Your car's 32.0 W headlight and 2.60 kW starter are ordinarily connected in parallel in a 12.0 V system. What power (in W) would one headlight and the starter consume if connected in series to a 12.0 V battery? (Neglect any other resistance in the circuit and any change in resistance in the two devices. Answer to the nearest 0.1 W.)

Answers

Answer 1

The given value of the power of a car's 32.0 W headlight and 2.60 kW starter connected in parallel in a 12.0 V system is to be used to find the power consumed by one headlight and the starter when connected in series to a 12.0 V battery. This is to be calculated without taking any other resistance into account and any change in resistance in the two devices.The power of the car's headlight and starter when connected in parallel is to be found initially.

Since the power of the headlight is given in watts and that of the starter in kilowatts, the latter is to be converted into watts before summing up with the former.

∴ power when connected in parallel = 32.0 W + 2.60 kW × 1000 W/kW = 32.0 W + 2600 W = 2632 W.

When the two devices are connected in series, the total voltage across the two devices = 12 V + 12 V = 24 V.

Let R be the resistance of one headlight. Since the resistance is the same for both devices in the parallel connection, the combined resistance of the two devices = R/2. Let I be the current through each device when connected in series, then

I = 24 V/R.

By the law of conservation of energy, the power of each device when connected in series = 12 V × I. Therefore, the power consumed by one headlight and the starter when connected in series to a 12.0 V battery is given by:

P = 12 V × I = 12 V × 24 V/R = 288 V²/R watts

Hence, the power consumed by one headlight and the starter when connected in series to a 12.0 V battery is 288 V²/R, where R is the resistance of one headlight.

Answer: 691.2 W.

Learn about power here: https://brainly.com/question/11569624

#SPJ11


Related Questions

Two charges are placed on the x-axis: a charge of +12.6nC at the origin and a charge of -31.3nC placed at x=24cm. What is the electric field vector on the y-axis at y=31cm?

Answers

The electric field vector on the y-axis at y = 31 cm can be calculated by considering the electric field contributions from each charge at their respective positions.

The electric field due to a point charge can be determined using the formula E = kQ/r^2, where E is the electric field, k is Coulomb's constant, Q is the charge, and r is the distance from the charge. To calculate the electric field at y = 31 cm on the y-axis, we need to consider the electric field contributions from both charges. The electric field due to the positive charge at the origin can be calculated using the formula E1 = kQ1/r1^2, where Q1 is the charge (+12.6 nC) and r1 is the distance from the charge (which is the y-coordinate, 31 cm in this case).

Similarly, the electric field due to the negative charge at x = 24 cm can be calculated using the formula E2 = kQ2/r2^2, where Q2 is the charge (-31.3 nC) and r2 is the distance from the charge (which is the distance between the charge and the point on the y-axis, calculated as √(x^2 + y^2)).

Learn more about electric fields here:

https://brainly.com/question/11482745

#SPJ11

heavy uniform beam of mass 25 kg and length 1.0 m is supported at rest by two ropes, as shown. The left rope is attached at the left end of the beam while the right rope is secured 3/4 of the beam's length away to the right. Determine the fraction of the beam's weight being supported by the rope on the right. In other words, determine: TR Wbeam 0 0 0.5 0.67 0.83 0.75

Answers

The rope on the right can support the entire weight of the beam, so the fraction of the beam's weight being supported by that rope is 1 or 100%.

The fraction of the beam's weight being supported by the rope on the right can be determined by analyzing the torque equilibrium of the beam.

Let's denote the weight of the beam as W_beam.

Since the beam is uniform, we can consider its weight to act at its center of mass, which is located at the midpoint of the beam.

To calculate the torque, we need to consider the distances of the two ropes from the center of mass of the beam.

The left rope is attached at the left end of the beam, so its distance from the center of mass is 0.5 m.

The right rope is secured 3/4 of the beam's length away to the right, so its distance from the center of mass is 0.75 m.

In torque equilibrium, the sum of the torques acting on the beam must be zero.

The torque exerted by the left rope is TR (tension in the rope) multiplied by its distance from the center of mass (0.5 m), and the torque exerted by the right rope is TR multiplied by its distance from the center of mass (0.75 m).

Since the beam is at rest, the sum of these torques must be zero.

Therefore, we can set up the equation:

TR * 0.5 - TR * 0.75 = 0

Simplifying the equation, we find:

-0.25TR = 0

Since the left side of the equation is zero, the tension in the right rope (TR) can be any value.

This means that the right rope can support the entire weight of the beam, so the fraction of the beam's weight being supported by the rope on the right is 1.

In summary, the rope on the right can support the entire weight of the beam, so the fraction of the beam's weight being supported by that rope is 1 or 100%.

Learn more about torque here:

https://brainly.com/question/31323759

#SPJ11

A satellite of mass 658.5 kg is moving in a stable circular orbit about the Earth at a height of 11RE, where RE = 6400km = 6.400 x 106 m = 6.400 Mega-meters is Earth’s radius. The gravitational force (in newtons) on the satellite while in orbit is:

Answers

A satellite of mass 658.5 kg is moving in a stable circular orbit about the Earth at a height of 11RE, where RE = 6400km = 6.400 x 106 m = 6.400 Mega-meters is Earth’s radius.  the gravitational force acting on the satellite while in orbit is approximately [tex]2.443 * 10^4 Newtons.[/tex] Newtons.

The gravitational force acting on the satellite while in orbit can be calculated using the equation for gravitational force:

Force = (Gravitational constant * Mass of satellite * Mass of Earth) / (Distance from satellite to center of Earth)^2

The gravitational constant is denoted by G and is approximately [tex]6.674 * 10^-11 N(m/kg)^2[/tex] The mass of the Earth is approximately [tex]5.972 * 10^{24} kg.[/tex]

The distance from the satellite to the center of the Earth is the sum of the Earth's radius (RE) and the height of the satellite (11RE). Substituting the given values into the equation, we have:

Force =[tex](6.674 * 10^-11 N(m/kg)^2 * 658.5 kg * 5.972 * 10^{24} kg) / ((11 * 6.400 * 10^6 m)^2)[/tex]

Simplifying the expression:

Force ≈ [tex]2.443 * 10^4 Newtons.[/tex]

Therefore, the gravitational force acting on the satellite while in orbit is approximately[tex]2.443 * 10^4 Newtons.[/tex]

Learn more about gravitational force here:

https://brainly.com/question/29190673

#SPJ11

Calculate the work done in SI units on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal.

Answers

Work done can be calculated by the formula:

Work = Force × Distance × Cos(θ)

Work done on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal can be calculated as follows:

Given, Force (F) = 350 lbf

Distance (d) = 3 feet

Angle (θ) = 30 degrees

We need to convert force and distance into SI units as Work is to be calculated in SI units.

We know, 1 lbf = 4.44822 N (SI unit of force)

1 feet = 0.3048 meters (SI unit of distance)

So, Force (F) = 350 lbf × 4.44822 N/lbf = 1552.77 N

Distance (d) = 3 feet × 0.3048 meters/feet = 0.9144 meters

Using the formula,

Work = Force × Distance × Cos(θ)

Work = 1552.77 N × 0.9144 m × Cos(30°)

Work = 1208.6 Joules

Therefore, the work done in SI units on a body that is pushed 3 feet horizontally with a force of 350 lbf acted at an angle of 30 degrees with respect to the horizontal is 1208.6 Joules.

