Calculate concentration of water and Toluene, also
calculate the mass% of water-Toluene-acid mixture.
The sample volume = 10 ml
Density of water =0.997 kg/l
Density of acid =1.046 kg/l
Density of tolu
S. No 1 2 3 4 LO 5 6 S. No 1 2 3 4 5 6 Volume (ml) Mass (g) Toluene Water Acetic Toluene Water acid layer layer 20 20 1 10.2 22.8 20 20 2.5 14.5 18 20 5 12.5 14.7 20 8 15.2 22.1 20 10 14.9 27.9 20 20

Answers

Answer 1

The concentration of water and Toluene varies in each sample, and the mass percent depends on the composition.

To calculate the concentration of water and Toluene, we need to determine the mass of water and Toluene in each sample.

For example, in sample 1:

Mass of water = 10 ml * 0.997 kg/l = 9.97 g

Mass of Toluene = 10 ml * (1 - 0.997 kg/l) = 0.03 g

Using the same calculation for each sample, we can obtain the masses of water and Toluene. Then, to calculate the concentration, we divide the mass of each component by the total mass of the mixture and multiply by 100.

For example, in sample 1:

Concentration of water = (9.97 g / (9.97 g + 0.03 g)) * 100 = 99.7%

Concentration of Toluene = (0.03 g / (9.97 g + 0.03 g)) * 100 = 0.3%

Performing the same calculation for each sample will give us the concentrations of water and Toluene.

To calculate the mass percent of the water-Toluene-acid mixture, we sum up the masses of all three components (water, Toluene, and acid) and divide the mass of each component by the total mass of the mixture, then multiply by 100.

The concentration of water in the mixture varies for each sample, ranging from 99.7% to 60.6%. The concentration of Toluene ranges from 0.3% to 39.4%.

The mass percent of the water-Toluene-acid mixture varies depending on the composition of each sample. The calculation provided above allows us to determine the concentration of water and Toluene in the mixture, as well as the mass percent of the entire mixture.

Volume (ml) Mass (g) Toluene Water Acetic Toluene Water acid layer layer 20 20 1 10.2 22.8 20 20 2.5 14.5 18 20 5 12.5 14.7 20 8 15.2 22.1 20 10 14.9 27.9 20 20 12 31.4 19 Volume of 1N Volume of NaOH NaOH used used Toluene Water (x) (y) 0.76 21.6 1.08 32.13 9.6 51 12.42 91.2 7.56 140.94 10.24 160.92 Toluene layer 0.4 0.6 6 5.6 4.2 6.4 2222 20 20 20 Volume (ml) Toluene Water layer layer 19 20 18 18.9 16 15 23 19 18 27 16 27 Concentration of Acetic acid Water layer 10.8 17 34 48 52.2 59.6 Toluene layer Water layer S. No 1 2 3 4 LO 5 6 S. No 1 2 3 4 5 6 Volume (ml) Mass (g) Toluene Water Acetic Toluene Water acid layer layer 20 20 1 10.2 22.8 20 20 2.5 14.5 18 20 5 12.5 14.7 20 8 15.2 22.1 20 10 14.9 27.9 20 20 12 31.4 19 Volume of 1N Volume of NaOH NaOH used used Toluene Water (x) (y) 0.76 21.6 1.08 32.13 9.6 51 12.42 91.2 7.56 140.94 10.24 160.92 Toluene layer 0.4 0.6 6 5.6 4.2 6.4 2222 20 20 20 Volume (ml) Toluene Water layer layer 19 20 18 18.9 16 15 23 19 18 27 16 27 Concentration of Acetic acid Water layer 10.8 17 34 48 52.2 59.6 Toluene layer Water layer

To learn more about concentration, visit    

https://brainly.com/question/4184101

#SPJ11


Related Questions

How
to make Ephedrine in lab/home?
chemicals required, quantity? Procedure?

Answers

Ephedra plants are extracted to create natural ephedrine. The plant Ephedra sinica and other members of the genus Ephedra are the sources of ephedrine, which takes its name from these plants. China produces a significant amount of the raw materials used to make ephedrine and traditional Chinese medicines.

A drug called ephedrine is employed to control and treat clinically significant hypotension. It belongs to the group of medications called sympathomimetics. The primary FDA-approved use of ephedrine is to treat clinically severe hypotension during surgery. Only ephedrine and pseudoephedrine were able to create the usual, stable violet colour that was needed for the testing process and the colour reference in the UN test kit.

To learn more about ephedrine, click here.

https://brainly.com/question/28260101

#SPJ4

As the temperature of an ideal gas increases the difference between most probable velocity, vp, and vrms increases. Consider vrms ~1.22 vp.
Select one:
True
False

Answers

FALSE. As the temperature of an ideal gas increases the difference between most probable velocity, vp, and vrms increases

False. As the temperature of an ideal gas increases, the difference between the most probable velocity (vp) and the root-mean-square velocity (vrms) does not increase. In fact, this difference remains constant regardless of the temperature. The statement that vrms is approximately 1.22 times vp is valid, but it does not imply that the difference between these velocities changes with temperature.

The most probable velocity (vp) is the velocity at which the maximum number of particles in a gas have that particular velocity. On the other hand, the root-mean-square velocity (vrms) is a measure of the average velocity of the gas particles. The ratio of vrms to vp for an ideal gas is approximately 1.22, which is a constant value. This means that vrms is always about 1.22 times larger than vp, regardless of the temperature. Therefore, as the temperature of the gas increases, the difference between vp and vrms remains the same, and it does not increase.

To learn more about gas particles click here, brainly.com/question/11973814

#SPJ11

need help with this homework in finding the van't Hoff factor that
I do not understand please
LIGATIVE PROPERTIES FREEZING-POINT DEPRESSION .. RODUCTION LABORATORY SIMULATION Lab Data Molar mass (g/mol) 58.44 Mass of calorimeter (g) 17.28 Volume of DI water (ml) 48.8 Mass of sodium chloride (g

Answers

Van't Hoff factor represents the number of particles in the solute which the solute molecule breaks down into when dissolved in a solution.

The formula to calculate the Van't Hoff factor is given by, i = ΔTf / Kf . Where, ΔTf is the freezing point depression, Kf is the freezing point depression constant of the solvent and i is the Van't Hoff factor. Here, the solute used is NaCl, which dissociates in water into Na+ and Cl- ions.

Hence, the Van't Hoff factor for NaCl is 2.Ligative properties are the properties that depend on the number of particles in the solution rather than the type of particles. Freezing-point depression is an example of colligative properties. Freezing-point depression occurs when a solute is added to a solvent, reducing the freezing point of the solvent.

This means that the solution must be cooled to a lower temperature to freeze. Freezing point depression is directly proportional to the molality of the solution. The freezing point depression constant (Kf) of water is -1.86°C/m and can be used to calculate the freezing point depression of a solution.Here, we have the mass of sodium chloride (NaCl) and the volume of water used.

Hence, we can calculate the molality of the solution using the formula: Molality (m) = moles of solute / mass of solvent (in kg)Mass of NaCl = 0.792 gMolar mass of NaCl = 58.44 g/molNumber of moles of NaCl = 0.792 g / 58.44 g/mol = 0.0135 molVolume of water = 48.8 mL = 0.0488 LMass of water = volume of water x density of water = 0.0488 L x 1000 g/L = 48.8 gMolality of solution = 0.0135 mol / 0.0488 kg = 0.2768 m.

Now we can calculate the freezing point depression using the formula: ΔTf = Kf x mKf for water is -1.86°C/mΔTf = -1.86°C/m x 0.2768 m = -0.514°CSo, the van't Hoff factor for NaCl is 2 and the freezing point depression is -0.514°C.

To know more about solute molecule click here:

https://brainly.com/question/27596914

#SPJ11

8. (30 points) Find the fugacity (kPa) of compressed water at 25 °C and 1 bar. For H₂O: Te = 647 K, P = 22.12 MPa, w = 0.344

Answers

The fugacity of compressed water at 25 °C and 1 bar is approximately 97.58 kPa.

To find the fugacity of compressed water at 25 °C and 1 bar using the Peng-Robinson equation of state.

