If the diver hadn't tucked at all, she would have made approximately 0.485 revolutions in the 1.5 seconds from the board to the water.
To determine the number of revolutions the diver would have made if she hadn't tucked at all, we can make use of the conservation of angular momentum.
The initial moment of inertia of the diver with arms straight up and legs straight down is given as 18 kg.m. When she tucks into a small ball, her moment of inertia decreases to 3.6 kg.m. The ratio of the initial moment of inertia to the final moment of inertia is:
I_initial / I_final = ω_final / ω_initial
Where ω represents the angular velocity. We can rewrite this equation as:
ω_final = (I_initial / I_final) * ω_initial
The diver completes two complete revolutions in 1.1 seconds while tucked, which corresponds to an angular velocity of:
ω_tucked = (2π * 2) / 1.1 rad/s
Now we can use this information to calculate the initial angular velocity:
ω_initial = (I_final / I_initial) * ω_tucked
Substituting the given values:
ω_initial = (3.6 kg.m / 18 kg.m) * ((2π * 2) / 1.1) rad/s
ω_initial ≈ 2.036 rad/s
Finally, we can determine the number of revolutions the diver would have made in 1.5 seconds if she hadn't tucked at all. Using the formula:
Number of revolutions = (angular velocity * time) / (2π)
Number of revolutions = (2.036 rad/s * 1.5 s) / (2π)
Number of revolutions ≈ 0.485 revolutions
Learn more about moment of inertia here:
https://brainly.com/question/33002666
#SPJ11
An electron is accelerated from rest by a potential difference of 350 V. It than enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate (a) the speed of the electron and (b) the radius of its path in the magnetic field. * (2 Points) O 7.11 x 10^7 m/s, 3.16 x 10^-4 m 5.11 x 10^7 m/s, 6.16 x 10^-4 m 1.11 x 10^7 m/s, 3.16 x 10^-4 m O 3.11 x 10^7 m/s, 3.16 x 10^-4 m O 1.11 x 10^7 m/s, 6.16 x 10^-4 m
Substituting the values, we getr = [(9.11 × 10⁻³¹ kg)(1.11 × 10⁷ m/s)]/[(1.6 × 10⁻¹⁹ C)(200 mT)]r = 3.16 × 10⁻⁴ mTherefore, the answer is 1.11 x 10^7 m/s, 3.16 x 10^-4 m.
(a) Speed of the electronThe formula for potential energy isPE = qVWhere q is the charge and V is the potential difference. The electron is negatively charged, and its charge is 1.6 × 10⁻¹⁹ C.Therefore, PE = (1.6 × 10⁻¹⁹ C)(350 V)PE = 5.6 × 10⁻¹⁷ JThe formula for kinetic energy isKE = (1/2)mv²where m is the mass and v is the velocity of the electron. The mass of the electron is 9.11 × 10⁻³¹ kg.Using the law of conservation of energy, we can equate the kinetic energy of the electron with the potential energy it gains when accelerated by the potential difference.
Kinetic energy of the electron = Potential energy gainedKE = PEKE = 5.6 × 10⁻¹⁷ Jv² = (2KE)/mv² = (2(5.6 × 10⁻¹⁷ J))/(9.11 × 10⁻³¹ kg)v² = 1.23 × 10¹⁷v = √(1.23 × 10¹⁷)v = 1.11 × 10⁷ m/s(b) Radius of the pathThe formula for the radius of the path of a charged particle moving in a magnetic field isr = (mv)/(qB)where r is the radius, m is the mass of the charged particle, v is its velocity, q is its charge, and B is the magnetic field strength.Substituting the values, we getr = [(9.11 × 10⁻³¹ kg)(1.11 × 10⁷ m/s)]/[(1.6 × 10⁻¹⁹ C)(200 mT)]r = 3.16 × 10⁻⁴ mTherefore, the answer is 1.11 x 10^7 m/s, 3.16 x 10^-4 m.
Learn more about Velocity here,
https://brainly.com/question/80295
#SPJ11
A nervous physicist worries that the two metal shelves of his wood frame bookcase might obtain a high voltage if charged by static electricity, perhaps produced by friction. (a) What is the capacitance (in F) of the empty shelves if they have area 1.40×10−1 m2 and are 0.240 m apart? F (b) What is the voltage between them (in V) if opposite charges of magnitude 2.50nC are placed on them? V (c) To show that this voltage poses a small hazard, calculate the energy stored (in J). ]
a) the voltage between the shelves is given by the formula,V = q/C= (2.50 × 10⁻⁹ C) / (5.15 × 10⁻¹¹ F)= 4.85 × 10¹¹ Vc). b).Capacitance, C ≈ 5.15 × 10⁻¹¹ FVoltage, V = 4.85 × 10¹¹ V. c) Energy stored, U ≈ 6.07 J.
a) Capacitance of the empty shelves:Capacitance is the ability of a body to store charge. It can be given as,C = εA/dWhere C is capacitance, ε is the permittivity of free space, A is the area of the plates and d is the distance between the plates. Given,Area of shelves, A = 1.40 × 10⁻¹ m²Distance between shelves, d = 0.240 mPermittivity of free space, ε = 8.85 × 10⁻¹² F/mTherefore, the capacitance of the empty shelves is,C = εA/d= (8.85 × 10⁻¹² F/m) × (1.40 × 10⁻¹ m²) / (0.240 m)≈ 5.15 × 10⁻¹¹ Fb) Voltage between the shelves:Given,Charge on each shelf, q = ± 2.50 nC = ± 2.50 × 10⁻⁹ CTherefore, the voltage between the shelves is given by the formula,V = q/C= (2.50 × 10⁻⁹ C) / (5.15 × 10⁻¹¹ F)= 4.85 × 10¹¹ Vc)
Energy stored in the shelves:Energy stored in a capacitor can be given as,U = (1/2)CV²Given, capacitance, C = 5.15 × 10⁻¹¹ FVoltage, V = 4.85 × 10¹¹ VTherefore, the energy stored in the shelves is,U = (1/2)CV²= (1/2) (5.15 × 10⁻¹¹ F) (4.85 × 10¹¹ V)²≈ 6.07 JAnswer:Capacitance, C ≈ 5.15 × 10⁻¹¹ FVoltage, V = 4.85 × 10¹¹ VEnergy stored, U ≈ 6.07 J.
Learn more about voltage here,
https://brainly.com/question/27861305
#SPJ11
A 2-meter rod, whose density is given by (30 + 20x) kg/m. is laid along the x-axis, with its low density end at the origin. A 5.0 kg particle is place on the x-axis 3.0 meter from the origin. Calculate the gravitational force exerted on the particle by the rod. A 2.0-meter rod with mass of 200 kg is laid along the y-axis, with its center of mass at the origin. The density of the rod is uniform. A 5.0 kg particle is place on the x-axis 1 meter from the origin. Calculate the gravitational force exerted on the particle by the rod on the particle.
1. Gravitational force exerted on the particle by the rod with a non-uniform density:
Given, Mass of the particle, m = 5.0 kg
Distance of the particle from the origin, r = 3.0 meters
Density of the rod, ρ = (30 + 20x) kg/m
Length of the rod, L = 2 meters
The rod can be considered as a combination of small elements of length dx at a distance x from the origin.