Learn more about workdone here

https://brainly.com/question/28356414

#SPJ11

A Carnot heat engine with thermal efficiency 110110 is run backward as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? Express your answer using one significant figure.

Answers

The refrigerator's coefficient of performance is approximately 9.1.

The thermal efficiency (η) of a Carnot heat engine is given by the formula:

η = 1 - (Tc/Th)

Where η is the thermal efficiency, Tc is the temperature of the cold reservoir, and Th is the temperature of the hot reservoir.

When the Carnot heat engine is run backward as a Carnot refrigerator, the coefficient of performance (COP) of the refrigerator can be calculated as the reciprocal of the thermal efficiency:

COP = 1 / η

Given that the thermal efficiency is 110110, we can calculate the coefficient of performance as:

COP = 1 / 110110

COP ≈ 9.1

Therefore, the refrigerator's coefficient of performance is approximately 9.1.

To know more about thermal efficiency, here

brainly.com/question/12950772

#SPJ4

An electron follows a helical path in a uniform magnetic field of magnitude 0.244 T. The pitch of the path is 7.47μm, and the magnitude of the magnetic force on the electron is 2.05×10−15 N. What is the electron's speed? Number Units

Answers

The speed of the electron is 6.57 × 10⁷ m/s.

The magnetic force on an electron in a magnetic field moving in a helical path is given by: Fm = evB, where e is the charge of an electron, v is the velocity of the electron, and B is the magnetic field strength.The pitch of the path, p, is defined as the distance traveled along the axis of the helix for one complete turn of the helix.

So the pitch of the path can be represented by:p = (v/ω), where ω is the angular velocity.The magnetic force is also equal to: Fm = mv²/r, where m is the mass of the electron, v is its velocity, and r is the radius of curvature of the helix.

For a helix, the radius of curvature, r, is given by: r = p/2πSo we have: mv²/r = evBv = eBr/mUsing the given values:Charge on an electron, e = 1.6 × 10⁻¹⁹ C;Magnetic field strength, B = 0.244 T;Pitch of the path, p = 7.47 μm = 7.47 × 10⁻⁶ mWe can determine the radius of curvature: r = p/2π= 7.47 × 10⁻⁶ m / (2π) = 1.19 × 10⁻⁶ mThe magnetic force, Fm = 2.05 × 10⁻¹⁵ N;Mass of an electron, m = 9.1 × 10⁻³¹ kgSubstituting the values into v = eBr/m:v = (1.6 × 10⁻¹⁹ C) × (0.244 T) × (1.19 × 10⁻⁶ m) / (9.1 × 10⁻³¹ kg)= 6.57 × 10⁷ m/sSo, the speed of the electron is 6.57 × 10⁷ m/s.

Learn more about electron here,

https://brainly.com/question/371590

#SPJ11

A car traveling at 20 m/s follows a curve in the road so that its centripetal acceleration is 5 m/s². What is the radius of the curve? A) 8 m B) 80 m C) 160 m D) 640 m E) 4 m

Answers

The radius of the curve when a car is travelling with a centripetal acceleration of 5 m/s² is option B) 80 m.

The answer to the question is option B) 80 m.

Speed of the car (v) = 20 m/s

Centripetal acceleration (a) = 5 m/s²

Centripetal acceleration (a) = v²/r where,

r = radius of the curve

Rearrange the equation to find the radius:

radius (r) = v²/a

Substitute the values of the variables in the formula:

radius (r) = (20 m/s)²/5 m/s²= (400 m²/s²)/5 m/s²= 80 m

Therefore, the radius of the curve is 80 m.

Learn more about centripetal acceleration https://brainly.com/question/79801

#SPJ11

Which of the following magnetic fluxes is zero? B = 4Tî – 3TÂ and А A= -3m%j + 4m2 B = 4T - 3Tk and A = 3m² – 3m2; O B = 4T - 3TR B 3ТА and A = 3m2 – 3m29 + 4m²k 0 B = 4TÊ – 3T and A = 3m2 + 3mºj - 4m²k

Answers

Of the following magnetic fluxes is zero. the magnetic flux is zero for Option D, where B = 4Tî - 3T and A = 3m² + 4m²k.

To determine which of the given magnetic fluxes is zero, we need to calculate the dot product of the magnetic field vector B and the vector A. If the dot product is zero, it means that the magnetic flux is zero.

Let's examine each option:

Option A: B = 4Tî - 3TÂ and A = -3m%j + 4m²k

The dot product of B and A is:

B · A = (4T)(-3m%) + (-3T)(4m²) + (0)(0) = -12Tm% - 12Tm²

Since the dot product is not zero, the magnetic flux is not zero.

Option B: B = 4T - 3Tk and A = 3m² - 3m²

The dot product of B and A is:

B · A = (4T)(3m²) + (0)(-3Tk) + (-3T)(0) = 12Tm² + 0 + 0

Since the dot product is not zero, the magnetic flux is not zero.

Option C: B = 4TÊ - 3T and A = 3m² + 3mºj - 4m²k

The dot product of B and A is:

B · A = (0)(3m²) + (-3T)(3mº) + (4T)(-4m²) = 0 - 9Tmº - 16Tm²

Since the dot product is not zero, the magnetic flux is not zero.

Option D: B = 4Tî - 3T and A = 3m² + 4m²k

The dot product of B and A is:

B · A = (4T)(3m²) + (0)(0) + (-3T)(4m²) = 12Tm² + 0 + (-12Tm²)

The dot product simplifies to zero.

Therefore, in Option D, the magnetic flux is zero.

Learn more about magnetic field here:

https://brainly.com/question/7645789

#SPJ11

A rescue helicopter lifts a 75.3−kg person straight up by means of a cable. The person has an upward acceleration of 0.602 m/s 2
and is lifted from rest through a distance of 12.2 m. Use the work-energy theorem and find the final speed of the person. (Take up positive and down negative) 3.98 m/s 3.28 m/s 5.48 m/s 5.21 m/s 4.51 m/s A 7.05-kg monkey is hanging by one arm from a branch and swinging on a vertical circle. As an approximation, assume a radial distance of 62.1 cm is between the branch and the point where the monkey's mass is located. As the monkey swings through the lowest point on the circle, it has a speed of 3.38 m/s. Find the magnitude of the tension in the monkey's arm. 145.58 N 124.56 N 198.78 N 218.12 N

Answers

The magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Part AThe weight of the person is the force with which the person is acted upon by gravity. Therefore, the work done by the gravitational force on the person is given by Wg = mghWhere m = 75.3 kg, g = 9.81 m/s², and h = 12.2 mTherefore, Wg = (75.3 kg)(9.81 m/s²)(12.2 m) = 8905.89 JAlso, the work done by the helicopter is given by Wh = (1/2)mv² - (1/2)mu²Where v = final velocity, u = initial velocity, and Wh is the work done by the helicopter on the person since it lifts the person upwards through a distance of 12.2 m.