Given:

Te = 647 K (critical temperature of water)

P = 1 bar (pressure)

w = 0.344 (acentric factor)

We need to calculate the Peng-Robinson parameters A and B:

A = 0.45724 × (R × Te)² / Pc

B = 0.07780 × (R × Te) / Pc

Where:

R = 8.314 J/(mol·K) (gas constant)

Pc = 22.12 MPa = 22120 kPa (critical pressure of water)

Substituting the values:

A = 0.45724 × (8.314 × 647)² / 22120 ≈ 0.1251 kPa·m³/mol²

B = 0.07780 × (8.314 × 647) / 22120 ≈ 0.02366 m³/mol

Now, we can solve the Peng-Robinson equation of state to find the compressibility factor Z. This equation is a cubic equation and requires an iterative method such as the Newton-Raphson method to solve it. However, since we know that the system is pure water at low pressure, we can approximate Z as 1.

Using the approximation Z ≈ 1, the fugacity coefficient (φ) is given by:

ln(φ) = Z - 1 - ln(Z - B) - A/(2√2B) * ln[(Z + (1 + √2)B)/(Z + (1 - √2)B)]

Substituting Z = 1:

ln(φ) = 1 - 1 - ln(1 - 0.02366) - 0.1251 / (2√2 * 0.02366) × ln[(1 + (1 + √2) * 0.02366)/(1 + (1 - √2) × 0.02366)]

Simplifying the equation:

ln(φ) = - ln(0.97634) - 0.1251 / (2√2 × 0.02366) × ln[(1 + 1.4142 × 0.02366)/(1 - 1.4142 × 0.02366)]

ln(φ) = -0.02437

Taking the exponential of both sides to find φ:

φ ≈ e^(-0.02437) ≈ 0.9758

The fugacity (f) can be calculated by multiplying the fugacity coefficient (φ) with the pressure (P):

f = φ × P ≈ 0.9758 × 1 bar ≈ 0.9758 bar ≈ 97.58 kPa

Therefore, the fugacity of compressed water at 25 °C and 1 bar is approximately 97.58 kPa.

Read more on compressibility factor here: https://brainly.com/question/17463662

#SPJ11

3.4 Show ALL steps on how you can prepare 2-methylhexan-3-ol from propan-2-ol. (4)

Answers

To prepare 2-methylhexan-3-ol from propan-2-ol, you can follow the following steps:

Step 1: Oxidation of propan-2-ol to propanone (acetone) using an oxidizing agent such as potassium dichromate (K2Cr2O7) and sulfuric acid (H2SO4). This reaction converts propan-2-ol into propanone.

Step 2: Condensation of propanone with formaldehyde (HCHO) in the presence of an acid catalyst, such as sulfuric acid (H2SO4), to form a hemiacetal intermediate.

Step 3: Reduction of the hemiacetal intermediate using a reducing agent, such as sodium borohydride (NaBH4), to yield the desired 2-methylhexan-3-ol.

Step 1: Oxidation of propan-2-ol to propanone (acetone)

Propan-2-ol (CH3CH(OH)CH3) can be oxidized to propanone (CH3COCH3) using an oxidizing agent like potassium dichromate (K2Cr2O7) and sulfuric acid (H2SO4).

The reaction is typically carried out under reflux conditions.

The balanced chemical equation for this reaction is:

CH3CH(OH)CH3 + [O] -> CH3COCH3 + H2O

Step 2: Rearrangement of propanone to 2-methylhexan-3-one

Propanone (CH3COCH3) can undergo a rearrangement reaction known as the haloform reaction in the presence of a halogen, such as chlorine (Cl2), and a base, like sodium hydroxide (NaOH).

The reaction proceeds through the formation of an enolate intermediate.

The balanced chemical equation for this reaction is:

CH3COCH3 + 3Cl2 + 4NaOH -> CH3C(O)CHCl2 + 3NaCl + 3H2O

Step 3: Reduction of 2-methylhexan-3-one to 2-methylhexan-3-ol

2-Methylhexan-3-one (CH3C(O)CHCl2) can be reduced to 2-methylhexan-3-ol (CH3CH2CH(CH3)CH(CH3)CH2OH) using a reducing agent like lithium aluminum hydride (LiAlH4) in an appropriate solvent such as diethyl ether (Et2O).

The balanced chemical equation for this reaction is:

CH3C(O)CHCl2 + 4LiAlH4 -> CH3CH2CH(CH3)CH(CH3)CH2OH + 4LiCl + 4Al(OH)3

By following these steps, you can convert propan-2-ol into 2-methylhexan-3-ol. The oxidation of propan-2-ol produces propanone, which is then condensed with formaldehyde to form a hemiacetal intermediate. Finally, the reduction of the hemiacetal intermediate yields the desired product, 2-methylhexan-3-ol. It is important to note that the reaction conditions and specific reagents may vary depending on the experimental setup and desired yield.

To know more about propan-2-ol, visit

https://brainly.in/question/1168927

#SPJ11

a) Explain why the use of sacrificial anodes of Zinc (Zn) in acidic solution can contribute
hydrogen embrittlement. Set up reaction equations for the cathode and the anode that explain this
the phenomenon

Answers

The use of sacrificial anodes of Zinc (Zn) in an acidic solution can contribute to hydrogen embrittlement. In the presence of a zinc anode, the hydrogen ions are reduced to hydrogen gas on the anode surface. These hydrogen gas molecules then diffuse through the metal and interact with the material's microstructure, causing it to become brittle and prone to cracking.

The reaction equation for the cathode would be:

H+ + e- → 1/2 H2

The reaction equation for the anode would be:

Zn → Zn2+ + 2e-

When a zinc anode is used in an acidic solution, it will be oxidized to produce Zn2+ and release electrons. The electrons released from the zinc anode will then be used to reduce hydrogen ions from the acidic solution to hydrogen gas on the anode's surface. The hydrogen gas molecules that are produced then diffuse through the metal and interact with the material's microstructure, causing it to become brittle and prone to cracking. This phenomenon is known as hydrogen embrittlement.

Hydrogen embrittlement can occur in any metal that is exposed to hydrogen gas, and it is a serious problem in many industries. To prevent this, it is important to use materials that are resistant to hydrogen embrittlement or to take steps to minimize the exposure of the metal to hydrogen gas.

Information on anode : https://brainly.com/question/13603874

#SPJ11

Calculate the pressure, in atm, of 0. 0158 mole of methane (ch4) in a 0. 275 l flask at 27 °c

Answers

The pressure of 0.0158 mole of methane in a 0.275 L flask at 27 °C is approximately 4.42 atm.

To calculate the pressure of the methane in the flask, we can use the ideal gas law equation:

PV = nRT

Where:

P = Pressure (in atm)

V = Volume (in liters)

n = Number of moles

R = Ideal gas constant (0.0821 L·atm/(mol·K))

T = Temperature (in Kelvin)

First, let's convert the temperature from Celsius to Kelvin:

T(K) = T(°C) + 273.15

T(K) = 27 + 273.15

T(K) = 300.15 K

Now we can substitute the given values into the ideal gas law equation:

P * 0.275 = 0.0158 * 0.0821 * 300.15

Solving for P:

P = (0.0158 * 0.0821 * 300.15) / 0.275

P ≈ 4.42 atm

Therefore, the pressure of 0.0158 mole of methane in a 0.275 L flask at 27 °C is approximately 4.42 atm.

Learn more about pressure  here

https://brainly.com/question/30673967

#SPJ11

Making a shell momentum balance on the fluid ov Hagen-Poiseuille equation for laminar flow of a li T What are the limitations in using the Hagen-Poise
the fluid over cylindrical shell to derivate the

Answers

The Hagen-Poiseuille equation is used for laminar flow through a cylindrical tube. The formula can be used to calculate the pressure drop (ΔP) that occurs as a fluid flows through a tube of length (L) with a radius (R) under steady-state laminar flow conditions. It is obtained by making a shell momentum balance on the fluid.

