is a relation between the Power provided por the battery Post and the Pow released by the Resistances Ry, R2, and Rz. Justify your answer with your calculations
1. Current passing through the battery BAT1 can be calculated using the Ohm's Law formula as, V = IR. I = V/R = 5/20 = 0.25 A.
2. Resistance value R can be calculated using the Ohm's Law formula as, V = IR. R = V/I = 5/0.25 = 20 ohms.
3. The power provided by the battery to the system can be calculated using the formula, P = VI. P = 5 x 0.25 = 1.25 W.
4. The power released by each resistance R1, R2, and R can be calculated using the formula, P = I^2R.
For R1, P = I^2R = 0.25^2 x 10 = 0.625 W.
For R2, P = I^2R = 0.25^2 x 20 = 1.25 W.
For R, P = I^2R = 0.25^2 x 40 = 2.5 W.
5. The total power released by resistors R1, R2, and R is 4.375 W (0.625 + 1.25 + 2.5 = 4.375 W), which is less than the power provided by the battery to the system (1.25 W). This indicates that some power is being lost in the circuit, possibly due to factors like internal resistance of the battery and resistance of wires and connections.
There is no direct relation between the power provided by the battery and the power released by the resistances. However, the sum of power released by all the resistances should be less than or equal to the power provided by the battery according to the Law of Conservation of Energy.
Learn more about Law of Conservation of Energy here
https://brainly.in/question/1062718
#SPJ11
Water runs into a fountain, filling all the pipes, at a steady rate of 0.753 m3/s. How fast will it shoot out of a hole 4.42 cm in diameter? Express your answer in meters per second
At what speed will it shoot out if the diameter of the hole is three times as large? Express your answer in meters per second.
Water runs into a fountain, filling all the pipes, at a steady rate of 0.753 m3/s.(a)The speed of water shooting out of a hole with a diameter of 4.42 cm is 4.43 m/s.(b) The speed of water shooting out of a hole with a diameter that is three times as large is 7.07 m/s.
(a)The gravitational constant is 9.8 m/s^2, so the velocity of efflux is equal to:
v = sqrt(2 × 9.8 m/s^2) = 4.43 m/s
The diameter of the hole is 4.42 cm, which is 0.0442 m. The area of the hole is then equal to:
A = pi× r^2 = pi × (0.0442 m / 2)^2 = 5.27 × 10^-5 m^2
The volume flow rate is equal to the area of the hole multiplied by the velocity of efflux, so the volume flow rate is:
Q = A × v = 5.27 × 10^-5 m^2 × 4.43 m/s = 2.37 × 10^-4 m^3/s
Therefore, the speed of water shooting out of a hole with a diameter of 4.42 cm is 4.43 m/s.
(b)If the diameter of the hole is three times as large, then the area of the hole will be nine times as large. The volume flow rate will then be nine times as large, or 2.14 × 10^-3 m^3/s.
Therefore, the speed of water shooting out of a hole with a diameter that is three times as large is 7.07 m/s.
To learn more about volume flow rate visit: https://brainly.com/question/30618961
#SPJ11
A basketball player shoots toward a basket 7.5 m away and 3.0 m above the floor. If the ball is released 1.8 m above the floor at an angle of 60° above the horizontal, what must the initial speed be if it were to go through the basket? ____ m/s
Distance traveled, s = 7.5 m Height of the basket, h = 3.0 m Initial height, y0 = 1.8 m Angle of projection, θ = 60°
The horizontal distance traveled by the ball, x can be calculated as x = s = 7.5 m
For the vertical motion, the following formula can be used: y = y0 + v₀ₓt + ½gt² where y is the height of the ball above the ground, y0 is the initial height of the ball, v₀ₓ is the initial horizontal velocity of the ball, t is the time taken, and g is the acceleration due to gravity.
Using the value of y and y0, we get:2.7 = 1.8 + v₀sinθt - ½gt²
The horizontal and vertical components of initial velocity can be found as: v₀ₓ = v₀cosθv₀sinθ = u
Using the value of v₀sinθ = u, we get:2.7 = 1.8 + ut - 4.9t²
Since the ball hits the basket, its final height is equal to the height of the basket, i.e., 3 m.