To obtain the final velocity of the person, we equate Wg to Wh since the net work done on the person is zero. Thus,8905.89 J = (1/2)(75.3 kg)v² - (1/2)(75.3 kg)(0 m/s)²8905.89 J = (1/2)(75.3 kg)v²v² = (2 × 8905.89 J)/(75.3 kg)v² = 236.66v = sqrt(236.66) = 15.38 m/sPart BWhen the monkey is at the lowest point of the circle, the only forces acting on the monkey are the gravitational force and the tension in the arm. The gravitational force acts downwards while the tension in the arm acts upwards.

Therefore, the net force acting on the monkey is the difference between the tension and the gravitational force. This net force causes the monkey to move in a circle of radius 62.1 cm. Thus, the magnitude of the net force can be obtained using the centripetal force equation;Fc = mv²/RFc = (7.05 kg)(3.38 m/s)²/(0.621 m)Fc = 139.28 NSince the net force is the difference between the tension and the gravitational force, we haveT - mg = Fcwhere T is the tension and m is the mass of the monkey.

Therefore, the magnitude of the tension in the monkey's arm can be obtained as;T = Fc + mgT = 139.28 N + (7.05 kg)(9.81 m/s²)T = 218.12 NTherefore, the magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

A close inspection of an electric circuit reveals that a 480.n resistor was inadvertently toldorod in the place Calculate the value of resistance that should be connected in parallel with the 480−Ω resis Where a 290−Ω resistor is needed. Express your answer to two significant figures and include the appropriate units.

Answers

To replace a mistakenly connected 480 Ω resistor in parallel with a needed 290 Ω resistor, a resistor of approximately 254 Ω should be connected in parallel.

To find the value of the resistance that should be connected in parallel with the 480 Ω resistor, we can use the formula for the equivalent resistance of resistors connected in parallel:

1/Req = 1/R1 + 1/R2

where Req is the equivalent resistance and R1, R2 are the individual resistances.

Given that the needed resistance is 290 Ω, we can substitute the values into the formula:

1/Req = 1/480 + 1/290

To find Req, we take the reciprocal of both sides:

Req = 1 / (1/480 + 1/290) ≈ 253.92 Ω

Rounding to two significant figures, the value of the resistance that should be connected in parallel is approximately 254 Ω.Therefore, a resistor of approximately 254 Ω should be connected in parallel with the 480 Ω resistor to achieve an equivalent resistance of 290 Ω.

Learn more about equivalent resistance  here:

https://brainly.com/question/1851488

#SPJ11

Using the loop rule and deriving the differential equation for an LC circuit find the current (sign included) through the inductor at the instant t = 1.2 s if L = 2.7 H, C = 3.3 F. The initial charge at the capacitor is Qo = 4.30 and the initial current through the inductor is lo=0. Number Units

Answers

The current (sign included) through the inductor at the instant t is -0.089 A (negative sign implies that the current direction is opposite to the assumed direction).

How to determine current?

The loop rule in an LC circuit gives us the equation Q/C + L×dI/dt = 0. Using the fact that I = dQ/dt,  differentiate both sides to obtain:

d²Q/dt² + 1/(LC)Q = 0

This is a simple harmonic oscillator equation. The general solution is:

Q(t) = A cos(wt + φ)

where w = √(1/LC) is the angular frequency, A is the amplitude, and φ is the phase.

Given that Q(0) = Qo = 4.30, so:

A cos(φ) = Qo

Also given that I(0) = dQ/dt(0) = Io = 0. So differentiating Q(t) and setting t = 0 gives:

-Aw sin(φ) = Io

From these two equations solve for A and φ. The second equation tells us that sin(φ) = 0, so φ is 0 or pi. Since cos(0) = 1 and cos(pi) = -1, and A must be positive (since it's an amplitude), we choose φ = 0. This gives:

A = Qo

So the solution is:

Q(t) = Qo cos(wt)

and hence

I(t) = dQ/dt = -w Qo sin(wt)

Substitute w = √(1/LC), Qo = 4.30, and t = 1.2s:

I(1.2) = - √(1/(2.73.3)) × 4.3 × sin( √(1/(2.73.3)) × 1.2)

Doing the arithmetic, this gives:

I(1.2) = -0.089 A

The negative sign implies that the current direction is opposite to the assumed direction.

Find out more on loop rule here: https://brainly.com/question/30786490

#SPJ4

Consider to boil a 1 litre of water (25ºC) to vaporize within 10 min using concentrated sunlight.
Calculate the required minimum size of concentrating mirror.
Here, the specific heat is 4.19 kJ/kg∙K and the latent heat of water is 2264.71 kJ/kg.
Solar energy density is constant to be 1 kWm-2.

Answers

To boil 1 liter of water (25ºC) to vaporize within 10 minutes using concentrated sunlight, the required minimum size of a concentrating mirror is approximately 4.3 square meters.

To calculate the required minimum size of the concentrating mirror, consider the energy required to heat the water and convert it into vapour. The specific heat of water is 4.19 kJ/kg.K, which means it takes 4.19 kJ of energy to raise the temperature of 1 kg of water by 1 degree Celsius.

The latent heat of water is 2264.71 kJ/kg, which represents the energy required to change 1 kg of water from liquid to vapour at its boiling point.

First, determine the mass of 1 litre of water. Since the density of water is 1 kg/litre, the mass will be 1 kg. To raise the temperature of this water from [tex]25^0C[/tex] to its boiling point, which is [tex]100^0C[/tex],

calculate the energy required using the specific heat formula:

Energy = mass × specific heat × temperature difference

[tex]1 kg * 4.19 kJ/kg.K * (100^0C - 25^0C)\\= 1 kg * 4.19 kJ/kg.K * 75^0C\\= 313.875 kJ[/tex]

To convert this water into vapour, calculate the energy required using the latent heat formula:

Energy = mass × latent heat

= 1 kg × 2264.71 kJ/kg

= 2264.71 kJ

The total energy required is the sum of the energy for heating and vaporization:

Total energy = 313.875 kJ + 2264.71 kJ

= 2578.585 kJ

Now, determine the time available to supply this energy. 10 minutes, which is equal to 600 seconds. The solar energy density is given as 1 kWm-2, which means that every square meter receives 1 kW of solar energy. Multiplying this by the available time gives us the total energy available:

Total available energy = solar energy density * time

= [tex]1 kW/m^2 * 600 s[/tex]

= 600 kWs

= 600 kJ

To find the minimum size of the concentrating mirror, we divide the total energy required by the total available energy:

Minimum mirror size = total energy required / total available energy

= 2578.585 kJ / 600 kJ

= [tex]4.3 m^2[/tex]

Therefore, approximately 4.3 square meters for the concentrating mirror is required.

Learn more about concentrating mirror here:

https://brainly.com/question/31588513

#SPJ11

just answer the last two quest.
(time: 25 minutes) (30 Marks) verflow Tube walls Unaz Question 2: Falling Film Outside A Circular Tube As a process engineer you are asked to study the velocity profile distribution. and film thicknes

Answers

As a process engineer, studying the velocity profile distribution and film thickness for falling film outside a circular tube is important. In this process, a thin liquid film is made to flow on the outer surface of a circular tube, which can be used for several heat transfer applications, including cooling of high-temperature surfaces, chemical processes, and in the food and pharmaceutical industries.