The mass of each element of the rod, dm = ρdx.The force exerted by the small element on the particle is given by
dF = G × dm × m / r²where G is the gravitational constant.
The total force exerted on the particle by the rod is
F = ∫dF = G × m × ∫(ρdx / r²)
= G × m × ∫[30/r² + (20/r²)x] dx
= G × m [30x / r² + 10x² / r²]2.
Gravitational force exerted on the particle by the rod with uniform density:
Given, Mass of the particle, m = 5.0 kg
Distance of the particle from the origin, r = 1 meter
Mass of the rod, M = 200 kg
Length of the rod, L = 2 meters
The rod can be considered as a combination of small elements of length dx at a distance x from the origin. The mass of each element of the rod, dm = M/L.The force exerted by the small element on the particle is given by
dF = G × dm × m / r²where G is the gravitational constant.
The total force exerted on the particle by the rod is
F = ∫dF
= G × m × ∫(M / Lr²) dx
= G × m × M / L × ∫dx / r²
= G × m × M / Lr² × x
Learn more about Gravitational force exerted here
https://brainly.com/question/27943482
#SPJ11
A car that starts from rest with a constant acceleration travels 40 m in the first 5 S. The car's acceleration is O 0.8 m/s^2 he O 1.6 m/s^2 O 3.2 m/s^2 O 16 m/s^2
A car that starts from rest with a constant acceleration travels 40 m in the first 5 s.
The car's acceleration is 3.2 m/s².
The acceleration of the car can be determined by using the formula below:
s = ut + (1/2)at²
Here,
u = initial velocity of the car (0)
m = distance traveled by the car (40m)
t = time taken by the car (5s)
a = acceleration of the car (unknown)
Substituting the values in the formula above and solving for a;
40 = 0 + (1/2)a(5)²
40 = 12.5a
a = 40/12.5
a = 3.2m/s²
Therefore, the car's acceleration is 3.2 m/s².
The distance it travels in the first 5s is irrelevant in finding the acceleration.
We only need the distance, time and initial velocity of an object to determine the acceleration.
Learn more about acceleration here
https://brainly.com/question/25876659
#SPJ11
In an oscillating LC circuit with C = 89.6 pF, the current is given by i = (1.84) sin(2030 +0.545), where t is in seconds, i in amperes, and the phase angle in radians. (a) How soon after t=0 will the current reach its maximum value? What are (b) the inductance Land (c) the total energy? (a) Number Units (b) Number i Units (c) Number Units
Answers: (a) Time taken to reach the maximum value of current = 0.000775 sec
(b) Inductance of the circuit L = 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit E = 1.54 x 10⁻⁷ J.
C = 89.6 pFi = (1.84)sin(2030t + 0.545)
current i = (1.84)sin(2030t + 0.545)
For an A.C circuit, the current is maximum when the sine function is equal to 1, i.e., sin θ = 1; Maximum current i_m = I_0 [where I_0 is the amplitude of the current] From the given current expression, we can say that the amplitude of the current i.e I_0 is given as;I_0 = 1.84.
Now, comparing the given current equation with the standard equation of sine function;
i = I_0sin (ωt + Φ)
I_0 = 1.84ω = 2030and,Φ = 0.545.
We know that; Angular frequency ω = 2πf. Where, f = 1/T [where T is the time period of oscillation]
ω = 2π/T
T = 2π/ω
ω = 2030
T = 2π/2030
Now, the current will reach its maximum value after half the time period, i.e., T/2.To find the time at which the current will reach its maximum value;
(a) The time t taken to reach the maximum value of current is given as;
t = (T/2π) x (π/2)
= T/4
Now, substituting the value of T = 2π/2030; we get,
t = (2π/2030) x (1/4)
= 0.000775 sec
(b) Inductance
L = (1/ω²C) =
(1/(2030)² x 89.6 x 10⁻¹²)
= 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit;
E = (1/2)LI²
= (1/2) x 3.58 x 10⁻⁴ x (1.84)²
= 1.54 x 10⁻⁷ J.
Therefore, the answers are;(a) Time taken to reach the maximum value of current = 0.000775 sec
(b) Inductance of the circuit L = 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit E = 1.54 x 10⁻⁷ J.
Learn more about Inductance: https://brainly.com/question/29462791
#SPJ11
Three charged conducting metal balls are hanging from non-conducting strings. Initially, ball #1 has a charge of -12 uc, ball #2 has 22 uC, and ball #3 has -11 PC. Ball #1 is brought in contact with ball #2 and then the two are separated. Ball #2 is then moved over and brought into contact with ball #3, after which the two are separated. What are the final charges on each ball?
The final charges on each ball are as follows:
Ball #1: 10 μC
Ball #2: -1 μC
Ball #3: -1 μC
To determine the final charges on each ball, we need to consider the transfer of charge when the balls come in contact with each other. When two conductive objects come in contact, charge can flow between them until they reach equilibrium.
Let's analyze the situation step by step:
Step 1: Ball #1 (-12 μC) is brought in contact with Ball #2 (22 μC).
When the two balls touch, electrons will flow from the negatively charged Ball #1 to the positively charged Ball #2 to equalize the charge distribution.
The net charge after contact will be the sum of the initial charges on Ball #1 and Ball #2.
Net charge = -12 μC + 22 μC = 10 μC
Ball #1 and Ball #2 now have the same charge of 10 μC each.
Step 2: Ball #2 (10 μC) is moved over and brought into contact with Ball #3 (-11 μC).
When the two balls touch, charge will flow to equalize the charge distribution.
Since Ball #2 has a higher charge, electrons will flow from Ball #2 to Ball #3.
The net charge after contact will be the sum of the initial charges on Ball #2 and Ball #3.
Net charge = 10 μC - 11 μC = -1 μC
Ball #2 now has a charge of -1 μC, and Ball #3 has a charge of -1 μC.
Step 3: Ball #1 (10 μC) is separated from Ball #2 (-1 μC).
The charges remain unchanged since they are no longer in contact.
To knwo more about electrons
https://brainly.com/question/12001116
#SPJ11
Which of the following functions are in the Hilbert space with indicated interval? (a) f(x) = eᶦπˣ, -1≤x≤1 (b) f(x) = e⁻ˣ, x ≥0
(c) f(x) = x⁻¹/⁴, 0 ≤x≤1 (d) f(x) = cos(x), -π ≤ x ≤ π (e) f(x) = 1/(1+ ix), - [infinity] < x < [infinity] (f) f(x) = x⁻¹/², 0 ≤x≤1
All the given functions that are
(a) f(x) = eᶦπˣ, -1≤x≤1
(b) f(x) = e⁻ˣ, x ≥0
(c) f(x) = x⁻¹/⁴, 0 ≤x≤1
(d) f(x) = cos(x), -π ≤ x ≤ π
(e) f(x) = 1/(1+ ix), - [infinity] < x < [infinity] (f) f(x) = x⁻¹/², 0 ≤x≤1 belong to the Hilbert space with the indicated interval.