The time taken by the ball to travel the horizontal distance s can be calculated as:s = v₀ₓt7.5 = v₀cosθt
Thus, t = 7.5 / v₀ₓ
Substituting this value in the equation above, we get: 2.7 = 1.8 + u(7.5 / v₀ₓ) - 4.9(7.5 / v₀ₓ)²
Thus, we have two equations:7.5 = v₀ₓt and 2.7 = 1.8 + u(7.5 / v₀ₓ) - 4.9(7.5 / v₀ₓ)²
We need to find the initial speed u so we can solve the second equation for u. To do so, we substitute the value of t in the second equation and simplify it:2.7 = 1.8 + u(7.5 / v₀ₓ) - 4.9(7.5 / v₀ₓ)²7.5 / v₀ₓ = t = (7.5 / v₀ₓ)² / 14.7
Substituting this value in the above equation:2.7 = 1.8 + u(7.5 / v₀ₓ) - 4.9[(7.5 / v₀ₓ)² / 14.7]²u = 10.86 m/s
Therefore, the initial speed of the ball must be 10.86 m/s for it to go through the basket.
Learn more on projectile motions: https://brainly.com/question/24216590
#SPJ11
A wire 0.15 m long carrying a current of 2.5 A is perpendicular to a magnetic field. If the force exerted on the wire is 0.060 N, what is the magnitude of the magnetic field? Select one: a. 6.3 T b. 16 T c. 2.4 T d. 0.16 T
Answer: option (d) The magnitude of the magnetic field is 0.16 T.
The force on a current-carrying conductor is proportional to the current, length of the conductor, and magnetic field strength.
Force on a current-carrying conductor formula is given by; F = BIL sin θ WhereF is the force on the conductor B is the magnetic field strength, L is the length of the conductor, I is the current in the conductor, θ is the angle between the direction of current and magnetic field.
Length of wire, L = 0.15 m
Current, I = 2.5 A
Force, F = 0.060 N
Using the force on a current-carrying conductor formula above, we can calculate the magnetic field strength
B = F / IL sin θ
The angle between the direction of current and magnetic field is 90°. So, sin θ = 1, Substituting values;
B = 0.060 / 2.5 × 0.15 × 1B
= 0.16 T,
Therefore, the magnitude of the magnetic field is 0.16 T.
Answer: d. 0.16 T.
Learn more about magnetic field: https://brainly.com/question/14411049
#SPJ11
What is the magnitude of the electric field at a point midway between a -6.2 μC and a +5.8 μC charge 10 cm apart? Assume no other charges are nearby, Express your answer using two significant figures. EHC . X-10" E- Value Units Submit Previous Answers Request Answer - X² X GNC
The magnitude of the electric field at a point midway between a -6.2 μC and a +5.8 μC charge, 10 cm apart, is approximately 1.0 × [tex]10^{4}[/tex] N/C.
To determine the electric field at the midpoint, we can consider the two charges as point charges and apply the principle of superposition. The electric field due to each charge will be calculated separately and then added vectorially.
The electric field due to a point charge can be calculated using the formula:
E = k * (Q / [tex]r^2[/tex])
Where E is the electric field, k is the electrostatic constant (8.99 × [tex]10^9 N m^2/C^2[/tex]), Q is the charge, and r is the distance from the charge.
For the -6.2 μC charge, the distance to the midpoint is 5 cm (half the separation distance of 10 cm). Substituting these values into the formula, we get:
E1 = (8.99 × [tex]10^9 N m^2/C^2[/tex]) * (-6.2 × [tex]10^{-6}[/tex] C) / [tex](0.05 m)^2[/tex]
Calculating this, we find E1 ≈ -1.785 × [tex]10^{4}[/tex] N/C.
For the +5.8 μC charge, the distance to the midpoint is also 5 cm. Substituting these values, we get:
E2 = (8.99 × [tex]10^9 N m^2/C^2[/tex]) * (5.8 × [tex]10^{-6}[/tex] C) / [tex](0.05 m)^2[/tex]
Calculating this, we find E2 ≈ 1.682 × [tex]10^{4}[/tex] N/C.
To find the net electric field at the midpoint, we add the magnitudes of E1 and E2 since they have opposite signs. The magnitude of the electric field is given by:
|E| = |E1| + |E2|
|E| ≈ |-1.785 × [tex]10^{4}[/tex] N/C| + |1.682 × [tex]10^{4}[/tex] N/C|
|E| ≈ 1.0 × [tex]10^{4}[/tex] N/C
Therefore, the magnitude of the electric field at the midpoint is approximately 1.0 × [tex]10^{4}[/tex] N/C.
Learn more about electric field here ;
https://brainly.com/question/11482745
#SPJ11
At the escape velocity from the surface of earth, how long would it take to drive at that speed to get from St. Petersburg to Los Angeles CA ?
At the escape velocity from the surface of the Earth, it would take approximately 14 minutes to drive from St. Petersburg to Los Angeles.