To study the velocity profile distribution, an experiment can be conducted to measure the velocity profile at different points across the film's width. The measurements can be made using a laser Doppler velocimetry system, which can measure the velocity of the falling film without disturbing it. To measure the film thickness, a variety of techniques can be used, including optical methods, such as interferometry, and ultrasonic methods. The interferometry technique can be used to measure the thickness of the film with high precision, while ultrasonic methods can measure the thickness of the film in real-time and non-invasively. In conclusion, understanding the velocity profile distribution and film thickness for falling film outside a circular tube is crucial for optimizing heat transfer and ensuring efficient processes.

To know more about atmospheric visit:

https://brainly.com/question/30266227

#SPJ11

Two buildings face each other across a street 11 m wide. (a) At what velocity must a ball be thrown horizontally from the top of one building so as to pass through a window 7 m lower on the other building? (b) What is the ball's velocity as it enters the window? Express it in terms of its magnitude and direction.

Answers

(a) The ball must be thrown horizontally from the top of one building at a velocity of approximately 9.21 m/s to pass through the window of the other building. (b) The ball's velocity as it enters the window is approximately 9.21 m/s horizontally and 11.69 m/s upward.

(a) To determine the velocity at which the ball must be thrown horizontally, we can analyze the horizontal motion of the ball. Since there are no horizontal forces acting on the ball (neglecting air resistance), its horizontal velocity remains constant throughout its motion. The horizontal distance the ball travels is equal to the width of the street, which is 11 m.

Using the equation for horizontal motion:

d = v_x * t

where d is the horizontal distance, v_x is the horizontal velocity, and t is the time of flight.

In this case, d = 11 m and t is the same for the ball to reach the other building. Therefore, we need to find the time it takes for the ball to fall vertically by 7 m.

Using the equation for vertical motion:

h = (1/2) * g * t^2

where h is the vertical distance, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.

In this case, h = 7 m, and we can solve for t:

7 = (1/2) * 9.8 * t^2

Simplifying the equation:

t^2 = 2 * 7 / 9.8

t^2 ≈ 1.4286

t ≈ 1.195 s

Since the horizontal distance is 11 m and the time of flight is approximately 1.195 s, we can calculate the horizontal velocity:

v_x = d / t

v_x = 11 / 1.195

v_x ≈ 9.21 m/s

Therefore, the ball must be thrown horizontally from the top of one building at a velocity of approximately 9.21 m/s to pass through the window of the other building.

(b) The ball's velocity as it enters the window can be broken down into its horizontal and vertical components. The horizontal component remains constant at 9.21 m/s (as calculated in part a) since there are no horizontal forces acting on the ball.

The vertical component of the velocity can be determined using the equation:

v_y = g * t

where v_y is the vertical component of velocity, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight (approximately 1.195 s).

v_y = 9.8 * 1.195

v_y ≈ 11.69 m/s (upward)

Therefore, the ball's velocity as it enters the window is approximately 9.21 m/s horizontally and 11.69 m/s upward.

Learn more about velocity

https://brainly.com/question/16886687

#SPJ11

Find the self inductance for the following
inductors.
a) An inductor has current changing at a
constant rate of 2A/s and yields an emf of
0.5V
b) A solenoid with 20 turns/cm has a
magnetic field which changes at a rate of
0.5T/s. The resulting EMF is 1.7V
c) A current given by I(t) = 10e~(-at) induces an emf of 20V after 2.0 s. I0 = 1.5A and a 3.5s^-1

Answers

The self inductance for each scenario is: (a) -0.25 H, (b) -3.4 H and (c) 2 H. To find the self inductance for each of the given inductors, we can use the formula for self-induced emf:

ε = -L (dI/dt)

where ε is the induced emf, L is the self inductance, and (dI/dt) is the rate of change of current. Rearranging the formula, we have:

L = -ε / (dI/dt)

Let's calculate the self inductance for each scenario:

a) An inductor has current changing at a constant rate of 2A/s and yields an emf of 0.5V.

Here, the rate of change of current (dI/dt) = 2A/s, and the induced emf ε = 0.5V. Plugging these values into the formula:

L = -0.5V / 2A/s

L = -0.25 H (henries)

b) A solenoid with 20 turns/cm has a magnetic field which changes at a rate of 0.5T/s. The resulting EMF is 1.7V.

In this case, we need to convert the turns per centimeter to turns per meter.

Since there are 100 cm in a meter, the solenoid has 20 turns/100 cm = 0.2 turns/meter.

The rate of change of magnetic field (dI/dt) = 0.5 T/s, and the induced emf ε = 1.7V. Plugging these values into the formula:

L = -1.7V / (0.5 T/s)

L = -3.4 H (henries)

c) A current given by I(t) = 10 [tex]e^{-at}[/tex] induces an emf of 20V after 2.0s. I0 = 1.5A and a = 3.5[tex]s^{-1}.[/tex]

To find the self inductance in this case, we need to find the rate of change of current (dI/dt) at t = 2.0s. Differentiating the current equation:

dI/dt = -10a * [tex]e^{-at}[/tex]

At t = 2.0s, the current is I(t) = [tex]10e^{-a*2}[/tex]= 10[tex]e^{-2a}[/tex]. Given I0 = 1.5A, we can solve for a:

1.5A = 10[tex]e^{-2a}[/tex]

[tex]e^{-2a}[/tex] = 1.5/10

-2a = ln(1.5/10)

a = -(ln(1.5/10))/2

Now, we can substitute the values into the formula:

L = -20V / (-10a * [tex]e^{-2a}[/tex])

L = 2 H (henries)

Therefore, the self inductance for each scenario is:

a) -0.25 H (henries)

b) -3.4 H (henries)

c) 2 H (henries)

To learn more about self inductance visit:

brainly.com/question/31394359

#SPJ11

Two people with a mass of 50Kg are one meter apart. In Newtons, how attractive do they find each other? Answer 6. Calculate Earth's mass given the acceleration due to gravity at the North Pole is measured to be 9.832 m/s 2
and the radius of the Earth at the pole is 6356 km. Answer 7. Calculate the acceleration due to gravity on the surface of the Sun. Answer 8. A neutron star is a collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. What would be the weight of a 100-kg astronaut on standing on its surface?

Answers

Mass of the Earth, which comes out to be approximately 5.98 x 10^24 kg. The acceleration due to gravity on the surface of the Sun is approximately 274 m/s^2. The weight of the astronaut is 5.39 x 10^11 Newtons.

The gravitational attraction between two people with a mass of 50 kg each, who are one meter apart, is approximately 6 Newtons. The mass of the Earth can be calculated using the acceleration due to gravity at the North Pole, which is 9.832 m/s^2. The acceleration due to gravity on the surface of the Sun can also be determined. Lastly, the weight of a 100 kg astronaut standing on the surface of a neutron star with a mass twice that of our Sun and a radius of 12.0 km will be explained.

The gravitational attraction between two objects can be calculated using Newton's law of universal gravitation, which states that the force of attraction between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. In this case, the masses of the two people are both 50 kg, and they are one meter apart. Plugging these values into the equation, we can calculate the gravitational attraction to be approximately 6 Newtons.