A function is said to be in the Hilbert space with a given interval when it satisfies the requirements for Hilbert spaces. The terms Hilbert space, interval, and functions will be explained first.
A Hilbert space is an infinite-dimensional vector space that is equipped with an inner product, a scalar product. The space is complete and satisfies a certain set of properties, which include an orthonormal basis.
An interval is the set of all real numbers between two endpoints. It can be closed, such as [a, b], which includes the endpoints, or open, such as (a, b), which excludes them.
A half-open interval is one that includes one endpoint but excludes the other. For example, [a, b) and (a, b] are half-open intervals, while (a, b) is an open interval.
A function is a relationship between two sets of values. It is a rule or mapping that assigns one input value to one output value. In mathematics, a function is represented by f(x).
f(x) = eᶦπˣ, -1≤x≤1: It is in the Hilbert space.
f(x) = e⁻ˣ, x ≥0: It is in the Hilbert space.
f(x) = x⁻¹/⁴, 0 ≤x≤1: It is in the Hilbert space.
f(x) = cos(x), -π ≤ x ≤ π: It is in the Hilbert space.
f(x) = 1/(1+ ix), - [infinity] < x < [infinity]: It is in the Hilbert space.
f(x) = x⁻¹/², 0 ≤x≤1:It is in the Hilbert space.
All the given functions belong to the Hilbert space with the indicated interval.
Learn more about functions https://brainly.com/question/11624077
#SPJ11
For crystal diffraction experiments, wavelengths on the order of 0.20 nm are often appropriate, since this is the approximate spacing between atoms in a solid. Find the energy in eV for a particle with this wavelength if the particle is (a) a photon, (b) an electron, (c) an alpha particle (mc² = 3727 MeV).
a. The energy of a photon is 62.1 eV.
b. The energy of an electron is 227.8 eV.
c. The energy of an alpha particle is 2.33 x 10²⁷ eV
a. Energy of a photon:
E = hc/λ
where,
h = Planck's constant = 6.626 x 10⁻³⁴ J-s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
E = (6.626 x 10⁻³⁴ J-s) x (3 x 10⁸ m/s) / (0.20 x 10⁻⁹ m)
= 9.939 x 10⁻¹² J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (9.939 x 10⁻¹² J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 62.1 eV
Therefore, the energy of a photon with this wavelength is 62.1 eV.
b. Energy of an electron:
E = p²/2m
where,
p = momentum of electron
m = mass of electron = 9.1 x 10⁻³¹ kg
λ = h/p
p = h/λ
E = h²/2m
λ²= (6.626 x 10⁻³⁴ J-s)² / [2 x (9.1 x 10⁻³¹ kg) x (0.20 x 10⁻⁹ m)²]
= 3.648 x 10⁻¹⁰ J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (3.648 x 10⁻¹⁰ J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 227.8 eV
Therefore, the energy of an electron with this wavelength is 227.8 eV.
c. Energy of an alpha particle:
E = mc² / √(1 - v²/c²)
where,
m = mass of alpha particle
c = speed of light = 3 x 10⁸ m/s
λ = h/p
p = h/λ
v = p/m
= (h/λ)/(mc)
= h/(λmc)
E = mc² / √(1 - v²/c²)
E = (3727 MeV) x (1.6 x 10⁻¹³ J/MeV) / √(1 - (6.626 x 10⁻³⁴ J-s/(0.20 x 10⁻⁹ m x 3727 x 1.67 x 10⁻²⁷ kg x (3 x 10⁸ m/s))²))
≈ 3.72 x 10¹³ J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (3.72 x 10¹³ J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 2.33 x 10²⁷ eV
Therefore, the energy of an alpha particle with this wavelength is 2.33 x 10²⁷ eV.
Learn more about the alpha particle:
brainly.com/question/22799756
#SPJ11
A 110g mass on a spring oscillates on a frictionless horizontal surface with a period of 0.60s and an amplitude of 18.0cm. Determine the:
a) Spring constant
b) Maximum spring potential energy of the system
c) Maximum speed of the mass
a)The spring constant of the system is 12.16 N/m. b).The maximum potential energy stored in the spring is 0.198 J. c)The maximum speed of the mass is 1.89 m/s.
a) Spring Constant k is given by the formula;k= 4π²m/T²where;T is the time periodm is the massk is the spring constantSubstitute the given values;m = 110g = 0.110kgT = 0.60 sTherefore;k = (4 x 3.14² x 0.110)/(0.60)² = 12.16 N/mTherefore, the spring constant of the system is 12.16 N/m.
b) Maximum spring potential energy of the systemThe maximum potential energy stored in the spring during its oscillations is given by the formula;U = (1/2) kx²where; x is the amplitude of the oscillationSubstitute the given values;k = 12.16 N/mx = 18.0 cm = 0.18 mTherefore;U = (1/2) x k x² = 0.5 x 12.16 x (0.18)² = 0.198 JTherefore, the maximum potential energy stored in the spring is 0.198 J.
c) Maximum speed of the massThe maximum speed of the mass can be obtained using the formula;vmax= Aωwhere;A is the amplitude ω is the angular velocity.Substitute the given values;A = 18.0 cm = 0.18 mω = 2π/T = 2 x 3.14/0.60Therefore;vmax = Aω = 0.18 x 2 x 3.14/0.60vmax = 1.89 m/sTherefore, the maximum speed of the mass is 1.89 m/s.
Learn more about amplitude here,
https://brainly.com/question/3613222
#SPJ11
A 43.0-kg boy, riding a 2.30-kg skateboard at a velocity of 5.80 m/s across a level sidewalk, jumps forward to leap over a wall. Just after leaving contact with the board, the boy's velocity relative to the sidewalk is 6.00 m/s, 8.20° above the horizontal. Ignore any friction between the skateboard and the sidewalk. What is the skateboard's velocity relative to the sidewalk at this instant? Be sure to include the correct algebraic sign with your answer.
The skateboard's velocity relative, is approximately 2.12 m/s at an angle of 8.20° above the horizontal. This can be determined using the principle of conservation of momentum.
According to the principle of conservation of momentum, the total momentum before and after an event remains constant if no external forces are acting on the system. In this case, the system consists of the boy and the skateboard.
Before the boy jumps, the total momentum is given by the product of the mass and velocity of the boy and the skateboard combined. Using the equation for momentum (p = m * v), we can calculate the initial momentum:
Initial momentum = (mass of boy + mass of skateboard) * velocity of boy and skateboard= (43.0 kg + 2.30 kg) * 5.80 m/s Just after leaving contact with the skateboard, the boy's velocity relative to the sidewalk is given.
We can use this information to find the final momentum of the system Final momentum = (mass of boy) * (velocity of boy relative to sidewalk) Since the momentum is conserved, the initial momentum and the final momentum must be equal. Therefore: Initial momentum = Final momentum
(43.0 kg + 2.30 kg) * 5.80 m/s = (43.0 kg) * (velocity of boy relative to sidewalk) From this equation, we can solve for the velocity of the boy relative to the sidewalk:
velocity of boy relative to sidewalk = [(43.0 kg + 2.30 kg) * 5.80 m/s] / (43.0 kg), the skateboard's velocity relative to the sidewalk is also approximately 2.12 m/s at an angle of 8.20° above the horizontal.