To determine the time it would take to travel from St. Petersburg to Los Angeles at the escape velocity from the surface of the Earth, we need to consider several factors.
First, we need to determine the distance between St. Petersburg and Los Angeles.
The approximate distance by road is around 5,827 miles or 9,375 kilometers.
Next, we need to calculate the escape velocity of Earth. The escape velocity is the minimum velocity an object needs to overcome Earth's gravitational pull and escape into space.
The escape velocity from the surface of Earth is approximately 11.2 kilometers per second or 6.95 miles per second.
Assuming we can maintain the escape velocity throughout the entire journey, we can calculate the time it would take to travel the distance using the formula:
Time = Distance / Velocity
Converting the distance to kilometers and the velocity to kilometers per hour, we can calculate the time:
Time = 9,375 km / (11.2 km/s * 3600 s/h) ≈ 0.23 hours or approximately 14 minutes.
Therefore, at the escape velocity from the surface of the Earth, it would take approximately 14 minutes to drive from St. Petersburg to Los Angeles.
It's important to note that this calculation assumes a straight path and a constant velocity, which may not be practically achievable.
Learn more about velocity here:
https://brainly.com/question/31479424
#SPJ11
Two lenses are placed along the x axis, with a diverging lens of focal length -8.10 cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 12.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = [infinity]? cm
Answer: The separation s of the two lenses should be 40.125 cm if the final image is to be focused at x = ∞ cm.
Here, we can use :1/f = 1/v - 1/u where,1/f = focal length of the lens, 1/v = image distance, and 1/u = object distance.
For the diverging lens:1/f1 = -1/u1 - 1/v1
For the converging lens:1/f2 = 1/u2 - 1/v2 where,u1 = -12.0 cm (object distance from the diverging lens),v1 = distance of the image formed by the diverging lens, s = distance between the two lenses (converging and diverging lens),u2 = distance of the object from the converging lens,v2 = distance of the image formed by the converging lens (which is the final image),f1 = -8.10 cm (focal length of the diverging lens), andf2 = 17.0 cm (focal length of the converging lens).
To calculate the distance s between the two lenses, we need to calculate the image distance v1 formed by the diverging lens and the object distance u2 for the converging lens. Here, the image formed by the diverging lens acts as an object for the converging lens.
So, v1 = distance of the image formed by the diverging lens = u2 = - (s + 8.10) cm (as the image is formed on the left of the converging lens).
Now, using the formula for both lenses, we can write:1/-8.10 = -1/-12.0 - 1/v1 => v1 = -28.125 cm (approx)and,1/17.0 = 1/u2 - 1/v2 => v2 = 28.125 cm (approx)
Lens formula for the converging lens, we have: 1/17.0 = 1/u2 - 1/∞ = 1/u2 = 1/17.0 => u2 = 17.0 cm
Now, we can use the distance relation between the two lenses to calculate the distance s between them.
Similarly, we can write the distance equation for the object distance of the diverging lens as:-12.0 + s = -v1 = 28.125 cmSo, we have:s = 40.125 cm (approx)
Therefore, the separation s of the two lenses should be 40.125 cm if the final image is to be focused at x = ∞ cm.
Learm more about diverging and converging lens: https://brainly.com/question/1280311
#SPJ11
You are standing on the top of a ski slope and need 15 N of force to get yourself to start moving. If your mass is 60 kg, what is the coefficient of static friction μ s
? Answer: 0.03
Answer:coefficient of static friction μs= 0.03
Explanation:
Given F = 15N
m = 60kg
μ s = ?
We know that,
Normal force, N = mg
so N = 60×9.81 = 588.6 N
The formula for coefficient of static friction is,
μs = F/N
= 15/588.6 =0.0289
= 0.3
A simple pendulum, consisting of a mass on a string of length L, is undergoing small oscillations with amplitude A. a. The mass is increased by a factor of four. What is true about the period? b. The length is increased by a factor of four. What is true about the period? c. The amplitude is doubled. What is true about the period? d. The pendulum is taken to the Moon. Which of the following is true about the period?
(a) Increasing the mass of the pendulum by a factor of four does not affect the period. (b) Increasing the length of the pendulum by a factor of four increases the period by a factor of two. (c) Doubling the amplitude of the pendulum does not affect the period. (d) The period of the pendulum on the Moon would be longer compared to Earth due to the lower gravitational acceleration.
(a) The period of a simple pendulum is independent of the mass. Therefore, increasing the mass of the pendulum by a factor of four does not affect the period.
(b) The period of a simple pendulum is directly proportional to the square root of the length. Increasing the length of the pendulum by a factor of four results in a square root increase of two, which means the period is doubled.