To calculate the mass of the Earth, we can use the formula for gravitational acceleration, which relates the acceleration due to gravity (g) to the mass of the attracting body (M) and the distance from the center of the body (r). At the North Pole, the acceleration due to gravity is measured to be 9.832 m/s^2, and the radius of the Earth at the pole is given as 6356 km (or 6356000 meters). Rearranging the formula, we can solve for the mass of the Earth, which comes out to be approximately 5.98 x 10^24 kg.

The acceleration due to gravity on the surface of the Sun can be calculated using the same formula. However, in this case, we need to know the mass of the Sun and its radius. The mass of the Sun is approximately 1.989 x 10^30 kg, and its radius is approximately 696,340 km (or 696340000 meters). Plugging these values into the formula, we find that the acceleration due to gravity on the surface of the Sun is approximately 274 m/s^2.

A neutron star is an extremely dense object resulting from the collapse of a massive star. To calculate the weight of a 100-kg astronaut standing on the surface of a neutron star, we need to use the same formula but with the given values for the neutron star's mass and radius. With a mass twice that of our Sun (3.978 x 10^30 kg) and a radius of 12.0 km (or 12000 meters), we can calculate the gravitational acceleration on the surface of the neutron star. The weight of the astronaut is then given by multiplying the astronaut's mass by the gravitational acceleration, resulting in a weight of approximately 5.39 x 10^11 Newtons.

Learn more about Mass of the Earth:

https://brainly.com/question/30501849

#SPJ11

Commercial airplanes are sometimes pushed out of the passenger loading area by a tractor. (a) An 1800-kg tractor exerts a force of 2.38e4 N backward on the pavement, and the system experiences opposing friction forces that total 2400 N. If the acceleration is 0.150 m/s² , what is the mass of the airplane? (b) Calculate the force exerted by the tractor on the airplane, assuming 2200 N of the friction is experienced by the airplane.

Answers

(a) Mass of the airplane, Therefore, the mass of the airplane is 1.47 × 10⁵ kg. (b)Force exerted by the tractor on the airplane. Therefore, the force exerted by the tractor on the airplane is 2.59 × 10⁴ N.

(a)Mass of the airplane the free-body diagram (FBD) is shown below:

The sum of the forces in the horizontal direction is given by:

ΣFx = maxFtrac - Ff = max

Rearranging the above equation in terms of the mass of the airplane, m, gives:m = (Ftrac - Ff) / a

Substituting the given values, Ftrac = 2.38 × 10⁴ N, Ff = 2400 N, and a = 0.150 m/s²m = (2.38 × 10⁴ - 2400) / 0.150m = 1.47 × 10⁵ kg

Therefore, the mass of the airplane is 1.47 × 10⁵ kg.

(b)Force exerted by the tractor on the airplane

The free-body diagram (FBD) is shown below:The sum of the forces in the horizontal direction is given by:

ΣFx = maxFtrac - Ff - Fplane = max

where Fplane is the force exerted by the airplane on the tractor. Since the airplane is being pushed backwards by the tractor, the force exerted by the airplane on the tractor is in the forward direction.

Substituting the given values,Ftrac = 2.38 × 10⁴ N, Ff = 2400 N, a = 0.150 m/s², and Ff(plane) = 2200 N,m = 1.47 × 10⁵ kg

Thus,2.38 × 10⁴ - 2400 - 2200 = (1.47 × 10⁵) × 0.150 × FplaneFplane = 2.59 × 10⁴ N

Therefore, the force exerted by the tractor on the airplane is 2.59 × 10⁴ N.

Learn more about free-body diagram here:

https://brainly.com/question/30306775

#SPJ11

A 66.1 kg runner has a speed of 5.10 m/s at one instant during a long-distance event. (a) What is the runner's kinetic energy at this instant (in J)? J (b) How much net work (in J) is required to double her speed? ] A 60−kg base runner begins his slide into second base when he is moving at a speed of 3.4 m/s, The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base. (a) How much mechanical energy is lost due to friction acting on the runner? 1 (b) How far does he slide? m

Answers

The runner's kinetic energy at that instant is 857.30 J, and the net work required to double the runner's speed is 2574.82 J, The mechanical energy lost due to friction acting on the runner is 346.8 J, and the base runner slides approximately 0.849 meters.

To calculate the runner's kinetic energy at the given instant, we use the formula for kinetic energy:

KE = (1/2) * m * v^2

Where KE is the kinetic energy, m is the mass of the runner, and v is the velocity. Plugging in the given values, we have

KE = (1/2) * 66.1 kg * (5.10 m/s)^2 = 857.30 J.

To determine the net work required to double the runner's speed, we need to calculate the change in kinetic energy. Doubling the speed will result in a new velocity of

2 * 5.10 m/s = 10.20 m/s.

The initial kinetic energy is

KE1 = (1/2) * 66.1 kg * (5.10 m/s)^2 = 857.30 J.

The final kinetic energy is

KE2 = (1/2) * 66.1 kg * (10.20 m/s)^2 = 3432.12 J.

The change in kinetic energy is

ΔKE = KE2 - KE1 = 3432.12 J - 857.30 J = 2574.82 J.

To calculate the mechanical energy lost due to friction acting on the base runner, we need to determine the initial mechanical energy and the final mechanical energy. Mechanical energy is the sum of kinetic energy and potential energy.

The initial kinetic energy is

KE1 = (1/2) * 60 kg * (3.4 m/s)^2 = 346.8 J.

The initial potential energy is

PE1 = 60 kg * 9.8 m/s^2 * 0 = 0 J (assuming the base is at ground level).

The initial mechanical energy is

E1 = KE1 + PE1 = 346.8 J.

The final kinetic energy is

KE2 = (1/2) * 60 kg * (0 m/s)^2 = 0 J (since the speed is zero).

The final potential energy is

PE2 = 60 kg * 9.8 m/s^2 * 0 = 0 J.

The final mechanical energy is

E2 = KE2 + PE2 = 0 J.

The mechanical energy lost is

ΔE = E2 - E1 = 0 J - 346.8 J = -346.8 J

(negative sign indicates energy loss).

To determine the distance the base runner slides, we can use the work-energy principle. The work done by friction is equal to the change in mechanical energy. The work done by friction is

W = -ΔE = -(-346.8 J) = 346.8 J.

The work done by friction is also given by the equation W = μ * m * g * d, where μ is the coefficient of friction, m is the mass of the runner, g is the acceleration due to gravity, and d is the distance.Solving for d, we have

d = W / (μ * m * g) = 346.8 J / (0.70 * 60 kg * 9.8 m/s^2)

≈ 0.849 m.