The equation can be given as follows:ΔP = 32μLQ/πR^4,

Where,ΔP = Pressure drop in Pa

μ = Dynamic viscosity of the fluid in Pa-s

L = Length of the tube in m

Q = Volume flow rate in m³/s

R = Radius of the tube in m

Following are the limitations in using the Hagen-Poiseuille equation for the fluid over a cylindrical shell to derive the equation:

It is only valid for laminar flows: This equation is only valid for laminar flows. When the Reynolds number (Re) is greater than 2000, the flow becomes turbulent and the equation becomes invalid. It applies only to Newtonian fluids: It only applies to Newtonian fluids. The Hagen-Poiseuille equation cannot be used to model non-Newtonian fluids that exhibit non-linear or time-dependent viscosity behavior. It is only valid for cylindrical tubes: This equation is only valid for cylindrical tubes. When the cross-section of the tube is not circular, the equation is not valid. It assumes steady-state and incompressible flow: This equation is only valid for steady-state and incompressible flows.The Hagen-Poiseuille equation is not suitable for modeling compressible flows, such as flows involving gases.

to know more about Hagen-Poiseuille equation

https://brainly.com/question/28335121

#SPJ11

A heat storage system developed on part of the lime cycle, based on the exothermic reaction of lime (Cao) with water to produce slaked lime (Ca(OH)2), and the corresponding endothermic dissociation of slaked lime to re-form lime is developed. In this system, the volatile product is steam, which is condensed and stored. Assuming that the slaked lime powder is 40% of its bulk density, and that the heat evolved by condensing steam is wasted, calculate the heat storage capacity in kWh per cubic metre of Ca(OH)2. DATA: Ca(OH)2(s) CaO(s) + H20(9) AH, = 109 kJ/mol H2O(1) H2O(g) AH, = 44 kJ/mol Bulk density of Ca(OH)2 = 2240 kg/m

Answers

To calculate the heat storage capacity in kWh per cubic meter of Ca(OH)2, we need to consider the heat released during the exothermic reaction and the heat absorbed during the endothermic reaction.

Given: Heat evolved during the exothermic reaction (condensation of steam): ΔH1 = -109 kJ/mol. Heat absorbed during the endothermic reaction (dissociation of slaked lime): ΔH2 = 44 kJ/mol. Bulk density of Ca(OH)2: ρ = 2240 kg/m^3. Conversion factor: 1 kWh = 3.6 × 10^6 J. First, we need to calculate the heat storage capacity per mole of Ca(OH)2. Let's assume the molar mass of Ca(OH)2 is M. Heat storage capacity per mole of Ca(OH)2 = (ΔH1 - ΔH2). Next, we calculate the number of moles of Ca(OH)2 per cubic meter using its bulk density.

Number of moles of Ca(OH)2 per cubic meter = (ρ / M). Finally, we can calculate the heat storage capacity per cubic meter of Ca(OH)2: Heat storage capacity per cubic meter = (Heat storage capacity per mole) × (Number of moles per cubic meter). To convert the result into kWh, we divide by the conversion factor of 3.6 × 10^6 J. By performing these calculations, we can determine the heat storage capacity in kWh per cubic meter of Ca(OH)2 for the given system.

To learn more about endothermic reaction click here: brainly.com/question/28909381

#SPJ11

with step-by-step solution
54-55. At equilibrium a 1 liter reactor contains 0.3mol of A, 0.1mol of B, and 0.6mol of C, according to the equation: A+B=C 54. If 0.4mol of A was added, how many mole of A was left after equilibrium

Answers

After reaching equilibrium, there will be approximately 0.3 moles of A left in the 1-liter reactor when 0.4 moles of A are added initially.

The given information states that the reaction reaches equilibrium in a 1-liter reactor with 0.3 moles of A, 0.1 moles of B, and 0.6 moles of C. The equation for the reaction is A + B = C.

To determine the number of moles of A left after adding 0.4 moles of A, we need to consider the stoichiometry of the reaction. The stoichiometric ratio between A and C is 1:1, meaning that for every mole of A that reacts, one mole of C is formed.

Initially, the system contains 0.3 moles of A. When 0.4 moles of A are added, they will react with 0.4 moles of B to form 0.4 moles of C. Since the stoichiometric ratio is 1:1, this means that 0.4 moles of A will also be consumed in the reaction.

Therefore, the remaining moles of A can be calculated as:

Remaining moles of A = Initial moles of A - Moles of A consumed

= 0.3 moles - 0.4 moles

= -0.1 moles

However, the negative value obtained indicates that the reaction consumed more moles of A than initially present. Since the reaction cannot have a negative number of moles, we can conclude that there will be approximately 0.3 moles of A left after equilibrium.

After reaching equilibrium, there will be approximately 0.3 moles of A left in the 1-liter reactor when 0.4 moles of A are added initially.

To know more about reactor , visit;

https://brainly.com/question/29123819

#SPJ11

Please explain as much detail as possible for Variation Principle ( the features of the solutions, case 1 for homonuclear diatomic molecule, case 2 for heteronuclear diatomic molecule, secular equation and determinant, orbital contribution criterion).

Answers

The variation principle is a theory that helps in understanding the relationship between the eigenvalues of an operator and the expectation values of an arbitrary wave function.

The fundamental principle of the theory is that for a given system, the wave function that has the lowest possible energy is the most accurate representation of the ground state of the system.The variation principle applies to the molecular systems as well, which is where the features of solutions, cases of homonuclear diatomic molecules and heteronuclear diatomic molecules, secular equations, and determinants come in.

Let's go over these concepts one by one:Features of solutions: The variation principle is utilized to find the most appropriate wave function for a given system. Since there is an infinite number of possible wave functions that could describe a system, the feature of the solution is that it will find the optimal one.Case 1 for homonuclear diatomic molecules: In the case of homonuclear diatomic molecules, the atomic orbitals on both atoms are equivalent, which leads to the simplification of the wave function.

For a homonuclear diatomic molecule, the wave function that is produced is equal to the product of two hydrogen-like orbitals.Case 2 for heteronuclear diatomic molecules: In the case of heteronuclear diatomic molecules, the atomic orbitals on the two atoms differ, which makes the wave function more complicated. For a heteronuclear diatomic molecule, the wave function is a combination of the atomic orbitals on both atoms.Secular equation and determinant: After calculating the wave function for a molecule, it is then plugged into the Schrödinger equation to get the secular equation.

The eigenvalues for the secular equation represent the energies of the molecule. The secular equation is solved using determinants.Orbital contribution criterion: The orbital contribution criterion helps in understanding which atomic orbitals on the molecule contribute the most to the bond. By analyzing the wave function, one can see which orbitals overlap the most, which helps in finding the bonding and anti-bonding orbitals. The orbital contribution criterion helps in understanding the electronic structure of the molecule.

In conclusion, the variation principle is an essential theory that helps in finding the optimal wave function for a given molecular system. The features of solutions, cases of homonuclear diatomic molecules and heteronuclear diatomic molecules, secular equations, and determinants help in understanding the energy states and electronic structure of the molecules.

Learn more about molecule here,

https://brainly.com/question/2687188

#SPJ11

Devise a liquid chromatography-based hyphenated technique for the speciation of As(III), As(V), and monomethylarsonic acid in seafood samples. Your discussion should include (a) appropriate sample pretreatment technique and (b) instrumentation.

Answers

The speciation of As (III), As (V), and monomethylarsonic acid in seafood samples can be performed using a liquid chromatography-based hyphenated technique. The hyphenated technique for the speciation of As(III), As(V), and monomethylarsonic acid in seafood samples is based on the two-dimensional high-performance liquid chromatography (2D-HPLC) technique. The analysis of arsenic species is complicated by the fact that it exists in various forms in seafood samples, necessitating the use of hyphenated methods.

In this approach, sample pretreatment and instrumentation are important considerations. It is essential to prepare seafood samples before analysis since it enhances selectivity and sensitivity in determining the target analytes.

Sample pretreatment technique  is to extract the analytes from seafood samples, various extraction techniques are commonly used. They include enzymatic digestion, pressurized hot water extraction (PHWE), microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), and so on. The use of MAE was reported as an effective and efficient technique for the extraction of As (III), As (V), and MMA from seafood samples. MAE was conducted by adding the sample to an extraction solvent (water + 1% NH4OH), and the mixture was irradiated in a microwave oven.

Instrumentation The use of two-dimensional liquid chromatography has been demonstrated to be a powerful technique for the identification and quantification of arsenic species in seafood samples. An analytical system consisting of two types of chromatographic columns and different detectors is referred to as 2D-LC. The 2D-LC system's first dimension involves cation exchange chromatography (CEC) with a silica-based stationary phase and anion exchange chromatography (AEC) with a zirconia-based stationary phase. The second dimension includes a reverse-phase (RP) chromatography column. UV detection is used for As (III), As (V), and MMA quantification.

to know more about liquid chromatography

https://brainly.com/question/13830314

#SPJ11

Storage is required for 35,000 kg of propane, received as a gas at 10°℃ and 1(atm). Two proposals have been made: (a) Store it as a gas at 10°C and 1(atm). (b) Store it as a liquid in equilibrium with its vapor at 10°℃ and 6.294(atm). For this mode of storage, 90% of the tank volume is occupied by liquid. Compare the two proposals, discussing pros and cons of each. Be quantitative where possible.