(c) The period of a simple pendulum is independent of the amplitude. Doubling the amplitude of the pendulum does not affect the period.
(d) The period of a simple pendulum is influenced by the acceleration due to gravity. On the Moon, the gravitational acceleration is approximately one-sixth of Earth's gravitational acceleration. As a result, the period of the pendulum on the Moon would be longer compared to Earth, as the lower gravitational acceleration would result in slower oscillations.
Among the given options, the correct statement is that the period of the pendulum would be longer on the Moon compared to Earth due to the lower gravitational acceleration.
Learn more about amplitude here:
https://brainly.com/question/9525052
#SPJ11
In 10 seconds, 10 cycles of waves passes on the string where each wave travels 20 meters. What is the wavelength of the wave?
200m 2m 1m 0.5m
If in 10 seconds, 10 cycles of waves passes on the string where each wave travels 20 meters then the wavelength of the wave is 200 meters i.e., the correct option is A) 200m.
The wavelength of a wave is defined as the distance between two consecutive points on the wave that are in phase, or the distance traveled by one complete cycle of the wave.
In this case, we are given that 10 cycles of waves pass in 10 seconds, and each wave travels a distance of 20 meters.
To find the wavelength, we can use the formula:
wavelength = total distance traveled / number of cycles
In this case, the total distance traveled is 10 cycles * 20 meters per cycle = 200 meters.
The number of cycles is given as 10.
Therefore, the wavelength of the wave is 200 meters.
In summary, the wavelength of the wave is 200 meters.
This means that two consecutive points on the wave that are in phase are located 200 meters apart, or one complete cycle of the wave covers a distance of 200 meters.
Learn more about wave here:
https://brainly.com/question/13047641
#SPJ11
An electrical conductor wire designed to carry large currents has a circular cross section with 3.8 mm in diameter and is 28 m long. The resistivity of the material is given to be 1.07×10 −7
Ωm. (a) What is the resistance (in Ω ) of the wire? (b) If the electric field magnitude E in the conductor is 0.26 V/m, what is the total current (in Amps)? (c) If the material has 8.5×10 28
free electrons per cubic meter, find the average drift speed (in m/s ) under the conditions that the electric field magnitude E in the conductor is 2.4 V/m
(a) The resistance of the wire is approximately 0.200 Ω.
(b) The total current flowing through the wire is approximately 1.300 A.
(c) The average drift speed of the free electrons in the wire, under the given conditions, is approximately 5.647 × 10^(-5) m/s.
(a) To calculate the resistance (R) of the wire, we can use the formula:
R = (ρ * L) / A
where ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire.
Given that the diameter of the wire is 3.8 mm, we can calculate the radius (r) and the cross-sectional area (A):
r = (3.8 mm) / 2 = 1.9 mm = 1.9 × 10^(-3) m
A = π *[tex]r^2[/tex] = π * (1.9 × [tex]10^{(-3)} m)^2[/tex]
Using the resistivity value (1.07 × 10^(-7) Ωm) and the length of the wire (28 m), we can calculate the resistance:
R = (1.07 ×[tex]10^{(-7)[/tex]Ωm * 28 m) / (π * (1.9 × [tex]10^{(-3)[/tex] [tex]m)^2)[/tex]
R ≈ 0.200 Ω
Therefore, the resistance of the wire is approximately 0.200 Ω.
(b) The total current (I) can be determined using Ohm's law:
I = E / R
where E is the electric field magnitude and R is the resistance.
Given that the electric field magnitude (E) is 0.26 V/m, and the resistance (R) is 0.200 Ω, we can calculate the total current:
I = 0.26 V/m / 0.200 Ω
I ≈ 1.300 A
Hence, the total current flowing through the wire is approximately 1.300 A.
(c) The average drift speed (v) of the free electrons in the wire can be calculated using the formula:
v = (I / (n * A * e))
where I is the current, n is the number density of free electrons, A is the cross-sectional area of the wire, and e is the elementary charge.
Given that the electric field magnitude (E) is 2.4 V/m, and the number density of free electrons (n) is 8.5 × 10^28 electrons/m^3, we can calculate the average drift speed:
v = (2.4 V/m) / (8.5 ×[tex]10^{28} m^{(-3)[/tex] * A * e)
Substituting the known values for the cross-sectional area (A) and the elementary charge (e), we can calculate the average drift speed:
v ≈ 5.647 × [tex]10^{(-5)[/tex] m/s
Therefore, the average drift speed of the free electrons in the wire, under the given conditions, is approximately 5.647 × [tex]10^{(-5)[/tex] m/s.