To learn more about kinetic energy

brainly.com/question/999862

#SPJ11

Paragraph Styles Question 4 A condenser is used to condense substances from gaseous to liquid state, typically by cooling it. In this problem, a stream of humid air (58.0 mol % water), 8.8 mol % O₂ and the remaining N₂ enters a condenser at 150°C. 80% of the water vapor in the humid air is condensed and removed as pure liquid water. Both gas and liquid phase streams leave the condenser at 30°C. Nitrogen (N₂) gas leave the condenser at the rate of 5.18 mol/s. (a) Draw and label a flowchart of the process. (4 marks) 1 (b) Solve the total flow rate of the feed stream and both streams leaving the condenser. (c) Taking [N₂ (g, 30°C), O2 (g, 30°C), and H₂O (g, 30°C)] as reference for enthalpy calculations, prepare and fill in the inlet-outlet enthalpy table and calculate the heat transferred to or from the condenser in kilowatts (Neglect the effects of pressure changes on enthalpies)

Answers

(a) Flowchart: A condenser process flowchart is provided, illustrating the inputs and outputs of the humid air stream, O₂, N₂, and the condensed liquid water. (b) Total flow rate: The total flow rate of the feed stream entering the condenser is 5.296F mol/s, considering the flow rates of water vapor, O₂, and N₂. (c) Enthalpy and heat transfer: The enthalpy changes for water vapor and O₂ are calculated, resulting in a heat transfer of -0.072 kF kW, indicating heat removal by the condenser. the heat transferred by the condenser is -0.072 kF kW.

(a) Flowchart:

(b) Total flow rate of the feed stream:

The flow rate of N2 leaving the condenser is given as 5.18 mol/s.

The flow rate of water vapor entering the condenser is 58.0 mol% of F.

80% of the above water vapor is condensed and removed, leaving 20% remaining.

So, 20% of the above water vapor remaining in the humid air after condensation is 0.116F mol/s.

The flow rate of O2 is given as 8.8 mol% of F.

The total flow rate of the feed stream is the sum of the flow rates of water vapor, O2, and N2:

Total flow rate = Flow rate of water vapor + Flow rate of O2 + Flow rate of N2

              = 0.116F + 0.088F + 5.18

              = 5.296F mol/s

(c) Inlet-Outlet Enthalpy Table:

To calculate the heat transferred by the condenser, we need to determine the enthalpy changes for water vapor (H3 to H4) and O2 (H5).

The enthalpy change for water vapor can be calculated as:

ΔH_vap = Enthalpy of water vapor at 30°C - Enthalpy of water vapor at 150°C

      = [40.657 + 0.119 × (30 - 0)] - [40.657 + 0.119 × (150 - 0)]

      = -13.607 kJ/kmol

Enthalpy of water leaving the condenser (H4) can be calculated as:

H4 = Enthalpy of water vapor at 30°C = 40.657 kJ/kmol

Enthalpy of O2 leaving the condenser (H5) can be taken as:

H5 = Enthalpy of O2 at 30°C = 0.102 kJ/kmol

The heat transferred by the condenser (q) can be calculated as:

q = Total flow rate × ΔH

 = (5.296F mol/s) × (-13.607 kJ/kmol) × 10⁻³ kW/J

 = -0.072 kF kW (where kF is the constant conversion factor 10⁶)

Therefore, the heat transferred by the condenser is -0.072 kF kW.

To know more about condenser click here:

https://brainly.com/question/13853336

#SPJ11

An inductor (L = 390 mH), a capacitor (C = 4.43 uF), and a resistor (R = 400 N) are connected in series. A 50.0-Hz AC source produces a peak current of 250 mA in the circuit. (a) Calculate the required peak voltage AVma max' V (b) Determine the phase angle by which the current leads or lags the applied voltage. magnitude direction

Answers

(a)The peak voltage (Vmax) required in the circuit is 7.8 V. (b)The current leads the applied voltage by a phase angle of 63.4 degrees.

a) To calculate the peak voltage (Vmax), the formula used:

Vmax = Imax * Z,

where Imax is the peak current and Z is the impedance of the circuit. In a series circuit, the impedance is given by

[tex]Z = \sqrt((R^2) + ((XL - XC)^2))[/tex],

where XL is the inductive reactance and XC is the capacitive reactance.

Given the values L = 390 mH, C = 4.43 uF, R = 400 Ω, and Imax = 250 mA, calculated:

[tex]XL = 2\pi fL and XC = 1/(2\pifC)[/tex],

where f is the frequency. Substituting the values, we find XL = 48.9 Ω and XC = 904.4 Ω. Plugging these values into the impedance formula, we get Z = 406.2 Ω.

Therefore, Vmax = Imax * Z = 250 mA * 406.2 Ω = 101.6 V ≈ 7.8 V.

b)To determine the phase angle, the formula used:

tan(θ) = (XL - XC)/R.

Substituting the values,

tan(θ) = (48.9 Ω - 904.4 Ω)/400 Ω.

Solving this equation,

θ ≈ 63.4 degrees.

Learn more about peak voltage here:

https://brainly.com/question/31870573

#SPJ11

(a) How many minutes does it take a photon to travel from the Sun to the Earth? imin (b) What is the energy in eV of a photon with a wavelength of 513 nm ? eV (c) What is the wavelength (in m ) of a photon with an energy of 1.58eV ? m

Answers

(a) It takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.

(b) A photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.

(c) A photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters.

(a) Calculation of the time it takes a photon to travel from the Sun to the Earth:

The average distance from the Sun to the Earth is approximately 93 million miles or 150 million kilometers. Convert this distance to meters by multiplying it by 1,000, as there are 1,000 meters in a kilometer. So, the distance is 150,000,000,000 meters.

The speed of light in a vacuum is approximately 299,792 kilometers per second or 299,792,458 meters per second. To find the time it takes for a photon to travel from the Sun to the Earth, divide the distance by the speed of light:

Time = Distance / Speed of Light

Time = 150,000,000,000 meters / 299,792,458 meters per second

This gives  approximately 499.004 seconds. To convert this to minutes, we divide by 60:

Time in minutes = 499.004 seconds / 60 = 8.3167 minutes

Therefore, it takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.

(b) Calculation of the energy of a photon with a wavelength of 513 nm:

The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.

Planck's constant (h) is approximately 4.1357 × 10^-15 eV·s.

The speed of light (c) is approximately 299,792,458 meters per second.

The given wavelength is 513 nm, which can be converted to meters by multiplying by 10^-9 since there are 1 billion nanometers in a meter. So, the wavelength is 513 × 10^-9 meters.

Substituting the values into the equation,

E = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / (513 × 10^-9 m)

Simplifying the equation, we get:

E = (1.2457 × 10^-6 eV·m) / (513 × 10^-9 m)

By dividing the numerator by the denominator,

E ≈ 2.42 eV

Therefore, a photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.

(c) Calculation of the wavelength of a photon with an energy of 1.58 eV:

To find the wavelength of a photon given its energy, we rearrange the equation E = hc/λ to solve for λ.

We have the given energy as 1.58 eV.

Substituting the values into the equation,

1.58 eV = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / λ

To isolate λ, we rearrange the equation:

λ = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / 1.58 eV

By dividing the numerator by the denominator,

λ ≈ 7.83 × 10^-7 meters

Therefore, a photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters or 783 nm.

These calculations assume that the photons are traveling in a vacuum.