To learn more about velocity, Click here: brainly.com/question/24259848
#SPJ11
A 5.0-µF capacitor is charged to 50 V, and a 2.0-µF capacitor is charged to 100 V. The two are disconnected from charging batteries and connected in parallel, with the positive plate of one attached to the positive plate of the other.
(a) What is the common voltage across each capacitor after they are connected in this way? (b) Compare the total electrostatic energy before and after the capacitors are connected. Speculate on the discrepancy. (c) Repeat Parts (a) and (b) with the charged capacitors being connected with the positive plate of one attached to the negative plate of the other.
a) The common voltage across each capacitor is 75 V.
b) The total electrostatic energy before the capacitors are connected is 675 µJ and after the capacitors are connected is 1.40625 mJ.
c) The total voltage across the capacitors is still 75 V, but now one capacitor has a positive voltage and the other has a negative voltage.
d) The total energy stored in the system is 1.40625 mJ.
(a) The common voltage across each capacitor after they are connected in parallel is 75 V. This is because the total charge on the capacitors must remain constant.
The total charge on the capacitors is given by
Q = C1V1 + C2V2
where
Q is the charge,
C is the capacitance,
V is the voltage
When the capacitors are connected in parallel, the voltage across each capacitor becomes equal, so we can write:
Q = (C1 + C2)Vtotal.
Solving for Vtotal, we get
Vtotal = Q / (C1 + C2).
Plugging in the values, we get:
Vtotal = (5.0 × 10⁻⁶ × 50 + 2.0 × 10⁻⁶ × 100) / (5.0 × 10⁻⁶ + 2.0 × 10⁻⁶) = 75 V.
(b) The total electrostatic energy before the capacitors are connected is given by,
U = (1/2)C1V1² + (1/2)C2V2²
where
U is the energy,
C is the capacitance,
V is the voltage
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶)(50)² + (1/2)(2.0 × 10⁻⁶)(100)² = 675 µJ.
After the capacitors are connected, the total energy stored in the system is given by
U = (1/2)(C1 + C2)Vtotal².
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶ + 2.0 × 10⁻⁶)(75)² = 1.40625 mJ.
The discrepancy between the two energies is due to the fact that energy is lost as heat when the capacitors are connected in parallel. This is because there is a potential difference between the two capacitors which causes current to flow between them, dissipating energy as heat.
(c) When the charged capacitors are connected with the positive plate of one attached to the negative plate of the other, the voltage across each capacitor becomes -25 V. This is because the charge on each capacitor is still the same, but the polarity of one of the capacitors has been reversed, so the voltage across it is negative. The total voltage across the capacitors is still 75 V, but now one capacitor has a positive voltage and the other has a negative voltage.
(d) The total electrostatic energy before the capacitors are connected is still 675 µJ.
After the capacitors are connected, the total energy stored in the system is given by
U = (1/2)(C1 + C2)Vtotal².
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶ + 2.0 × 10⁻⁶)(75)² = 1.40625 mJ.
The discrepancy between the two energies is still due to the fact that energy is lost as heat when the capacitors are connected in parallel. This is because there is a potential difference between the two capacitors which causes current to flow between them, dissipating energy as heat.
Learn more about voltage:
https://brainly.com/question/14883923
#SPJ11
Asterix and Obelix decide to save the Gauls by throwing 30 kg of bananas onto the highway to slow down the Romans. They are at a height of 20 m and throw the bananas at an initial speed of 10 m/s. Determine the impact velocity if drag force steal 10% of the initial energy making the system only 90% efficient.
Therefore, the impact velocity is 0.69 m/s when drag force steals 10% of the initial energy, making the system only 90% efficient. The answer is 150 words.
The problem can be solved by utilizing the conservation of energy. The sum of kinetic energy and potential energy is equal to the potential energy when the bananas hit the ground.
The potential energy of the bananas when it is at a height of 20m is given as follows;P.E = mghP.E = 30kg x 9.8m/s² x 20mP.E = 5880 JThe initial kinetic energy of the bananas is given as follows;K.E = ½ mv²K.E = ½ x 30kg x (10m/s)²K.E = 1500 JThe total mechanical energy (E) of the system is calculated as follows;E = P.E + K.EE = 5880 J + 1500 JE = 7380 J
The efficiency of the system is given as 90% and we know that efficiency (η) is the ratio of output energy (Eo) to input energy (Ei).η = Eo / EiRearranging the equation above, we get;Eo = η x EiEo = 0.9 x 7380Eo = 6642 JThe remaining energy (Elost) is calculated as follows;Elost = Ei - EoElost = 7380 J - 6642 JElost = 738 J
The work done by drag force (Wd) is equal to the lost energy and is given as follows;Wd = ElostWd = 738 JThe average force exerted on the bananas (F) can be calculated as follows;F = Wd / dF = 738 J / (20m x 30kg)F = 1.23 NThe work done by force of gravity (Wg) can be calculated as follows;Wg = Fg x dWg = (30kg x 9.8m/s²) x 20mWg = 5880 J
The kinetic energy of the bananas at impact (K.Ei) can be calculated as follows;K.Ei = Eo - Wg - WdK.Ei = 6642 J - 5880 J - 738 JK.Ei = 24 JThe final velocity (v) of the bananas when they hit the ground can be calculated as follows;K.Ei = ½ mv²24 J = ½ x 30kg x v²v = √(24 J x 2 / 30kg)v = 0.69 m/sTherefore, the impact velocity is 0.69 m/s when drag force steals 10% of the initial energy, making the system only 90% efficient. The answer is 150 words.
to know more about velocity
https://brainly.com/question/30046122
#SPJ11
The magnetic field of a sinusoidal electromagnetic wave is shown at some snapshot in time as it propagates to the right in a vacuum at speed c, as shown. What is the instantaneous direction of the electric field at point P, indicated on the diagram? A. towards the top of the page B. to the left C. into the page D. out of the page
The instantaneous direction of the electric field at point P, indicated on the diagramthe correct option is (B) to the left.
The instantaneous direction of the electric field at point P, indicated on the diagram is towards the left.What is an electromagnetic wave?Electromagnetic waves are waves that are produced by the motion of electric charges.
Electromagnetic waves can travel through a vacuum or a material medium. Electromagnetic waves include radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.
In an electromagnetic wave, the electric and magnetic fields are perpendicular to each other, and both are perpendicular to the direction of wave propagation. At any given point and time, the electric and magnetic fields oscillate perpendicular to each other and the direction of wave propagation.
They are both sinusoidal, with a frequency equal to that of the wave.The instantaneous direction of the electric field at point P, indicated on the diagram is towards the left. When the magnetic field is pointing out of the page, the electric field is pointing towards the left. Thus, the correct option is (B) to the left.
The given electromagnetic wave is shown at some snapshot in time as it propagates to the right in a vacuum at speed c. Point P is a point in space where the electric field vector is to be determined. This point can be any point in space, and is shown in the diagram as a dot, for example.