Learn about resistance here:
https://brainly.com/question/14547003
#SPJ11
Find the speed (in terms of c) of a particle (for example, an electron) whose relativistic kinetic energy KE is 5 times its rest energy E in - -
. For example, if the speed is 0.500c, enter only 0.500. Keep 3 digits after the decimal point.
The speed of the particle is approximately 0.993c.
According to Einstein's theory of relativity, the relativistic kinetic energy (KE) of a particle can be expressed as KE = (γ - 1)[tex]mc^2[/tex], where γ is the Lorentz factor and m is the rest mass of the particle.
We are given that the kinetic energy is 5 times the rest energy, which can be expressed as KE = 5[tex]mc^2[/tex].Setting these two equations equal to each other, we have (γ - 1)[tex]mc^2[/tex] = 5[tex]mc^2[/tex]. Simplifying, we get γ - 1 = 5, which leads to γ = 6.
The Lorentz factor γ is defined as γ = 1/√[tex](1 - v^2/c^2)[/tex], where v is the velocity of the particle. We can rearrange this equation to solve for v: v = c√(1 - 1/γ^2).
Plugging in γ = 6, we find v ≈ 0.993c. Therefore, the speed of the particle is approximately 0.993c.
Learn more about speed here ;
https://brainly.com/question/32673092
#SPJ11
A) How do the sources of electric fieids and magnetic fields differ? B) How does the nature of electric fields differ from the nature of magnetic fields?
A)The sources of electric fields and magnetic fields differ in their fundamental nature and origin. B)Electric fields are produced by electric charges, whether stationary or in motion, while magnetic fields are generated by moving charges or by the presence of a magnetic dipole.
Electric fields arise from the presence of electric charges. Stationary charges, such as electrons or protons, create static electric fields. These fields exert forces on other charges, attracting opposite charges and repelling similar charges. When charges are in motion, they generate both electric and magnetic fields. The motion of charges creates a changing electric field, which, in turn, generates a magnetic field. This phenomenon is described by Maxwell's equations, specifically by Ampere's law with Maxwell's addition.
On the other hand, magnetic fields have different sources. They are primarily produced by moving charges or currents. When charges move through a conductor, such as a wire, a magnetic field is generated around the conductor. Similarly, magnetic fields can arise from the presence of magnetic dipoles, which are materials with a north and south pole. Examples of magnetic dipoles include magnets and certain ferromagnetic materials.
The nature of electric fields and magnetic fields also differs. Electric fields are associated with the presence of electric charges and exert forces on other charges. They are radial in nature, meaning they emanate from a charge and decrease in strength with distance according to an inverse square law. Electric fields can exist even in the absence of motion.
On the other hand, magnetic fields are always associated with the motion of charges. They do not exert direct forces on charges at rest but act on moving charges or currents. Magnetic fields form closed loops around current-carrying conductors and follow certain rules, such as the right-hand rule, to determine their direction. Unlike electric fields, magnetic fields are not radial and do not diminish with distance in a simple inverse square relationship.
In summary, the sources of electric fields are electric charges, while magnetic fields originate from moving charges or the presence of magnetic dipoles. Electric fields are associated with charges and can exist even without motion, while magnetic fields are related to the motion of charges and form closed loops around current-carrying conductors. The nature of electric fields is radial and exerts forces on other charges, while magnetic fields act on moving charges and do not exert direct forces on charges at rest.
Learn more about electric fields and magnetic fields:
https://brainly.com/question/11482745
#SPJ11
Two parallel plate capacitors exist in space with one having a cross section of a square, and the other of a circle. Let them have ℓ as the side lengths and diameter respectively. Is the following statement true or false? In the limit that the plates are very large (ℓ is big), and the surface charge density is equal, the electric field is the same in either case.
True or False?
FalseExplanation:The capacitance of a parallel plate capacitor is given by C = ε A d C=\frac{\varepsilon A}{d}C=dεA, where ε \varepsilonε is the permittivity of free space, A AA is the area of the plates, and d dd is the distance between the plates.
The capacitance of a capacitor is directly proportional to the area of its plates.To determine the electric field, we must compute the electric potential between the two plates. The electric field can be found using the following equation: E = - ∆ V d E=-\frac{\Delta V}{d}E=−dΔV, where V VV is the electric potential difference between the plates.In the case of the square capacitor, the potential difference between the plates is V = EdV=E\frac{d}{\sqrt{2}}V=Ed, where EEE is the electric field between the plates.
The potential difference in a circular capacitor is the same as in a square capacitor.The electric field in the circular capacitor is stronger because it is more concentrated. Since the charge density is equal in both cases, the electric field between the plates will not be the same. As a result, the statement is false.