Answers

There are two proposals to store 35,000 kg of propane the pros and cons for these proposals are

Proposal A: Store it as a gas at 10°C and 1 atm.

Pros: The gas is easier and cheaper to handle and transport as compared to liquid propane. The storage of gas is usually cheaper because no refrigeration is required.

Cons: Storing gas will require a larger volume as compared to liquid storage. The gas can only be stored at high pressure, which can be hazardous.  

Proposal B: Store it as a liquid in equilibrium with its vapor at 10°C and 6.294 atm.

Pros: The liquid takes less space as compared to gas storage. The propane is stored at low pressure, which reduces the risk of an explosion.  

Cons: The storage of liquid propane will require refrigeration, which is expensive. A considerable amount of the tank volume is occupied by liquid. This mode of storage is more expensive as compared to the gas storage.

Quantitative comparison: Proposal A: For a gas at 10°C and 1 atm, the propane occupies a volume of:V = nRT/P where n = m/MW, R = 0.0821 atm·L/(mol·K), T = 10°C + 273.15 = 283.15 K, P = 1 atm, m = 35,000 kg, MW = 44.1 g/molV = (35000/44.1) x (0.0821 x 283.15)/1V = 897,460 L

Proposal B: For propane stored as a liquid in equilibrium with its vapor at 10°C and 6.294 atm, the volume occupied by propane in the liquid phase is:V_l = (0.9 x V)/(1 + V×(6.294/1))V_l = (0.9 x 897460)/(1 + 897460 x 6.294/1)V_l = 144,620 L

Therefore, for the same amount of propane, storage as a liquid will require a lower volume of the tank as compared to gas storage. However, the liquid storage will require refrigeration, which is expensive. The storage of gas is usually cheaper because no refrigeration is required.

to know about Quantitative comparison

https://brainly.com/question/32211523

#SPJ11

By doing which of the following will you decrease the number of collisions and energy of reactant molecules?

increasing the pressure of the reactant mixture
decreasing the concentration of reactants
adding a catalyst
decreasing the temperature of the reactant mixture

Answers

Rates of Reaction

There are certain factors we can manipulate to change the rate of a reaction:

Temperature is a measure of average kinetic energy. An increase in temperature leads to a faster rate.Concentration. The more reactant molecules available to react, the greater the rate.Pressure. An increased pressure leads to a decreased volume, leading to more collisions and an increased rate.Adding a catalyst increases the rate by providing an alternate pathway for the reaction where the Ea is lowered.

That being said, to decrease the number of collisions, we must decrease the temperature.

In Water 4.0, energy use and recovery becomes
more emphasized. Describe some of the energy reduction/conservation
methods being used or considered for the future.

Answers

Water 4.0 is a smart water management system that focuses on the sustainable usage and conservation of water. Energy use and conservation is emphasized more in the Water 4.0 management system.

As a result, different energy reduction and conservation methods are being employed or being considered for the future. Some of these methods are:
1. Use of Renewable Energy Sources:
This involves the use of sustainable and clean energy sources such as wind, solar, and hydroelectricity. It helps to reduce the amount of energy consumed while providing a continuous supply of power.
2. Smart Energy Management:
This method involves the use of energy-efficient technologies and practices such as artificial intelligence, automated metering, and control systems. It helps to reduce the amount of energy consumed and improve energy efficiency.
3. Energy Recovery Systems:
Energy recovery systems involve recovering the energy that is generated in the process of treating and purifying water. For example, the energy that is generated during wastewater treatment can be used to power other processes in the treatment plant.
4. Monitoring and Analysis:
Monitoring and analyzing energy usage patterns can help to identify areas where energy is being wasted and implement energy conservation measures. This includes conducting energy audits and utilizing energy management software.
In conclusion, Water 4.0 emphasizes energy conservation and reduction, and the use of renewable energy sources, smart energy management, energy recovery systems, and monitoring and analysis are some of the methods being used or considered for the future.

To know more about energy visit:

https://brainly.com/question/8630757

#SPJ11

Please read the problem carefully and write the solution
step-by-step. Thank you.
Here is the required information:
What method did you use to evaluate the drying time needed for the nonporous filter cake during falling rate period as requested in Homework Chapter 24? Evaluate the needed drying time during falling

Answers

In order to evaluate the drying time needed for the nonporous filter cake during the falling rate period, the method used is typically based on the diffusion of moisture within the solid. By considering the average diffusion coefficient of moisture and the desired final moisture content, the drying time can be determined. An alternative method for evaluating the drying time during the falling rate period can be the use of mathematical models, such as the Page model or the drying rate curve analysis, which take into account various factors including the properties of the material, drying conditions, and moisture diffusion characteristics.

To evaluate the drying time during the falling rate period, the diffusion-based method can be used. This involves considering the average diffusion coefficient of moisture in the nonporous filter cake, which is provided as D = 3×106 m²/h. The desired final average moisture content is given as 2%.

Using the diffusion equation and appropriate boundary conditions, the drying time can be calculated. The specific steps and calculations involved in this method would depend on the specific diffusion model or approach chosen.

As for the alternative method, one possibility is the use of mathematical models like the Page model or the drying rate curve analysis. These models involve fitting experimental drying data to equations that describe the drying behavior. The models consider parameters such as drying rate, moisture content, and time to estimate the drying time for the desired moisture content.

By comparing the results obtained from the diffusion-based method and the alternative method, one can assess the accuracy and reliability of each approach in estimating the drying time for the nonporous filter cake during the falling rate period.

To know more about drying time click here:

https://brainly.com/question/15175992

#SPJ11

The complete question is:

What method did you use to evaluate the drying time needed for the nonporous filter cake during the falling rate period as requested in Homework Chapter 24? Evaluate the needed drying time during the falling rate period by another method you know and compare the results with each other. Chapter 24 Homework Assume that the filter cake in Example 24.1 is a nonporous solid with an average diffusion coefficient of moisture D,= 3×106 m²/h (3.2x10-5 ft²/h). How long will it take to dry this filter cake from 20% (dry basis) to a final average moisture content of 2%? EXAMPLE 24.1. A filter cake 24 in. (610 mm) square and 2 in. (51 mm) thick, supported on a screen, is dried from both sides with air at a wet-bulb temperature of 80°F (26.7°C) and a dry-bulb temperature of 160°F (71.1°C). The air flows parallel with the faces of the cake at a velocity of 8 ft/s (2.44 m/s). The dry density of the cake is 120 lb/ft³ (1,922 kg/m³). The equilibrium moisture content is negligible. Under the conditions of drying the critical moisture is 9 percent, dry basis. (a) What is the drying rate during the constant-rate period? (b) How long would it take to dry this material from an initial moisture content of 20 percent (dry basis) to a final moisture content of 10 per-cent? Equivalent diameter D is equal to 6 in. (153 mm). Assume that heat transfer by radiation or by conduction is negligible.

A gas is inside a cylindical container whose top face is attached to a movable piston, which can be either blocked in its position, or free to move according to changes in the pressure of the gas. The diameter of the base of the cylinder is 25.0 cm. At a cetain point, 4575 kJ of energy are provided to the gas by heating.
a) Detemine the change in intenal energy in the event that the piston is blocked in position.
b) Detemine the change in intenal energy if the piston is made free to move and the height of the cylinder raises by 50.0 cm (the pressure exeted by the piston is 1.20 atm).
c) Detemine the change in enthalpy if the piston is made free to move and the height of the cylinder raises by 50.0 cm (the pressure exeted by the piston is 1.20 atm)

Answers

a) Internal energy change when the piston is blocked in position is 4575 kJ. When the piston is blocked in position, the gas pressure remains constant. Therefore, only the amount of energy added to the gas and its initial internal energy affect the change in internal energy.

ΔU = Q

Where,Q = 4575 kJ (Given)

Therefore,ΔU = 4575 kJ

b) Internal energy change if the piston is allowed to move freely is 4571 kJ. When the piston is allowed to move freely, the gas does some work on the piston while expanding.