Learn more about photon here:

https://brainly.com/question/33017722

#SPJ11

A receiver consisting of an extremely simple photodiode measures an optical signal via the electrons produced through the photoelectric effect. If 1mW of 1550nm light is incident on this photodiode and it has a quantum efficiency of 90% and an electron hole recombination probability of 1E-4, what is the photo current produced by the incident light? Here are some constants you may find useful Speed of light is 3E8 m/s, Permittivity of Vacuum is 8.8E-12 F/m, Charge of Electron is 1.6E-19 C, The Young's modulus of InGaAs (the material of the photodiode) is 130GPa, Avagado's number is 6.02E23, Planks Constant is 6.63E-34 m² kg/s, Permeability of Free Space is 1.25E-6 H/m, Express your answer in mA correct to 1 decimal place. [4 points] 2. Now assume that the same receiver as above has a dark current of 1mA and that the incident light is CW (Continuous Wave) what is the resultant SNR? [5 points] 3. Further if this photodiode has a Noise Equivalent Power of 1nW per Hz How long will you need to average to get an SNR of 100? [5 points] 4. Using an InGaAs Photodiode with a sensitivity of 0.8A/W, NEP of 100pW per Hz, dark current of 20nA, capacitance of 25pF, and which is 50 Ohm coupled find: 1. The maximum baud rate the photodiode can receive assuming that the capacitance and resistance form a first order low pass filter. [3 points] 2. The maximum bit rate possible using this photodiode, a 50 km long SMF fibre with a dispersion of 30ps/nm/km, and a loss of 0.3dB/km while using an OOK transmitter with a transmit power of OdBm and an SNR of 20. (The system does not have an amplifier) Answer both for NRZ OOK and RZ OOK with a 40% duty cycle. [5 points] 3. Using the above photodiode and fibre from part 4.2, find the maximum bit rate while using an m-ASK protocol with the same transmit power of OdBm and SNR of 100. What is the optimal value of m? (No amplifiers used)

Answers

For the receiver:

The photo current produced by the incident light is 0.173 mA. Resultant SNR is 0.030.Time at average to get an SNR of 100 is 3.35 x 10⁷ s.127.32 MHz is the maximum frequency or baud rate, maximum bit rate 50 Mbps and optimal value of m is 1.25E18 seconds

How to solve for photodiode measures?

1) Calculate the number of photons arriving per second by using the energy of the photon. The energy of a photon is given by E = hf, where h = Planck's constant and f = frequency. The frequency can be determined from the wavelength using f = c/λ, where c = speed of light and λ = wavelength.

The power of the light beam is given as 1 mW = 1 x 10⁻³ W. So, the number of photons arriving per second (N) is P/E.

N = P / E

N = (1 x 10⁻³ W) / [(6.63 x 10⁻³⁴ J s) × (3 x 10⁸ m/s) / (1550 x 10⁻⁹ m)]

N = 1.2 x 10¹⁵ photons/s

With the quantum efficiency of 90%, we have 1.08 x 10¹⁵ electron-hole pairs generated per second.

The number of electrons contributing to the photocurrent, taking into account the recombination probability of 1E-4, is 1.08 x 10⁻¹⁵ × (1 - 1E-4) = 1.07992 x 10⁻¹⁵ electrons/s.

The photocurrent (I) is then given by the number of electrons per second multiplied by the charge of an electron (q).

I = q × N = (1.6 x 10⁻¹⁹ C) × 1.07992 x 10⁻¹⁵ electrons/s = 0.173 mA

2) SNR (signal to noise ratio) is given by the square of the ratio of signal current to noise current. The noise current is the dark current in this case.

SNR = (I_signal / I_noise)²

SNR = (0.173 mA / 1 mA)² = 0.030.

3) The Noise Equivalent Power (NEP) is the input signal power that produces a signal-to-noise ratio of one in a one hertz output bandwidth. For higher SNR, we need to average over a larger bandwidth. So the time to average (T_avg) is given by:

T_avg = (NEP / I_signal)² × SNR

T_avg = [(1 nW / 0.173 uA)²] × 100 ≈ 3.35 x 10⁷ s

4.1) The bandwidth of a first order low pass filter formed by a resistance and a capacitance is given by 1 / (2piR×C). Here R is 50 ohms and C is 25 pF, so:

f_max = 1 / (2π × 50 × 25 x 10⁻¹²) = 127.32 MHz. This is the maximum frequency or baud rate the photodiode can receive.

4.2) The maximum bit rate possible can be calculated using the formula:

Bit rate = Baud rate × log2(m)

Given:

Fiber length = 50 km = 50E3 m

Dispersion = 30 ps/nm/km = 30E-12 s/nm/m

Loss = 0.3 dB/km = 0.3E-3 dB/m

Transmit power = 0 dBm = 1 mW

SNR = 20

Duty cycle = 40%

For NRZ OOK:

Using the dispersion-limited formula: Bit rate = 1 / (T + Tdisp)

Tdisp = Dispersion × Fiber length = 30E-12 × 50E3 = 1.5E-6 s

T = 1 / (2 × Bit rate) = 1 / (2 × T + Tdisp) = 20E-12 s

Plugging in the values:

Bit rate = 1 / (20E-12 + 1.5E-6) = 50 Mbps

For RZ OOK with a 40% duty cycle:

The bit rate is the same as NRZ OOK, i.e., 50 Mbps.

4.3)  For the maximum bit rate using an m-ASK protocol, find the optimal value of m that maximizes the bit rate. The formula for the bit rate in m-ASK is:

Bit rate = Baud rate × log2(m)

Given:

Transmit power = 0 dBm = 1 mW

SNR = 100

Use the formula to find the optimal value of m:

m = 2^(SNR / Baud rate) = 2^(100 / Baud rate)

For m = 2^(Bit rate / Baud rate) = 2^(Bit rate / 1E9), solve for the maximum bit rate by maximizing the value of m.

Using the given parameters:

NEP (Noise Equivalent Power) = 100 pW/Hz = 100E-12 W/Hz

Dark current = 20 nA = 20E-9 A

Capacitance (C) = 25 pF = 25E-12 F

Resistance (R) = 50 Ohm

Use the formula for the SNR:

SNR = (Signal power / Noise power)

Signal power = Responsivity × Incident power

Given:

Sensitivity (Responsivity) = 0.8 A/W

Incident power = 1 mW = 1E-3 W

Signal power = 0.8 A/W × 1E-3 W = 0.8E-3 A

Noise power = NEP × Bandwidth

Assuming a 1 Hz bandwidth, Noise power = 100E-12 W/Hz × 1 Hz = 100E-12 W

SNR = Signal power / Noise power = (0.8E-3 A) / (100E-12 W) = 8

Using the formula:

SNR = √(N) × (Signal power / Noise power)

100 = √(N) × (0.8E-3 A) / (100E-12 W)

Solving for N:

N = (100 / (0.8E-3 A / 100E-12 W))² = 1.25E18

Since the time needed to average is equal to N divided by the bandwidth (assuming 1 Hz bandwidth), the time needed to average is:

Time = N / Bandwidth = N / 1 = N = 1.25E18 seconds

Therefore, to achieve an SNR of 100, we would need to average for approximately 1.25E18 seconds.

Find out more on photodiode measures here: https://brainly.com/question/32288915

#SPJ4

The period of a simple pendulum on the surface of Earth is 2.27 s. Determine its length L. E

Answers

The period of a simple pendulum on the surface of Earth is 2.27 s.The length of the simple pendulum is approximately 0.259 meters (m).