Learn more about capacitance of a capacitor here,
https://brainly.com/question/30529897
#SPJ11
A heat engine manufacture claims the following: the engine's heat input per second is 9.0 kJ at 435 K, and the heat output per second is 4.0 kJ at 285 K. a) Determine the efficiency of this engine based on the manufacturer's claims. b) Determine the maximum possible efficiency for this engine based on the manufacturer's claims. c) Should the manufacturer be believed? i.e. This engine ______ thermodynamics. does not violate does violates the second law of
a) Efficiency of the heat engine based on the manufacturer's claims is 26.2%.
b) Maximum possible efficiency for the heat engine based on the manufacturer's claims is 38.0%.
c) The manufacturer should be believed. This engine does not violate the second law of thermodynamics.
a) Efficiency of the heat engine based on the manufacturer's claims is 26.2%.
Formula used to calculate efficiency of heat engine:
Efficiency = 1 - T2/T1 Where,
T1 is the temperature of the hot reservoir.
T2 is the temperature of the cold reservoir.
So, T1 = 435 K and T2 = 285 K.
Efficiency = 1 - 285/435
Efficiency = 0.262 or 26.2%.
b) Maximum possible efficiency for the heat engine based on the manufacturer's claims is 38.0%.
Formula used to calculate maximum possible efficiency of heat engine:
Maximum possible efficiency = 1 - T2/T1
Where,
T1 is the temperature of the hot reservoir.
T2 is the temperature of the cold reservoir.
So, T1 = 435 K and T2 = 273 K (0°C).
Maximum possible efficiency = 1 - 273/435
Maximum possible efficiency = 0.3768 or 37.68%.
c) The manufacturer should be believed. This engine does not violate the second law of thermodynamics.
Learn more about heat engine https://brainly.com/question/15105740
#SPJ11
In 10 years, Texas tripled its wind generating capacity such that wind power now is cheaper than coal here. Consider a simplified model of a wind turbine as 3 equally spaced, 115 ft rods rotating about their ends. Calculate the moment of inertia of the blades if the turbine mass is 926 lbs: ______
Calculate the work done by the wind if goes from rest to 25 rpm: _________ If the blades were instead 30 m, calculate what the angular speed of the blades would be (in rpm): _______
The moment of inertia of the blades of the wind turbine is 4.4 × 10⁹ in⁴. The work done by the wind is 3.13 × 10¹² in²/s². The angular speed of the blades would be 54.1 rpm.
The moment of inertia of the blades of a wind turbine, the work done by the wind, and the angular speed of the blades are to be determined.
1. The moment of inertia of the blades of a wind turbine:
The moment of inertia of the three equally spaced rods rotating about their ends is given by:
I = 3 × I₀
where I₀ is the moment of inertia of one rod. The moment of inertia of one rod is given by:
I₀ = (1/12)ML²
where M = 926 lbs and L = 115 ft = 1380 in.
Substituting the values, we have:
I₀ = (1/12)(926)(1380)² in⁴
Hence,
I = 3I₀ = 3(1/12)(926)(1380)² = 4.4 × 10⁹ in⁴
The moment of inertia of the blades of the wind turbine is 4.4 × 10⁹ in⁴.
2. The work done by the wind:
The work done is given by the formula:
W = (1/2)Iω²
where ω is the angular velocity and I is the moment of inertia. The initial angular velocity is 0, and the final angular velocity is 25 rpm, which is equal to (25/60) × 2π rad/s = 26.18 rad/s.
Substituting I and ω, we get:
W = (1/2)Iω² = (1/2)(4.4 × 10⁹)(26.18)² = 3.13 × 10¹² in²/s²
The work done by the wind is 3.13 × 10¹² in²/s².
3. The angular speed of the blades:
The moment of inertia of the blades is given by:
I = (1/12)ML²
where M = 926 lbs and L = 30 m = 1181.10 in.
Angular speed ω is given by:
ω = √(2W/I)
where W is the work done calculated above.
Substituting the values, we get:
ω = √[(2 × 3.13 × 10¹²)/(1/12)(926)(1181.10)²] = 54.1 rpm
The angular speed of the blades would be 54.1 rpm.
Learn more about moment of inertia: https://brainly.com/question/14460640
#SPJ11
A force sensor was designed using a cantilever load cell and four active strain gauges. Show that the bridge output voltage (eo1) when the strain gauges are connected in a full bridge configuration will be four times greater than the bridge output voltage (eo2) when connected in a quarter bridge configuration (Assumptions can be made as required)
To understand why the bridge output voltage (eo1) is four times greater than the bridge output voltage (eo2) when the strain gauges are connected in a full bridge configuration compared to a quarter bridge configuration, let's examine the working principles of both configurations.