To know more about electromagnetic
https://brainly.com/question/21317144
#SPJ11
A fixed 128-cm-diameter wire coil is perpendicular to a magnetic field 0.63 T pointing up. In 0.30 s, the field is changed to 0.27 T pointing down. What is the average induced emf in the coll? Express your answer to two significant figures and include the appropriate units
The average induced electromotive force (emf) in a fixed wire coil with a diameter of 128 cm can be calculated when the magnetic field changes from 0.63 T pointing up to 0.27 T pointing down in a time of 0.30 s.
Faraday's law of electromagnetic induction states that the induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop.The area of the loop can be calculated as A = πr², where r is the radius.
To calculate the average induced emf, the change in magnetic flux (∆Φ) over the given time interval (∆t). The change in magnetic field (∆B) is the difference between the initial and final magnetic field values. By multiplying ∆B by the area of the loop, we can obtain ∆Φ.
Finally, the average induced emf (ε) is given by ε = ∆Φ/∆t. By substituting the calculated values for ∆Φ and ∆t into the equation, we can determine the average induced emf. The resulting value will be expressed to two significant figures, along with the appropriate units.
Learn more about electromotive here;.
https://brainly.com/question/29178179
#SPJ11
The environmental lapse rate is 8C/km and the initial
temperature at the surface is
25C. What is the atmospheric stability of the layer from the
surface to 1km?
The atmospheric stability of the layer from the surface to 1 km is stable. it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air
Atmospheric stability is the property of the atmosphere where it opposes the vertical motion of air in response to disturbances.
Based on the given data, the initial temperature at the surface is 25°C and the environmental lapse rate is 8°C/km.
The atmospheric stability of the layer from the surface to 1 km can be calculated by comparing the dry adiabatic lapse rate (DALR) with the environmental lapse rate (ELR). The dry adiabatic lapse rate (DALR) is 10°C/km, which is the rate at which the unsaturated parcel of air rises or sinks as a result of the adiabatic process.
The atmospheric stability can be classified into three categories based on comparing the environmental lapse rate (ELR) and the dry adiabatic lapse rate (DALR). They are as follows:
Unstable Atmosphere (ELR > DALR)
Conditionally Unstable Atmosphere (ELR = DALR)
Stable Atmosphere (ELR < DALR)
The given environmental lapse rate is 8°C/km which is less than the dry adiabatic lapse rate of 10°C/km. So, the atmosphere is stable in this layer from the surface to 1 km.
However, we need to verify whether it is absolutely stable or conditionally stable by looking at the saturated adiabatic lapse rate (SALR) that governs the behaviour of air parcels that are saturated. The saturated adiabatic lapse rate (SALR) is lower than the DALR, indicating that a saturated air parcel cools more slowly than an unsaturated air parcel when it rises or sinks adiabatically.
The layer would be conditionally unstable if the environmental lapse rate (ELR) was lower than the saturated adiabatic lapse rate (SALR) but greater than the dry adiabatic lapse rate (DALR). Since we do not know the moisture content in the atmosphere, we cannot compute SALR. Hence, the atmosphere in this layer is stable with an ELR of 8°C/km and a DALR of 10°C/km. Therefore, it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air.
Learn more about atmospheric stability:
https://brainly.com/question/31830207
#SPJ11
The magnetic field is 1.50 uT at a distance 42.6 cm away from a long, straight wire. At what distance is it 0.150 uT? 4.26×10 2
cm Previous Tries the middle of the straight cord, in the plane of the two wires. Tries 2/10 Previous Tries
The distance from the wire is 426 cm is the answer.
Given data: The magnetic field, [tex]B = 1.50 uT[/tex]
The distance from the long, straight wire, [tex]r1 = 42.6 cm.[/tex]
The magnetic field,[tex]B' = 0.150 uT[/tex]
To find: the distance from the wire, r2
Solution: We can use the Biot-Savart law to find the magnetic field at a distance r from an infinitely long straight wire carrying current I: [tex]B = μ0I / 2πr[/tex] where [tex]μ0 = 4π[/tex]× [tex]10^-7[/tex] Tm/A is the permeability of free space.
Now we can write this as: [tex]r = μ0I / 2πB[/tex] .....(1)
At [tex]r1, B = 1.50 uT[/tex] and at[tex]r2, B' = 0.150 uT[/tex]
Therefore, from equation (1):[tex]r2 = μ0I / 2πB'[/tex].....(2)
Let us assume the current in the wire is I. Since I is constant, we can write [tex]r2/r1 = B / B'.[/tex]....(3)
Substituting the values:[tex]r2 / 42.6 = 1.50 / 0.150[/tex]
Solving for [tex]r2:r2 = (42.6 × 1.50) / 0.150 = 426 cm[/tex]
Therefore, the magnetic field is 0.150 uT at a distance of 426 cm from the wire.
Thus, the distance from the wire is 426 cm.
know more about magnetic field
https://brainly.com/question/14848188
#SPJ11
2.Two currents 5 - j2 amperes and 3 - j 2 amperes enter a
junction. What is the outgoing currents given voltage 220 V ac
source at 60 hertz frequency.
please help. thanks
The outgoing current from the junction can be calculated by summing the incoming currents. In this case, the outgoing current would be 8 - j4 amperes.
To calculate the outgoing current from the junction, we need to add the two incoming currents. Given that one current is 5 - j2 amperes and the other is 3 - j2 amperes, we can simply add the real and imaginary components separately.
For the real component, we add 5 and 3, resulting in 8 amperes. For the imaginary component, we add -j2 and -j2, which gives us -j4 amperes.
Thus, the outgoing current from the junction is 8 - j4 amperes. This means that the current leaving the junction has a real component of 8 amperes and an imaginary component of -4 amperes. The direction and phase of the current would depend on the specific circuit configuration and the voltage source.
To know more about outgoing current click here:
https://brainly.com/question/17198579
#SPJ11
For each statement, select True or False
a) Total internal reflection of light can happen when light travels between any 2 mediums as long as the correct angle is used for the incident light.
b) The index of refraction of a medium depends on the wavelength of incident light.
c) We can see the color of a purple flower because the flower absorbs all colors except the purple
d) According to the Second Postulate of Relativity, if a source of light is travelling at a speed v, then thelight wave will travel at speed cry for an observer at rest respect to the source
e) Simultaneity is absolute. 2 events that happen at the same time in a reference frame will also be simultaneous in any other reference frame as long as it is inertial.
f) According to the theory of Relativistic Energy, an object with mass M, at rest, and with zero potential energy, has a zero total energy.
g) If a train travels at a speed close to the speed of light, an observer at rest on the platform will see a contraction of the train in both the vertical and horizontal directions.
h) Optical fibers can guide the light because of the total internal reflection of light.
i) If you are at rest on a platform, measuring the time it takes for a train to pass in front of you, you are measuring the proper time
j) The lifetime of a particle measured in a lab will always be larger than the lifetime in the particle's reference system
a) Trueb) Falsec) True d) Fale) Falsef) Falseg) Falseh) Truei) Truej) False.