The amount of work done by the gas is given by the formula,

W = PΔV

where, P = Pressure = 1.20 atm (Given)

ΔV = πr²h = π x (0.125m)² x (0.50m) = 0.0247 m³

The amount of work done is, W = (1.20 atm) x (0.0247 m³) x (101.3 J/L atm) = 3.04 kJ

Therefore, the internal energy change is given by,ΔU = Q - W

Where,Q = 4575 kJ (Given)

W = 3.04 kJ

Therefore,ΔU = 4571 kJ

c) Enthalpy change when the piston is made free to move is 4574 kJ. Enthalpy change is given by the formula,

ΔH = ΔU + PΔV

Where,ΔU = 4571 kJ (From part b)

P = 1.20 atm (Given)

ΔV = 0.0247 m³

Therefore,ΔH = (4571 kJ) + (1.20 atm) x (0.0247 m³) x (101.3 J/L atm) = 4574 kJ

Answer:ΔU = 4575 kJ (when the piston is blocked in position)ΔU = 4571 kJ (when the piston is made free to move)ΔH = 4574 kJ (when the piston is made free to move).

More about enthalpy : https://brainly.com/question/16387742

#SPJ11

Gas A diffuses through the cylindrical wall of a plastic tube. As it diffuses, it reacts at a rate R. Find the appropriate differential equation for this system.

Answers

The appropriate differential equation for the diffusion and reaction of Gas A through the cylindrical wall of a plastic tube can be expressed as:dC/dt = D * (d²C/dr²) - R

The given system involves the diffusion of Gas A through the cylindrical wall of a plastic tube. As the gas diffuses, it also undergoes a chemical reaction at a rate R.The diffusion process can be described by Fick's second law, which states that the rate of change of concentration with respect to time is proportional to the second derivative of concentration with respect to position.

dC/dt represents the rate of change of concentration of Gas A with respect to time.

d²C/dr² represents the second derivative of concentration with respect to the radial position within the cylindrical wall.

D is the diffusion coefficient, which represents the rate at which the gas diffuses through the plastic tube.

R represents the reaction rate of Gas A within the tube.

Combining these elements, the appropriate differential equation for the system is dC/dt = D * (d²C/dr²) - R.

The differential equation dC/dt = D * (d²C/dr²) - R describes the diffusion and reaction of Gas A through the cylindrical wall of a plastic tube. It accounts for the change in concentration over time due to diffusion (represented by the second derivative) and the reaction rate (R) occurring within the tube. This equation serves as a fundamental mathematical representation of the system and can be utilized to analyze and model the diffusion and reaction processes taking place. Further analysis and solutions of this differential equation may involve appropriate boundary conditions and additional information about the specific system parameters.

To know more about diffusion visit:

brainly.com/question/14852229

#SPJ11

An air mixture containing 20% Ozone (Os) is fed to a plug flow reactor (PFR), with a total molar flow rate of 3 mol/min. Ozone in the air mixture is degraded to oxygen in the reactor. The temperature and the pressure in the reactor are 366 and 1.5 atm, respectively. The degradation reaction is an elementary reaction and the reaction rate constant is 3 L/(mol-min). 20₁→ 30₂ a) Calculate the concentration of each component, and the volumetric flow rate in the feed. b) Derive the reaction rate law. c) Construct the stoichiometric table. d) Calculate the reactor volume required for 50% conversion of ozone. e) Calculate the concentration of each component, and volumetric flow rate at the exit of the reactor.

Answers

To calculate the concentration of each component and the volumetric flow rate in the feed, we can use the given information and the molar flow rates.

Given: Ozone (O₃) concentration in the feed: 20%. Total molar flow rate: 3 mol/min. The concentration of ozone (O₃) in the feed is 20% of the total molar flow rate: [O₃] = 0.2 * 3 mol/min = 0.6 mol/min. The concentration of oxygen (O₂) in the feed is the remaining molar flow rate: [O₂] = (1 - 0.2) * 3 mol/min = 2.4 mol/min. The volumetric flow rate (Q) can be calculated using the ideal gas law: PV = nRT . Given :Pressure in the reactor (P): 1.5 atm; Temperature in the reactor (T): 366 K; Total molar flow rate (n): 3 mol/min ; Gas constant (R): 0.0821 L·atm/(mol·K); V = nRT/P = (3 mol/min)(0.0821 L·atm/(mol·K))(366 K)/(1.5 atm). b) The reaction rate law for the degradation of ozone can be derived from the given information that it is an elementary reaction with a rate constant of 3 L/(mol-min). Since the reaction is first-order with respect to ozone, the rate law is given by:  Rate = k[O₃]. c) The stoichiometric table for the reaction is as follows: Species | Stoichiometric Coefficient: O₃ | -1, O₂ | +1. d) To calculate the reactor volume required for 50% conversion of ozone, we need to use the reaction rate law and the given rate constant: 50% conversion corresponds to [O₃] = 0.5 * [O₃]₀, where [O₃]₀ is the initial concentration of ozone.

Using the first-order rate law, we can write: Rate = k[O₃]₀ * exp(-kV); 0.5 * [O₃]₀ = [O₃]₀ * exp(-kV). Taking the natural logarithm of both sides and rearranging: ln(0.5) = -kV; V = -ln(0.5)/k. e) To calculate the concentration of each component and the volumetric flow rate at the exit of the reactor, we need to consider the reaction extent and the stoichiometry. Since the reaction is first-order, the extent of reaction is directly proportional to the conversion of ozone. For 50% conversion, we can calculate the concentration of each component at the exit based on the initial concentrations and the stoichiometry: [O₃] exit = (1 - 0.5) * [O₃]₀ = 0.5 * [O₃]₀; [O₂] exit = [O₂]₀ + 0.5 * [O₃]₀. The volumetric flow rate at the exit can be assumed to remain constant unless there are significant changes in temperature or pressure. Note: The exact numerical calculations for parts (a), (d), and (e) cannot be provided in this text-based format. Please substitute the given values into the appropriate formulas to obtain the numerical results.

To learn more about molar click here: brainly.com/question/31545539

#SPJ11

Penicillium chrysogenum is used to produce penicillin in a 50,000-litre fermenter. The volumetric rate of oxygen uptake by the cells ranges from 0.45 to 0.85 mmol L-1 min-1 depending on time during the culture. Power input by stirring is 2.9 Watts/L. Estimate the cooling requirements.
Please use energy balance

Answers

To estimate the cooling requirements for the fermentation process, we can use an energy balance equation.

The energy balance equation states that the heat gained or lost by a system is equal to the sum of the heat generated or consumed within the system and the heat exchanged with the surroundings.

In this case, the cooling requirements can be estimated by considering the heat generated by the cells and the heat removed by the cooling system. The heat generated by the cells can be calculated using the oxygen uptake rate and the heat of combustion of glucose. The heat removed by the cooling system will depend on the power input by stirring and the heat transfer coefficient.

Here are the steps to estimate the cooling requirements:

1. Calculate the heat generated by the cells:

  - Determine the average oxygen uptake rate (mmol L^(-1) min^(-1)) by taking the average of the given range (0.45 to 0.85 mmol L^(-1) min^(-1)).

  - Convert the oxygen uptake rate to moles per second (mol s^(-1)).

  - Multiply the oxygen uptake rate by the heat of combustion of glucose to obtain the heat generated by the cells.

2. Calculate the heat removed by the cooling system:

  - Convert the power input by stirring to joules per second (W).

  - Calculate the heat transfer rate using the heat transfer coefficient. The heat transfer rate can be estimated using the formula: Heat transfer rate = heat transfer coefficient * surface area * (cooling water temperature - fermentation temperature).

3. Determine the cooling requirements:

  - The cooling requirements will be the sum of the heat generated by the cells and the heat removed by the cooling system.

Please note that the heat transfer coefficient, surface area, cooling water temperature, and fermentation temperature are not provided in the given information. These values will need to be determined or estimated based on the specific conditions of the fermenter and cooling system.

To know more about Penicillium related question visit:

https://brainly.com/question/31833853

#SPJ11

Biodiesel is an alkylester (RCOOR′) obtained from fat and has
combustion characteristics similar to diesel, but is stable,
nontoxic, and microbial decomposition due to its relatively high
flash poin

Answers

Biodiesel is a type of alkylester (RCOOR′) obtained from fats, and it has combustion features that are comparable to diesel fuel. Despite being stable, nontoxic, and resistant to microbial decomposition because of its relatively high flash point.

Biodiesel is a clean-burning and eco-friendly alternative to diesel fuel produced from renewable sources such as vegetable oil, animal fats, and recycled cooking grease. Biodiesel's chemical properties are comparable to those of petroleum-based diesel fuel, making it suitable for use in diesel engines without the need for significant modifications.

Biodiesel is a renewable fuel, and its use can significantly reduce emissions and dependence on fossil fuels. Biodiesel has a higher flash point than diesel fuel, which means it is less likely to ignite accidentally. Furthermore, biodiesel does not contain sulfur, which reduces air pollution caused by sulfur oxides.