1. Full Bridge Configuration:
In a full bridge configuration, all four strain gauges are active and connected to form a Wheatstone bridge. The bridge is typically composed of two pairs of strain gauges, with each pair being connected to opposite arms of the bridge. When a force is applied to the cantilever load cell, it causes strain on the strain gauges, resulting in a change in their resistance. This change in resistance leads to an imbalance in the bridge circuit, and an output voltage, eo1, is generated across the bridge terminals.
2. Quarter Bridge Configuration:
In a quarter bridge configuration, only one of the four strain gauges is active and connected to the bridge. The other three strain gauges are inactive and serve as dummy or compensation elements. The active strain gauge experiences a change in resistance due to the applied force, resulting in an output voltage, eo2, across the bridge terminals.
Now, let's compare the output voltages of both configurations:
In the full bridge configuration:
eo1 = ΔR/R * V_excitation
In the quarter bridge configuration:
eo2 = ΔR/R * V_excitation
The ΔR/R term represents the fractional change in resistance of the strain gauge due to the applied force. Since the strain gauges in both configurations experience the same strain due to the same applied force, the ΔR/R term is identical.
However, in the full bridge configuration, the bridge circuit includes all four strain gauges, while in the quarter bridge configuration, it includes only one strain gauge. As a result, the full bridge configuration offers a larger overall change in resistance compared to the quarter bridge configuration.
Since the output voltage is directly proportional to the change in resistance, we can conclude that eo1 will be four times greater than eo2 in a full bridge configuration compared to a quarter bridge configuration.
Therefore, the bridge output voltage (eo1) will be four times greater than the bridge output voltage (eo2) when the strain gauges are connected in a full bridge configuration compared to a quarter bridge configuration.
To learn more about Bridge configuration, visit:
https://brainly.com/question/31756326
#SPJ11
2.The time needed for a car whose speed is 30 km/h to travel 600 m is O 0.5 min O 1.2 min O 2 min 20 min
We are given the speed of a car as 30 km/h and the distance it covers as 600m. We need to find the time taken for the car to cover the given distance. We know that distance = speed x time, therefore, we can find the time taken as:
time = distance/speedtime
= 600m/(30 km/h)
= 600m/(30/60) m/min
= 1200/30 mintime
= 40 min
Therefore, the time needed for a car whose speed is 30 km/h to travel 600 m is 40 minutes (1200/30).
The time taken by the car to travel 600m is found by dividing the given distance by the speed of the car. Here, the car's speed is given as 30 km/h and the distance it covers is 600m. We convert the given speed to m/min to obtain the time taken for the car to travel the given distance in minutes.
Thus, the time taken for the car whose speed is 30 km/h to travel 600 m is 40 minutes (1200/30).
Learn more about speed, here
https://brainly.com/question/13262646
#SPJ11
A closed and elevated vertical cylindrical tank with diameter 2.20 m contains water to a depth of 0.900 m . A worker accidently pokes a circular hole with diameter 0.0190 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×103Pa at the surface of the water. Ignore any effects of viscosity.
The rate at which water flows out of the hole in the tank is approximately 1.51×[tex]10^{-3}[/tex] cubic meters per second.
To determine the rate at which water flows out of the hole in the tank, we can apply Bernoulli's equation, which relates the pressure, velocity, and height of a fluid in a flowing system.
First, let's find the velocity of the water flowing out of the hole.
The gauge pressure at the surface of the water is given as 5.00×10^3 Pa.
We can assume atmospheric pressure at the hole, so the total pressure at the hole is the sum of the gauge pressure and atmospheric pressure, which is 5.00×[tex]10^3[/tex] Pa + 1.01×[tex]10^5[/tex] Pa = 1.06×[tex]10^5[/tex] Pa.
According to Bernoulli's equation, the total pressure at the hole is equal to the pressure due to the water column plus the dynamic pressure of the flowing water:
P_total = P_water + (1/2)ρ[tex]v^2[/tex] + P_atm,
where P_total is the total pressure, P_water is the pressure due to the water column, ρ is the density of water, v is the velocity of the water flowing out of the hole, and P_atm is atmospheric pressure.
Since the tank is vertically oriented and the hole is at the bottom, the pressure due to the water column is ρgh, where h is the height of the water column above the hole. In this case, h = 0.900 m.
We can rewrite Bernoulli's equation as:
P_total = ρgh + (1/2)ρ[tex]v^2[/tex] + P_atm.