a) The statement "Total internal reflection of light can happen when light travels between any 2 mediums as long as the correct angle is used for the incident light" is True.b) The statement "The index of refraction of a medium depends on the wavelength of incident light" is False.c) The statement "We can see the color of a purple flower because the flower absorbs all colors except the purple" is True.
d) The statement "According to the Second Postulate of Relativity, if a source of light is travelling at a speed v, then the light wave will travel at speed cry for an observer at rest respect to the source" is False.e) The statement "Simultaneity is absolute. 2 events that happen at the same time in a reference frame will also be simultaneous in any other reference frame as long as it is inertial" is False.
f) The statement "According to the theory of Relativistic Energy, an object with mass M, at rest, and with zero potential energy, has a zero total energy" is False.g) The statement "If a train travels at a speed close to the speed of light, an observer at rest on the platform will see a contraction of the train in both the vertical and horizontal directions" is False.h) The statement "Optical fibers can guide the light because of the total internal reflection of light" is True.
i) The statement "If you are at rest on a platform, measuring the time it takes for a train to pass in front of you, you are measuring the proper time" is True.j) The statement "The lifetime of a particle measured in a lab will always be larger than the lifetime in the particle's reference system" is False.
Learn more about energy here,
https://brainly.com/question/2003548
#SPJ11
A simple pendulum on the surface of Earth is 1.23 m long. What is the period of its oscillation? T-
A simple pendulum on the surface of Earth is 1.23 m long.The period of the oscillation of the simple pendulum is approximately 2.22 seconds (s).
The period of a simple pendulum can be calculated using the formula:
T = 2π × √(L / g)
where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
Given that the length of the pendulum is 1.23 m, and the acceleration due to gravity on the surface of Earth is approximately 9.81 m/s^2, we can substitute these values into the formula:
T = 2π × √(1.23 m / 9.81 m/s^2)
T ≈ 2π ×√(0.1254)
T ≈ 2π × 0.354
T ≈ 2.22 s
The period of the oscillation of the simple pendulum is approximately 2.22 seconds (s).
To learn more about period of the oscillation visit: https://brainly.com/question/26449711
#SPJ11
for a serial RLC circuit, let C = 50.0 pF, L = 25 mH and R = 8.0k Calculate the angular frequency of the circuit once the capacitor has been charged and connected to the other two elements of the circuit.
The angular frequency of the circuit, once the capacitor has been charged and connected to the other two elements, is approximately 892.47 rad/s.
The angular frequency (ω) of the serial RLC circuit, once the capacitor has been charged and connected to the other two elements of the circuit, can be calculated using the values of capacitance (C), inductance (L), and resistance (R).
The angular frequency (ω) of a serial RLC circuit is given by the formula:
ω = [tex]\frac{1}{\sqrt{LC} }[/tex]
In this case, the given values are:
C = 50.0 pF (picoFarads) = 50.0 × [tex]10^{-12}[/tex] F (Farads)
L = 25 mH (milliHenries) = 25 × [tex]10^{-3}[/tex] H (Henries)
Plugging these values into the formula, we can calculate the angular frequency as follows:
ω = 1 / √(50.0 × [tex]10^{-12}[/tex] F × 25 × [tex]10^{-3}[/tex] H)
= 1 / √(1250 × [tex]10^{-15}[/tex] F × H)
= 1 / √(1250 × [tex]10^{-15}[/tex] F × H)
= 1 / √(1.25 × [tex]10^{-12}[/tex] F × H)
= 1 / (1.118 × [tex]10^{-6}[/tex] F × H)
≈ 892.47 rad/s
Therefore, the angular frequency of the circuit, once the capacitor has been charged and connected to the other two elements, is approximately 892.47 rad/s.
Learn more about frequency here:
https://brainly.com/question/2140860
#SPJ11
Suppose you throw a rubber ballat a charging elephant not a good idea) When the ball bounces back toward you, is its speed greater than less than or the speed with which you there? Greater than initial speed Lou than inte speed O Equal to initial speed
When the ball bounces back toward you after throwing it at a charging elephant (not a good idea), its speed will be less than the initial speed with which you threw it.
The rubber ball will move less quickly when it comes back your way after being hurled towards a rushing elephant. The conservation of mechanical energy is to blame for this. The ball collides with the elephant, transferring part of its original kinetic energy to the animal or dissipating it as heat and sound. The ball loses energy as a result of the contact, which lowers its speed. The elastic properties of the ball and the surface it bounces off can also have an impact on the ball's subsequent speed.
Learn more about bounces here;
https://brainly.com/question/31657109
#SPJ11
An electron, traveling at a speed of 5.29 × 10⁷ m/s, strikes the target of an X-ray tube. Upon impact, the electron decelerates to one-quarter of its original speed, emitting an X-ray in the process. What is the wavelength of the X-ray photon?
please provide units and steps to complete, thank you!
An electron, traveling at a speed of 5.29 × 10⁷ m/s, strikes the target of an X-ray tube. Upon impact, the electron decelerates to one-quarter of its original speed, emitting an X-ray in the process.The wavelength of the X-ray photon emitted when the electron decelerates is approximately 2.42 × 10⁻¹¹ meters.
To determine the wavelength of the X-ray photon emitted when the electron decelerates, we can use the concept of energy conservation.
The energy lost by the electron as it decelerates is equal to the energy of the emitted X-ray photon. We can equate the kinetic energy of the electron before and after deceleration to find the energy of the X-ray photon.
Given:
Initial speed of the electron (v₁) = 5.29 × 10⁷ m/s
Final speed of the electron (v₂) = 1/4 × v₁ = (1/4) × 5.29 × 10⁷ m/s
The change in kinetic energy (ΔK.E.) of the electron is given by:
ΔK.E. = (1/2) × m × (v₁² - v₂²)
The energy of a photon can be calculated using the formula:
E = h × c / λ
where E is the energy of the photon, h is Planck's constant (6.626 × 10⁻³⁴ J s), c is the speed of light (3.00 × 10⁸ m/s), and λ is the wavelength of the photon.
Equating the change in kinetic energy of the electron to the energy of the X-ray photon:
ΔK.E. = E
(1/2) × m × (v₁² - v₂²) = h × c / λ
Rearranging the equation to solve for the wavelength:
λ = (h × c) / [(1/2) × m × (v₁² - v₂²)]
Substituting the given values:
λ = (6.626 × 10⁻³⁴ J s × 3.00 × 10⁸ m/s) / [(1/2) × m × ((5.29 × 10⁷ m/s)² - (1/4 × 5.29 × 10⁷ m/s)²)]
The mass of an electron (m) is approximately 9.11 × 10⁻³¹ kg.
Evaluating the expression:
λ ≈ 2.42 × 10⁻¹¹ m
Therefore, the wavelength of the X-ray photon emitted when the electron decelerates is approximately 2.42 × 10⁻¹¹ meters.