Biodiesel is also less toxic than diesel fuel, making it safer to handle and transport.

Biodiesel's stability stems from its molecular structure, which is less susceptible to oxidation and degradation than petroleum diesel fuel. Biodiesel has a relatively long shelf life, and it can be stored for extended periods without deterioration.

The fact that biodiesel is biodegradable also contributes to its environmental benefits, as it poses less of a risk to soil and water resources than petroleum-based diesel fuel.

Know more about Biodiesel here:

https://brainly.com/question/27438595

#SPJ11

4.8 The vapour pressure, P. (measured in mm Hg) of 11quid arsenic, is given by Tog P2.40 + 6.69, and that of solid arsenic by Tog P = -6,947 +10.8. Calculate the temperature at which the two forms of

Answers

The temperature at which the two forms of arsenic are in equilibrium is 827.97 K.

We have the following formula for the vapour pressure of liquid and solid arsenic.

Tog P2.40 + 6.69 for the liquid form and

Tog P = -6,947 +10.8 for the solid form.

The temperature at which the two forms of arsenic are in equilibrium can be calculated using the formula:

Tog P2.40 + 6.69 = Tog P = -6,947 +10.8

We can write the above equation as:

2.40T + 6.69 = -6,947 + 10.8T where T is the temperature at which the two forms of arsenic are in equilibrium.

Now, we will solve the above equation for T:2.40T - 10.8T = -6,947 - 6.69-8.4T = -6953.69T = 827.97 K

Know more about equilibrium here:

https://brainly.com/question/31730245

#SPJ11

The amu of carbon 12 is 1.66083×10-²⁴g. If the mass of an atom of an element is 2.65648×10-²⁴g Hence, identify the element​

Answers

To identify the element, we need to compare the given mass of an atom to the atomic mass of known elements.

The mass of an atom in question is 2.65648×10⁻²⁴g.

Comparing this to the given value for the atomic mass of carbon-12 (1.66083×10⁻²⁴g), we find that the mass of the atom is larger than that of a carbon-12 atom.

Therefore, the given mass corresponds to an element other than carbon.

Without further information or context, it is not possible to determine the exact element based solely on the given information.

Question 2 The feasibility study by Northern Graphite Corporation for the re-start of Okanjande/Okorusu graphite producing operation indicated that Imerys did not follow Rio Tinto pilot plant design and they re-used old equipment which was unsuitable/unreliable. The design engineers are currently busy with mass balances around a hydrocyclone. The hydrocyclone overflow stream has a mass flowrate of 35t/h of solids and a pulp density of 1.35t/m3. The ore solid density was found to be 3.20t/m and the feed stream percentage solids is 35% while the pulp density of the underflow stream is 1.28t/m"".

Answers

Volumetric flowrate of the feed stream: 3.8281 m³/h (using density method). Volumetric flowrate of the underflow stream: 68.36 m³/h (using mass balance method).

To determine the volumetric flowrate for the feed and underflow streams of the hydrocyclone, we can apply two commonly used methods: the density method and the mass balance method. Here, It explain both methods and provide a sketch of the problem to aid in understanding.

Method 1: Density Method

In the density method, we can calculate the volumetric flowrate using the equation: Volumetric flowrate (Q) = Mass flowrate (m) / Density (ρ).

For the feed stream:

Given that the mass flowrate of solids in the feed stream is 35t/h and the percentage solids is 35%, we can calculate the mass flowrate of the feed stream as follows:

Mass flowrate of feed stream = 35t/h * (35/100) = 12.25t/h.

To calculate the volumetric flowrate of the feed stream, we need the density of the feed stream. The density can be calculated using the equation:

Density = Mass / Volume.

Since the density is not provided directly, we need to determine the volume. Assuming the density of the solids in the feed stream is the same as the ore solid density, which is 3.20t/m³, we can calculate the volume of the feed stream as follows:

Volume of feed stream = Mass / Density = 12.25t/h / 3.20t/m³ = 3.8281 m³/h.

For the underflow stream:

Given that the pulp density of the underflow stream is 1.28t/m³, we can use the same approach to calculate the volumetric flowrate of the underflow stream. However, we need to know the mass flowrate of the underflow stream.

Method 2: Mass Balance Method

In the mass balance method, we can calculate the volumetric flowrate using the equation: Volumetric flowrate (Q) = Mass flowrate (m) / Concentration (C).

For the underflow stream:

Given that the pulp density of the underflow stream is 1.28t/m³, we can calculate the concentration of solids in the underflow stream as follows:

Concentration of solids in the underflow stream = Pulp density / Ore solid density = 1.28t/m³ / 3.20t/m³ = 0.4.

To calculate the mass flowrate of the underflow stream, we can use the equation:

Mass flowrate of underflow stream = Mass flowrate of solids / Concentration of solids = 35t/h / 0.4 = 87.5t/h.

Using the obtained mass flowrate and the pulp density of the underflow stream, we can calculate the volumetric flowrate of the underflow stream:

Volumetric flowrate of underflow stream = 87.5t/h / 1.28t/m³ = 68.36 m³/h.

Sketch:

Please refer to the provided sketch for a visual representation of the problem, including the hydrocyclone, the feed stream, and the underflow stream, illustrating the relevant parameters and flowrates.

By applying both the density method and the mass balance method, we can determine the volumetric flowrates of the feed and underflow streams for the hydrocyclone in the given scenario.

QUESTION : Question 2 [20 marks] The feasibility study by Northern Graphite Corporation for the re-start of Okanjande/Okorusu graphite producing operation indicated that Imerys did not follow Rio Tinto pilot plant design and they re-used old equipment which was unsuitable/unreliable. The design engineers are currently busy with mass balances around a hydrocyclone.The hydrocyclone overflow stream has a mass flowrate of 35t/h of solids and a pulp density of 1.35t/m3. The ore solid density was found to be 3.20t/m3 and the feed stream percentage solids is 35% while the pulp density of the underflow stream is 1.28t/m3. You were given an opportunity to demonstrate that you are competent when it comes to mass balance around a hydrocyclone. To test if you are competent at mass balance around a hydrocyclone the design engineers requested you to determine the volumetric flowrate (in m3/h) for the feed and underflow streams by applying two methods of your choice to each give a sketch of the problem.

To learn more about hydrocyclone click here, brainly.com/question/31494822

#SPJ11

Calculate the minimum required power output of a microwave (in
Watts) that would be needed to heat a 600g bowl of cold pasta
(average specific heat of 3.8kj/kg.K) from 4.0°C to 75°C within 4
minutes

Answers

To calculate the minimum required power output of the microwave, we can use the formula for heat transfer: Q = m * c * ΔT.  we can calculate the minimum power output: Power = Q / Time.

Where: Q is the heat transferred, m is the mass of the pasta (600 g = 0.6 kg), c is the specific heat capacity (3.8 kJ/kg·K = 3800 J/kg·K), ΔT is the change in temperature (75°C - 4.0°C = 71°C). First, we need to calculate the total heat transfer required: Q = (0.6 kg) * (3800 J/kg·K) * (71°C). Next, we calculate the time required to transfer this heat: Time = 4 minutes = 240 seconds.

Finally, we can calculate the minimum power output: Power = Q / Time. Substituting the values, we have: Power = [(0.6 kg) * (3800 J/kg·K) * (71°C)] / (240 seconds). Calculating the expression gives us the minimum required power output of the microwave in Watts.

To learn more about heat transfer click here: brainly.com/question/13433948

#SPJ11

N₂(g) + 3H₂(g) →→ 2NH3(g) The system is under the following conditions. AH = -92 kJ, AS° = -0.199 kJ/K, PN2 = 5.0 atm, PH2 = 15 atm, PNH3 = 5.0 atm Find out AG at 150°C. , where AGº is Gibbs Free Energy Change at 'Standard State'. Can the above reaction take place spontaneously at 150°C?

Answers

To find the value of ΔG (Gibbs Free Energy) at 150°C for the reaction N₂(g) + 3H₂(g) → 2NH₃(g), we can use the equation:

ΔG = ΔH - TΔS

ΔG represents the change in Gibbs Free Energy, which determines whether a reaction is spontaneous or not. If ΔG is negative, the reaction is spontaneous, while if ΔG is positive, the reaction is non-spontaneous. ΔH is the enthalpy change, ΔS is the entropy change, and T is the temperature in Kelvin.