Now we can solve for v. Rearranging the equation, we get:
(1/2)ρ[tex]v^2[/tex] = P_total - ρgh - P_atm,
[tex]v^2[/tex] = 2(P_total - ρgh - P_atm)/ρ,
v = [tex]\sqrt[/tex](2(P_total - ρgh - P_atm)/ρ).
Now we can plug in the known values:
P_total = 1.06×[tex]10^5[/tex] Pa,
ρ = 1000 kg/[tex]m^3[/tex] (density of water),
g = 9.81 m/[tex]s^2[/tex] (acceleration due to gravity),
h = 0.900 m,
P_atm = 1.01×[tex]10^5[/tex] Pa (atmospheric pressure).
Substituting these values into the equation, we can calculate the velocity v of the water flowing out of the hole.
After finding the velocity, we can then calculate the rate at which water flows out of the hole using the equation for the volume flow rate:
Q = Av,
where Q is the volume flow rate, A is the cross-sectional area of the hole (π[tex]r^2[/tex], where r is the radius of the hole), and v is the velocity of the water.
Let's substitute the known values into the equations to calculate the velocity and volume flow rate.
First, let's calculate the velocity:
v =[tex]\sqrt[/tex](2(P_total - ρgh - P_atm)/ρ)
= [tex]\sqrt[/tex](2((1.06×10^5 Pa) - (1000 kg/m^3)(9.81 m/s^2)(0.900 m) - (1.01×10^5 Pa))/(1000 kg/m^3))
Simplifying the equation:
v ≈ 5.32 m/s
Next, let's calculate the cross-sectional area of the hole:
A = πr^2
= π(0.0190 m/2)^2
Simplifying the equation:
A ≈ 2.84×[tex]10^{-4}[/tex] [tex]m^2[/tex]
Finally, let's calculate the volume flow rate:
Q = Av
= (2.84×[tex]10^{-4}[/tex] [tex]m^2[/tex])(5.32 m/s)
Simplifying the equation:
Q ≈ 1.51×[tex]10^{-3}[/tex] [tex]m^3[/tex]/s
Therefore, the rate at which water flows out of the hole in the tank is approximately 1.51×[tex]10^{-3}[/tex] cubic meters per second.
Learn more about Bernoulli's equation here:
https://brainly.com/question/30509621
#SPJ11
Three resistors are connected in parallel across a supply of unknown voltage. Resistor 1 is 7R5 and takes a current of 4 A. Resistor 2 is 10R and Resistor 3 is of unknown value but takes a current of 10 A. Calculate: (a) The supply voltage. (b) The current through Resistor (c) The value of Resistor 3.
Answer:
a) The supply voltage is 30 volts.
b)The current through Resistor 2 is 3 amperes.
c) The value of Resistor 3 is 3 ohms.
To solve the given problem, we can use the rules for parallel resistors:
(a) The supply voltage can be calculated by considering the voltage across each resistor. Since the resistors are connected in parallel, the voltage across all three resistors is the same. We can use Ohm's Law to find the voltage:
V = I1 * R1 = 4 A * 7.5 Ω = 30 V
(b) To find the current through Resistor 2, we can use Ohm's Law again:
I2 = V / R2 = 30 V / 10 Ω = 3 A
(c) To find the value of Resistor 3, we need to calculate the resistance using Ohm's Law:
R3 = V / I3 = 30 V / 10 A = 3 Ω
To know more about Ohm's Law
https://brainly.com/question/1247379
#SPJ11
2) A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire (1.3 m long), is held horizontal, and the ball is released from rest (see the drawing). It swings down
A ball attached to one end of a wire is held horizontally and released from rest. The ball will swing down due to the force of gravity and the tension in the wire, forming a pendulum-like motion.
When the ball is released from rest, it will experience the force of gravity pulling it downwards. As the ball swings down, the tension in the wire provides the centripetal force necessary to keep the ball moving in a circular arc. This motion resembles that of a pendulum.
As the ball swings downward, its potential energy decreases while its kinetic energy increases. At the lowest point of the swing, all the potential energy is converted to kinetic energy. As the ball swings back upwards, the tension in the wire acts as the centripetal force, causing the ball to decelerate. At the highest point of the swing, the ball momentarily comes to a stop before reversing direction and swinging back down again.
The motion of the ball follows the principles of conservation of energy and the laws of motion. The exact behavior and characteristics of the swing, such as the period and frequency, can be analyzed using concepts from classical mechanics and trigonometry.
Learn more about pendulum-like motion here:
https://brainly.com/question/30641862
#SPJ11