To learn more about X-ray visit: https://brainly.com/question/24505239
#SPJ11
There is a solenoid in the magnetic field. The magnetic flux density of a magnetic field as a function of time can be expressed in the form B (t) = (1.3mT / s * t) + (5.3mT / s ^ 2 * t ^ 2=)
. The solenoid has an area of 29cm ^ 2 and has 195,000 turns of wires. The plane of the solenoid is perpendicular to the uniform magnetic field. Calculate the magnitude of the source voltage induced in the solenoid at 5.0s
The magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Given that, Magnetic flux density, B(t) = (1.3 mT/s * t) + (5.3 mT/s^2 * t^2)
Solenoid area, A = 29 cm² = 29 * 10^-4 m²
Number of turns, N = 195,000
To find: The magnitude of the source voltage induced in the solenoid at 5.0 s.
Calculate the magnetic flux at time t = 5 s using the formula Φ = B(t) * A:
Φ(t=5 s) = [(1.3 mT/s * 5 s) + (5.3 mT/s² * (5 s)²)] * (29 * 10^-4 m²)
= (6.5 mT + 133 mT) * (29 * 10^-4 m²)
= 3.9457 * 10^-3 Wb
Now, calculate the EMF using the formula emf = -N * dΦ/dt:
dΦ/dt = dB/dt = (1.3 mT/s) + (10.6 mT/s² * t)
emf(t=5 s) = -(195,000) * (3.9457 * 10^-3 Wb) * [(1.3 mT/s) + (10.6 mT/s² * 5 s)]
= -(195,000) * (3.9457 * 10^-3 Wb) * (1.3 mT/s + 53 mT/s)
= -8.2391 V
Therefore, the magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Learn more about solenoid: https://brainly.com/question/1873362
#SPJ11
Calculate the amplitude of the motion. An object with mass 3.2 kg is executing simple harmonic motion, attached to a spring with spring constant 310 N/m. When the object is 0.019 m from its equilibrium position, it is moving with a speed of 0.55 m/s. Express your answer to two significant figures and include the appropriate units. Mi ) ?Calculate the maximum speed attained by the object. Express your answer to two significant figures and include the appropriate units.
The maximum speed attained by the object is approximately 0.19 m/s. To calculate the amplitude of the motion, we can use the formula:
A = [tex]x_{max[/tex]
where A is the amplitude and [tex]x_{max[/tex] is the maximum displacement from the equilibrium position.
Given that the object is 0.019 m from its equilibrium position, we can conclude that the amplitude is also 0.019 m.
So, the amplitude of the motion is 0.019 m.
To calculate the maximum speed attained by the object, we can use the equation:
[tex]v_{max[/tex] = ω * A
where [tex]v_{max[/tex] is the maximum speed, ω is the angular frequency, and A is the amplitude.
The angular frequency can be calculated using the formula:
ω = √(k / m)
where k is the spring constant and m is the mass.
Given that the spring constant is 310 N/m and the mass is 3.2 kg, we can calculate ω:
ω = √(310 N/m / 3.2 kg)
≈ √(96.875 N/kg)
≈ 9.84 rad/s
Now we can calculate the maximum speed:
[tex]v_{max[/tex] = 9.84 rad/s * 0.019 m
≈ 0.19 m/s
Therefore, the maximum speed attained by the object is approximately 0.19 m/s.
To learn more about maximum speed visit:
brainly.com/question/10236290
#SPJ11
(T=2,A=2,C=2) Two go-carts, A and B, race each other around a 1.0 km track. Go-cart A travels at a constant speed of 20 m/s. Go- cart B accelerates uniformly from rest at a rate of 0.333 m/s 2
. Which go-cart wins the race and by how much time?
Go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds.
Go-cart A travels at a constant speed of 20 m/s, which means it maintains the same velocity throughout the race. Since the track is 1.0 km long, go-cart A takes 1.0 km / 20 m/s = 50 seconds to complete the race.
Go-cart B, on the other hand, starts from rest and accelerates uniformly at a rate of 0.333 m/s². To determine how long it takes for go-cart B to reach its final velocity, we can use the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since go-cart B starts from rest, its initial velocity u is 0 m/s. We can rearrange the formula to solve for time: t = (v - u) / a.
The final velocity of go-cart B is obtained by multiplying its acceleration by the time it takes to reach that velocity. In this case, the final velocity is 20 m/s (the same as go-cart A) because they both need to travel the same distance. Thus, 20 m/s = 0 m/s + 0.333 m/s² * t. Solving for t, we get t = 20 m/s / 0.333 m/s² ≈ 60.06 seconds.
Therefore, go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds. Hence, go-cart A wins the race against go-cart B by approximately 11.22 seconds.
Learn more about final velocity here:
https://brainly.com/question/28608160
#SPJ11
Which best describes a feature of the physical change of all substances?
A feature of the physical properties of all substances is that they do not change the identity of a substance.
Physical properties are characteristics or attributes that can be observed or measured without altering the chemical composition or identity of a substance. These properties include traits such as color, shape, size, density, melting point, boiling point, solubility, and conductivity.
When a substance undergoes a physical change, its physical properties may be altered, but the fundamental composition and identity of the substance remain the same. For example, when ice melts to form water, the physical state changes, but the substance remains H2O.
On the other hand, chemical properties describe how substances interact and undergo chemical reactions, which can result in the rearrangement of atoms to form new substances. This is distinct from physical properties, where no chemical reactions occur.
Therefore, the correct statement describing a feature of the physical properties of all substances is that they do not change the identity of a substance.
For more questions on melting point, click on:
https://brainly.com/question/40140
#SPJ8
I think it is the question:
Which describes a feature of the physical properties of all substances?
can dissolve in water
can conduct heat and electricity
rearranges atoms to form new substances
does not change the identity of a substance
A concave mirror with a focal length of 20 cm has an object placed in front of it at a distance of 18 cm. The object is 3 cm high. Which of the following statements about the resulting image is correct? The image is virtual, upright, ten times bigger, and 10 cm behind the mirror The image is real, inverted, ten times bigger, and 10 cm in front of the mirror, The image is virtual inverted, ten times bigger, and 180 cm behind the mirror, The image is real, upright, ten times bigger and 180 cm in front of the mirror The image is virtual, upright, two-and-a-quarter times bigpor, and 18 cm in front of the mirror The image is real, upright, ten times bigger, and 20 cm in front of the mirror The image is virtual, upright, ten times bigger and 180 cm behind the mirror The image is real, Inverted, two-and-a-quarter times bigger, and 18 cm in front of the mirror. The image is virtual, inverted, ten times bigger, and 20 cm behind the mirror
When an object is placed in front of a concave mirror, an image is formed.
According to the mirror formula, 1/f = 1/v + 1/u.
Where f is the focal length of the mirror,
u is the distance of the object from the mirror, and
v is the distance of the image from the mirror.
Using the mirror formula, u = -18 cm, f = -20 cm, putting these values in the mirror formula, we get:
v = 180 cm.
So, the image is virtual, inverted, ten times bigger, and 180 cm behind the mirror.
Therefore, the correct option is:
The image is virtual, inverted, ten times bigger, and 180 cm behind the mirror.