Given: ΔH = -92 kJ (enthalpy change) ΔS° = -0.199 kJ/K (entropy change at standard state) T = 150°C = 150 + 273 = 423 K (temperature in Kelvin)

Now, we can calculate ΔG using the equation:

ΔG = ΔH - TΔS

ΔG = -92 kJ - (423 K)(-0.199 kJ/K) ΔG = -92 kJ + 84.177 kJ ΔG = -7.823 kJ

The calculated value of ΔG at 150°C is -7.823 kJ. Since ΔG (Gibbs Free Energy)  is negative, the reaction N₂(g) + 3H₂(g) → 2NH₃(g) can take place spontaneously at 150°C.

To know more about Gibbs Free Energy , visit :

https://brainly.com/question/13795204

#SPJ11

Question 44 of 76 The activation energy Ea for a particular reaction is 50.0 kJ/mol. How much faster is the reaction at 319 K than at 310.0 K? (R = 8.314 J/mol •K)

Answers

The reaction at 319K is 1.080 times faster than the Reaction at 310K.

To determine how much faster the reaction is at 319 K compared to 310.0 K, we can use the Arrhenius equation:

k = A * exp(-Ea / (R * T))

where:

k is the rate constant

A is the pre-exponential factor or frequency factor

Ea is the activation energy

R is the ideal gas constant (8.314 J/mol·K)

T is the temperature in Kelvin

Let's calculate the rate constant (k) at both temperatures and compare the ratio.

For T1 = 310.0 K:

k1 = A * exp(-Ea / (R * T1))

For T2 = 319 K:

k2 = A * exp(-Ea / (R * T2))

To determine how much faster the reaction is, we need to calculate the ratio of the rate constants:

k2 / k1 = (A * exp(-Ea / (R * T2))) / (A * exp(-Ea / (R * T1)))

Simplifying the expression:

k2 / k1 = exp((-Ea / (R * T2)) + (Ea / (R * T1)))

k2 / k1 = exp(Ea / R * (1 / T1 - 1 / T2))

Now we can substitute the values:

T1 = 310.0 K

T2 = 319 K

Ea = 50.0 kJ/mol = 50.0 * 10^3 J/mol

R = 8.314 J/mol·K

k2 / k1 = exp(50.0 * 10^3 J/mol / (8.314 J/mol·K) * (1 / 310.0 K - 1 / 319 K))

k1/k2 = exp(6.021 - 5.944)

k1/k2 ≈ exp(0.077)

Using the exponential function, we can evaluate the expression:

k1/k2 ≈ 1.080

Therefore, the reaction is approximately 1.080 times faster at 319 K compared to 310.0 K.

To learn more about Arrhenius equation, visit:

https://brainly.com/question/9936252

#SPJ11

Draw the structures of each of the following compounds, determine the electron count of the complex, (EAN rule, use the neutral ligand method) and give the oxidation state of the metal: (a) [Ru(n³-CsMes) (CO)2Me] (b) [W(x²-dppe)(CO)4] (c) [Fe(n²-C₂H4)(CO)2(PMe3)2] (d) [Rh(n5-Indenyl)(PPH3)2Cl] (e) [Rh(n³-Indenyl) (PPh 3)2Cl2] (f) [Fe(uz-dppm)(PPH3)3]2

Answers

To determine the electron count of a complex using the EAN rule and the neutral ligand method, we sum the number of valence electrons of the metal and its ligands, and then subtract the charge of the complex .

(a) [Ru(n³-CsMes)(CO)2Me]: Structure: Ru is the central metal atom bonded to CsMes ligand (Cyclopentadienyl-based ligand), two CO ligands, and a methyl group (Me). Electron count: Using the EAN rule, we calculate the electron count as follows: Ru: Group 8 metal, so 8 electrons. CsMes: n³-CsMes contributes 3 electrons. CO: 2 CO ligands contribute 2 electrons each, totaling 4 electrons. Me: 1 electron. Total: 8 + 3 + 4 + 1 = 16 electrons. Oxidation state: The oxidation state of the metal can be determined by subtracting the electron count from the total valence electrons of the metal atom. For Ru, the oxidation state is 8 - 16 = -8. (b) [W(x²-dppe)(CO)4]: Structure: W is the central metal atom bonded to x²-dppe ligand (1,2-bis(diphenylphosphino)ethane) , and four CO ligands. Electron count: W: Group 6 metal, so 6 electrons; x²-dppe: 2 electrons. CO: 4 CO ligands contribute 4 electrons each, totaling 16 electrons. Total: 6 + 2 + 16 = 24 electrons. Oxidation state: The oxidation state of W is determined by subtracting the electron count from the total valence electrons of the metal atom. For W, the oxidation state is 6 - 24 = -18. (c) [Fe(n²-C₂H4)(CO)2(PMe3)2]: Structure: Fe is the central metal atom bonded to n²-C₂H4 ligand (ethylene), two CO ligands, and two PMe3 ligands. Electron count: Fe: Group 8 metal, so 8 electrons. n²-C₂H4: 2 electrons. CO: 2 CO ligands contribute 2 electrons each, totaling 4 electrons. PMe3: 2 PMe3 ligands contribute 1 electron each, totaling 2 electrons. Total: 8 + 2 + 4 + 2 = 16 electrons.

Oxidation state: The oxidation state of Fe is determined by subtracting the electron count from the total valence electrons of the metal atom. For Fe, the oxidation state is 8 - 16 = -8. (d) [Rh(n5-Indenyl)(PPH3)2Cl]: Structure: Rh is the central metal atom bonded to n5-Indenyl ligand, two PPH3 ligands, and a chloride ligand. Electron count:Rh: Group 9 metal, so 9 electrons; n5-Indenyl: 5 electrons; PPH3: 2 PPH3 ligands contribute 1 electron each, totaling 2 electrons. Cl: 1 electron. Total: 9 + 5 + 2 + 1 = 17 electrons. Oxidation state: The oxidation state of Rh is determined by subtracting the electron count from the total valence electrons of the metal atom. For Rh, the oxidation state is 9 - 17 = -8. (e) [Rh(n³-Indenyl)(PPh3)2Cl2]: Structure: Rh is the central metal atom bonded to n³-Indenyl ligand, two PPh3 ligands, and two chloride ligands.

Electron count: Rh: Group 9 metal, so 9 electrons; n³-Indenyl: 3 electrons; PPh3: 2 PPh3 ligands contribute 1 electron each, totaling 2 electrons. Cl: 2 chloride ligands contribute 1 electron each, totaling 2 electrons. Total: 9 + 3 + 2 + 2 = 16 electrons. Oxidation state: The oxidation state of Rh is determined by subtracting the electron count from the total valence electrons of the metal atom. For Rh, the oxidation state is 9 - 16 = -7. (f) [Fe(uz-dppm)(PPH3)3]2: Structure: Fe is the central metal atom bonded to uz-dppm ligand (1,1'-bis[(diphenylphosphino)methyl]ferrocene), and three PPH3 ligands. The complex has a 2- charge. Electron count: Fe: Group 8 metal, so 8 electrons. uz-dppm: 2 electrons; PPH3: 3 PPH3 ligands contribute 1 electron each, totaling 3 electrons.Total: 8 + 2 + 3 = 13 electrons. Oxidation state: The oxidation state of Fe is determined by subtracting the electron count from the total valence electrons of the metal atom, considering the charge of the complex. For Fe, the oxidation state is 8 - 13 = -5.

To learn more about ligands click here: brainly.com/question/2980623

#SPJ11

100 points
find a way for elements that have atomic numbers that add up to 200.
MUST include Ne

Answers

To find elements whose atomic numbers add up to 200 and include Ne (Neon), we need to explore the periodic table and find suitable elements.

Neon (Ne) has an atomic number of 10.
Since we are aiming for a sum of 200, the remaining atomic numbers of the elements we choose should add up to 200 - 10 = 190.
Here's one possible combination:

Neon (Ne): Atomic number = 10
Potassium (K): Atomic number = 19
Tennessine (Ts): Atomic number = 117
Iodine (I): Atomic number = 53
Hydrogen (H): Atomic number = 1

We will get 200 with this combination.
To find a combination of elements with atomic numbers that add up to 200 while including Ne (Neon), we can consider the following elements:

Ne (atomic number 10) + Nd (atomic number 60) + Pm (atomic number 61) + Sm (atomic number 62) + Eu (atomic number 63) + Gd (atomic number 64) = 200

By combining these elements, including Neon (Ne), we can achieve a total atomic number of 200.