Learn more about concave mirror here
https://brainly.com/question/27841226
#SPJ11
A ray of of light in air is incident on a surface that partially reflected and partially refracted at a boundary between air and a liquid having an index refraction of 1.46. The wavelength of the light ray traveling is 401 nm. You must show the steps and formula below. Solve for - The wavelength of the refracted light. - The speed of the light when propagating in the liquid. - At an angle of 30deg for the incidence of the light ray, the angle of refraction. BONUS Solve for the smallest angle of incidence (for the exact purpose of the ray undergoing total internal refraction) for a second ray traveling in the liquid in the opposite direction on the provided surface (water/air interface).
To solve the given problem, we can use Snell's law and the formula for the critical angle. By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.
The wavelength of the refracted light: Snell's law relates the indices of refraction and the angles of incidence and refraction. It can be written as [tex]n1sin(theta1) = n2sin(theta2)[/tex], where n1 and n2 are the refractive indices and theta1 and theta2 are the angles of incidence and refraction, respectively. Rearranging the equation, we can solve for the sine of the angle of refraction: [tex]sin(theta2) = (n1/n2)*sin(theta1)[/tex]. Substituting the given values, we find sin(theta2) = (1/1.46)*sin(30°). From the calculated value of sin(theta2), we can determine the corresponding angle and use it to find the wavelength of the refracted light using the formula: [tex]wavelength2 = wavelength1 * (speed1/speed2)[/tex], where wavelength1 is the initial wavelength, and speed1 and speed2 are the speeds of light in air and the liquid, respectively.
Speed of light in the liquid: The speed of light in a medium is related to the refractive index by the formula: [tex]speed = c/n[/tex], where c is the speed of light in vacuum and n is the refractive index. Substituting the given refractive index, we can calculate the speed of light in the liquid.
The angle of refraction for an angle of incidence: Using Snell's law, we can calculate the angle of refraction for a given angle of incidence. Substituting the values into the equation, we find [tex]sin(theta2) = (1/1.46)*sin(30^o)[/tex], and then we can determine the corresponding angle.
The smallest angle of incidence for total internal refraction: The critical angle is the angle of incidence that results in the refracted angle being 90°. It can be found using the formula: [tex]critical angle = arcsin(n2/n1)[/tex], where n1 and n2 are the refractive indices of the two mediums. Substituting the values, we can calculate the critical angle, which represents the smallest angle of incidence for total internal refraction.
By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.
Learn more about refraction here:
https://brainly.com/question/14760207
#SPJ11
During isobaric expansion, 10 moles of an ideal gas performed work equal to 8314 J. How did its temperature change? a. decreased by 10 K b. decreased by 100 K c. did not change d. increased by 100 K 1) A 2) D 3) B 4) none 5) C Light beam is partly reflected and partly transmitted on the water - air boundary. There is a right angle between reflected and transmitted light beam. What is the angle of the reflected beam?
1) 0.269 rad 2) 0.345 rad
3) 0.926 rad 4) 0.692 rad 5) 0.555 rad
The angle of the reflected beam is 90 degrees or π/2 radians.
The change in temperature during the isobaric expansion is approximately increased by 100 K.
To determine the change in temperature during isobaric expansion, we need to use the relationship between work, moles of gas, and change in temperature for an ideal gas.
The equation for work done during isobaric expansion is given by:
W = n * R * ΔT
Where:
W is the work done (8314 J in this case)
n is the number of moles of gas (10 moles in this case)
R is the gas constant (8.314 J/(mol·K))
ΔT is the change in temperature
Rearranging the equation, we can solve for ΔT:
ΔT = W / (n * R)
Substituting the given values:
ΔT = 8314 J / (10 mol * 8.314 J/(mol·K))
ΔT ≈ 100 K
Regarding the second question, when light is reflected and transmitted at the boundary between water and air at a right angle, the angle of reflection can be determined using the law of reflection.
According to the law of reflection, the angle of reflection is equal to the angle of incidence. In this case, since the angle between the reflected and transmitted light beams is a right angle, the angle of reflection will also be a right angle (90 degrees or π/2 radians).
To know more about isobaric expansion
https://brainly.com/question/30623713
#SPJ11
A coil consisting of 50 circular loops with radius 0.50 m carries a 4.0-A current (a) Find the magnetic field at a point along the axis of the coil, 0.70 m from the center. (b) Along the axis, at what distance from the center of the coil is the field magnitude 1/8 as great as it is at the center?
The magnetic field strength at a location on the axis of the coil, situated 0.70 m away from the center, is 2.0 × 10-4 T. At a distance of 0.70 m from the center of the coil, the field magnitude decreases to 1/8 of its value at the center.
(a) Here, the coil consists of 50 circular loops of radius r = 0.50 m and carries a current of I = 4.0 A. We need to find the magnetic field B at a point along the axis of the coil, 0.70 m from the center. The magnetic field at a point on the axis of a circular loop can be given by the formula:
[tex]$$B=\frac{\mu_0NI}{2r}$$[/tex] Where,
[tex]$$\mu_0 = 4\pi × 10^{-7} \ \mathrm{Tm/A}$$[/tex] is the permeability of free space.N is the number of turns in the coil. Here, N = 50. The radius of each circular loop in the coil is 0.50 m, and the current flowing through each turn is 4.0 A.
By plugging the provided values into the formula, we obtain the following result:
[tex]$$B=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2 × 0.50\ \mathrm{m}}$$[/tex]
[tex]$$\Rightarrow B = 2.0 × 10^{-4}\ \mathrm{T}$$[/tex]
Therefore, the magnetic field at a point along the axis of the coil, 0.70 m from the center is 2.0 × 10-4 T.
(b) Along the axis, the magnetic field of a coil falls off as the inverse square of the distance from the center of the coil. Let the distance of this point from the center be x meters. Therefore, the field at this point is given by:
[tex]$$\frac{B_0}{8}=\frac{\mu_0NI}{2\sqrt{x^2+r^2}}$$[/tex]
Here, B0 is the field at the center of the coil. From part (a), we know that,
[tex]$$B_0=\frac{\mu_0NI}{2r}$$[/tex]
[tex]$$\Rightarrow B_0=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2 × 0.50\ \mathrm{m}}$$[/tex]
[tex]$$\Rightarrow B_0 = 2.0 × 10^{-4}\ \mathrm{T}$$[/tex]
Substituting the values of B0 and I in the above equation and solving for x, we get:
[tex]$$\frac{2.0 × 10^{-4}\ \mathrm{T}}{8}=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2\sqrt{x^2+0.50^2\ \mathrm{m^2}}}$$[/tex]
[tex]$$\Rightarrow 2.5 × 10^{-5}\ \mathrm{T}=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{\sqrt{x^2+0.50^2\ \mathrm{m^2}}}$$[/tex]
Solving for x, we get:
[tex]$$x=\sqrt{\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2.5 × 10^{-5}\ \mathrm{T}}^2-0.50^2\ \mathrm{m^2}}$$[/tex]
[tex]$$\Rightarrow x = 0.70\ \mathrm{m}$$[/tex]
Therefore, the distance from the center of the coil at which the field magnitude is 1/8 as great as it is at the center is 0.70 m.
Learn more about magnetic field at: https://brainly.com/question/7645789
#SPJ11