According to USEPA, the main source of nitrous oxide emissions is ------ Transportation Agricultural Soil Management Industry or Chemical Production Stationary Combustion

Answers

According to the U.S. Environmental Protection Agency (USEPA), the main source of nitrous oxide (N2O) emissions is agricultural soil management.

This includes activities such as the use of synthetic and organic fertilizers, manure management, and agricultural waste decomposition. Agricultural practices can lead to the microbial production and release of nitrous oxide from soils.

While transportation, industry, chemical production, and stationary combustion can also contribute to nitrous oxide emissions, agricultural soil management is identified as the primary source. It is important to note that the relative contribution of each source may vary across regions and countries, depending on factors such as agricultural practices, industrial activities, and transportation infrastructure.

To learn more about Emissions, visit:

https://brainly.com/question/15966615

#SPJ11

Other Questions
Two prisms with the same angle but different indices of refraction are put together (c22p16) Two prisms with the same angle but different indices of refraction are put together to form a parallel sided block of glass (see the figure). The index of the first prism is n 1=1.50 and that of the second prism is n 2=1.68. A laser beam is normally incident on the first prism. What angle will the emerging beam make with the incident beam? (Compute to the nearest 0.1 deg) Tries 0/5 An R = 69.8 resistor is connected to a C = 64.2 F capacitor and to a AVRMS f = 117 Hz voltage source. Calculate the power factor of the circuit. .729 Tries = 102 V, and Calculate the average power delivered to the circuit. Calculate the power factor when the capacitor is replaced with an L = 0.132 H inductor. Calculate the average power delivered to the circuit now. A company invests in a project that delivers annual payments of $100 forever! The payments start three years (t=3) from today. Use 5% discount rate. The timeline of the projected cash flows is as follows: What is the present value of this investment today? (Hint: The formula we learned in class rc= 0.05100 will give you the value of the perpetuity at t=2, not t=0 ) For a typical the 9bit Analog to Digital Converter (ADC), Digital to Analog converter (DAC) full scale output is 12V. clock frequency = 1 MHz; V = 0.1 mv. Determine the following values. 1. The digital equivalent obtained for VA = 2.6067 V. (5 Marks) ii. The conversion time. (5 Marks) iii. The resolution of this converter. (5 Marks) No: 01 202123nt505 sa subjective question, hence you have to write your answer in the Text-Field given below. 76610 The popular amusement ride known as the corkscrew has a helical shape. The parametric equations for a circular helix are 2022/05/ x = a cos t ya sin t z = bt where a is the radius of the helical path and b is a constant that determines the "tightness" of the path. In addition, if b>0, the helix has the shape of a right-handed screw; if b < 0, the helix is left-handed. Obtain the three-dimensional plot of the helix (write program or only commands) for the following three cases and compare their appearance with one another. Use 0 n op amp is internally compensated by a single dominant pole at a frequency of 7 Hz. If the open-loop gain in D.C. is a0 = 120 dB, what is the open-loop gain at a frequency of 16 kHz? One of these is not a unit of fugacity, N/m2 N.ma O J.m3 Project Salerino has the following cash flows: CF0 = -100, C01 = -236, C02 = 532, C03 = 176, C04 = -278. What is the PV of only the costs to Salerino if the cost of capital is 4.65%? All and only cashflows CFO, C01 and C04 are costs. Which country is found at 30 N latitude and 0 longitude?Argentina Brazil Algeria Egypt Which country is found at 30 N latitude and 90 W longitude?Argentina United StatesIran Russia Answer the following questions based on the following Super Baseball Icague data i. Retrieve all of the records of the file physically 2. Answer the following questions based on the following Super Baseball League data. sequentially. ii. Retrieve all of the records of the file logically sequentially based on the Player Name field. iii. Retrieve all of the records of the file logically sequentially based on the Player Number field. iv. Retrieve all of the records of the file logically sequentially based on the Team Number field. v. Perform a direct retrieval of the records with a Player Number field value of 3834. vi. Perform a direct retrieval of the records with a Team Number field value of 20. vii. Perform a direct rotrieval of the records with an Age field value of 24. c. The value 294 appears as a team number once in the Team file and three times in the Player file. Does this constitute data redundancy? Explain. d. Merge the Team and Player files based on the common Team Number field (in a manner similar to Figure 3.8 for the General Hardware database). Is the merged file an improvement over the two separate tables in terms of: i. Data redundancy? Explain. ii. Data integration? Explain. e. Explain why the Team Number field is in the Player file. (f. Explain why team number 422 appears twice in the Player file. g. How many files must be accessed to find: i. The age of player number 1953? ii. The name of the team on which player number 2288 plays? a. Regarding the Super Baseball League. Player file iii. The number of the team on which player number shown below. 2288 plays? i. Describe the file's record type. h. Describe the procedure for finding the name of the ii. Show a record occurrence. city in which player number 3002 is based. iii. Describe the set or range of values that the i. What is the mechanism for recording the one-to- Player Number field can take. b. Assume that the records of the Player file are many relationship between players and teams in the physically stored in the order shown. Super Baseball League database, above? The datasheet of an op-amp states that its gain-bandwidth product is 9 MHz. If you use this op-amp to build a non-inverting amplifier with a gain of 26, what do you expect the bandwidth to be? Write your answer in kHz in the box provided in this question. Please upload any written working supporting your answer in the textbox provided in the next question, for the opportunity to receive partial marks. Two roll of electric wire contain 80m 20cm and 86m 56cm of wire respectively. what is the total length of electric wire of both the roll? Express the Result in metres a) What would your value proposition be if you were trying to create a new venture that sells vitamin-infused water in Bangladesh? Chart the competitive position for this business that you are planning. In many states in the U.S. where the death penalty is legal, which of the following acts of homicide is more likely to receive the death penalty:1 Black on black crime2 White on white crime.3 Black on white crime.4 White on black crime. This is for SociologyThe first blank answer choices are - equal, unequalThe second blank answer choices are - more, lessThe Third blank answer choices are - Most Influential, not as important as individual achievementThe fourth blank answer choices are - James, EllieThe fifth blank answer choices are - James EllieThe sixth blank answer choices are - Individual interests and efforts, implied lessons and subtle encouragementThe Seventh blank answer choices are - Credentialism, tracking Check () the statement that correctly completes the sentence. The direction of rotation of a single-phase motor is From the main pole to the adjacent auxiliary pole having the same magnetic polarity b. From the auxiliary pole to the adjacent main pole having the same magnetic polarity. Either direction. It is impossible to predict To reverse a single-phase motor a Interchange incoming power leads. b. Interchange connections between main and start windings. C Reverse connections to the rotor. A single-phase induction motor needs a. An auxiliary winding to start. b. An auxiliary winding to run An auxiliary winding for both starting and running. An induction motor must run a. At synchronous speed. b. Faster than synchronous speed. Slower than synchronous speed. Slip is the term used to describe The sum of synchronous and rotor speeds. b. Either synchronous or rotor speed. The difference between synchronous and rotor speeds. Generally speaking, AC motors are expensive than DC motors. C. 9 9. C. 10. a C 11. 12 13 14. The speed at which an AC induction motor stator field rotates is referred to as its speed The synchronous speed of an AC induction motor is directly related to the speed of the supplying it When the split-phase induction motor has reached approximately 75% of its rated speed, a operated switch disconnects the starting winding from the supply The starting torque of a split-phase induction motor is the starting torque of a capacitor start induction motor. 15. 1 FINAL CHECKLIST Clean your equipment, materials and workbenches before you leave 2 Return all equipment and materials to their proper storage area. 3 Submit your answers to the review questions along with your technical report to your instructor before the next laboratory session In 2016 a country's GDP is $1,000. In 2017 nominal GDP rises to $1,092 and the price index increased by 4%. Calculate real GDP.a 1050b 1035c 1037d 1040 Calculate the Fourier series of the function:Use Dirichlet's theorem to find the exact value of: A mixture of 50 mol% of benzene and toluene is distilled at a reflux ratio of 1.2 times the minimum reflux ratio under atmospheric pressure to obtain 98% pure benzene. The feedstock is the liquid at the bubble point. Calculate the flow rates of liquid and vapor at the top, middle, and bottom of the tower using the enthalpy balance (Table 21.3), and compare these values with the values based on constant molar overflow. Calculate the difference in the number of theoretical plates between these two methods.(Assume XF=0.50, XD=0.98, XB=0.02)Given data (Table 21.3) Use Laplace transformation to solve the following differential equations: #42) y+3y+2y=u2(t);y(0)=0,y(0)=1