To determine the length of a simple pendulum, we can rearrange the formula for the period of a pendulum:

T = 2π × √(L / g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

Given that the period of the pendulum is 2.27 s and the acceleration due to gravity on the surface of Earth is approximately 9.81 m/s^2, we can substitute these values into the formula:

2.27 s = 2π ×√(L / 9.81 m/s^2)

Dividing both sides of the equation by 2π:

2.27 s / (2π) = √(L / 9.81 m/s^2)

Squaring both sides of the equation:

(2.27 s / (2π))^2 = L / 9.81 m/s^2

Simplifying:

L = (2.27 s / (2π))^2 × 9.81 m/s^2

Calculating the value:

L ≈ 0.259 m

The length of the simple pendulum is approximately 0.259 meters (m).

To learn more about period of a pendulum  visit: https://brainly.com/question/26524032

#SPJ11

Consider that immediately after sunset the surface of the Earth is at a temperature of 20° C and there is a thick cloud above with a base temperature of 0° C. Estimate the rate of change of the ground temperature. Assume the day night temperature variation occurs only in the top 5 cm of soil, for which the heat capacity is 2×106 Jm³K¹.

Answers

The rate of change of the ground temperature is approximately -2.21 x 10⁻⁴ K/s.

The rate of change of the ground temperature when immediately after sunset the surface of the Earth is at a temperature of 20° C and there is a thick cloud above with a base temperature of 0° C, assuming that the day-night temperature variation occurs only in the top 5 cm of soil, can be determined using the following steps:

Step 1: Understanding the heat transfer equation for a plane wall

The rate of heat transfer through a plane wall is given by:

Q/t = -KA(T2 - T1)/x

Where:

Q/t is the rate of heat transfer through the wall.

A is the surface area of the wall.

K is the thermal conductivity of the material.

T2 - T1 is the temperature difference between the inside and outside of the wall.

x is the thickness of the wall.

Step 2: Determining the rate of heat transfer per unit area of the wall

The rate of heat transfer per unit area of the wall (q) is given by:

q = Q/A = -K dT/dx

Where dT/dx is the temperature gradient in the direction of heat transfer.

Step 3: Analyzing heat transfer in a thin slice of soil

Consider a thin slice of soil with a thickness dx at a depth x below the ground surface. The rate of heat transfer through this slice can be expressed as:

q = -K dT/dx A

Where A is the area of the slice. The heat gained by the slice is given by:

q dx = C dT

Where C is the heat capacity of the slice.

Step 4: Deriving the rate of change of temperature with depth

Based on the heat transfer analysis, the rate of change of temperature with depth can be expressed as:

dT/dt = -K/C d²T/dx²

Where t is time.

Step 5: Applying the boundary conditions

The boundary conditions for this problem are:

T(x,0) = 20° C (at sunset)

T(0,t) = 0° C (base of cloud)

Step 6: Solving the differential equation

The solution to the above differential equation, subject to the specified boundary conditions, is given by:

T(x,t) = 20 - 10 erf(x/(2 sqrt(Kt/C)))

Where erf represents the error function.

Step 7: Calculating the rate of change of temperature at the surface

The rate of change of temperature at the surface (x = 0) can be determined by evaluating the derivative of T(x,t) with respect to t:

dT/dt = -5/sqrt(π K t C) exp(-x²/(4 K t/C))|x=0

dT/dt = -5/(sqrt(π K t C))

dT/dt = -5/(sqrt(π x (5/2)² K C))

dT/dt = -5/(sqrt(π) (5/2) m)² (2×10⁶ J/m³K)

dT/dt = -2.21 x 10⁻⁴ K/s (correct to three significant figures)

Therefore, the rate of change of the ground temperature is -2.21 x 10⁻⁴ K/s.

Learn more about heat transfer:

https://brainly.com/question/13433948

#SPJ11

An unstable high-energy particle enters a detector and leaves a track 1.15 mm long before it decays. Its speed relative to the detector was 0.956c. What is its proper lifetime in seconds? That is, how long would the particle have lasted before decay had it been at rest with respect to the detector? Number __________ Units _________

Answers

Proper Lifetime is the lifetime of a particle is the time for which it will exist before its decay if it were at rest. That is the time measured in the rest frame of the particle itself.

1. In formula, proper lifetime (τ) can be given as follows: τ = t/γwhere, t is the time interval between the emission and absorption of the particle, and γ is the Lorentz factor of the particle.

2. The Lorentz factor is defined as the ratio of the proper time of an event to the coordinate time of that event. It is a function of the relative velocity v between two frames of reference.γ = 1/√(1- v²/c²)where, c is the speed of light in vacuum.γ = 1/√(1- (0.956c)²/c²)γ = 1/√(1- 0.956²)γ = 1/√(0.044)γ = 1/0.2108γ = 4.739So, τ = t/γ⇒ t = τγ⇒ t = (1.15 × 10⁻³ m)/(0.956 × c) × γ = 4.739.  Answer: 5.12 Units: × 10⁻¹³ s.

Learn more about proper lifetime:

https://brainly.com/question/13201150

#SPJ11

If an R = 1-k2 resistor, a C = 1-uF capacitor, and an L = 0.2-H inductor are connected in series with a V = 150 sin (377t) volts source, what is the maximum current delivered by the source? 0 0.007 A 0 27 mA 0 54 mA 0 0.308 A 0 0.34 A

Answers

The maximum current delivered by the source is 0.34 A. This is determined by calculating the impedance of the series circuit, considering the resistance (R), inductance (L), and capacitance (C). By finding the reactance values for the inductor and capacitor and plugging them into the impedance formula, we can determine the maximum current.

In this case, the inductive reactance (Xl) is calculated using the frequency (377 Hz) and inductance (0.2 H), resulting in Xl = 474.48 Ω. The capacitive reactance (Xc) is determined using the frequency and capacitance (1 uF converted to Farads), resulting in Xc = 424.04 Ω. By applying these values to the impedance formula, Z = √(R^2 + (Xl - Xc)^2), we find that the impedance is complex, indicating a reactive circuit. The maximum current is delivered when the impedance is at its minimum, which in this case is 0.34 A.

Therefore, the maximum current delivered by the source is 0.34 A in this series circuit configuration with the given resistor, capacitor, inductor, and voltage source.

Learn more about inductance here;

https://brainly.com/question/30417307

#SPJ11

What focal length (in meters) would you use if you intend to focus a 1.06 mm diameter laser beam to a 10.0μm diameter spot 20.0 cm behind the lens? (Type in three significant digits).

Answers

To focus a 1.06 mm diameter laser beam to a 10.0 μm diameter spot 20.0 cm behind the lens, a focal length of approximately 7.44 meters would be required.

The relationship between the diameter of the beam, the diameter of the spot, the focal length, and the distance behind the lens can be determined using the formula for Gaussian beam optics. According to this formula, the spot size (S) is given by  [tex]S = \frac{\lambda*f}{\pi* w}[/tex]  where λ is the wavelength, f is the focal length, and w is the beam waist radius.

In this case, the beam diameter is given as 1.06 mm, which corresponds to a beam waist radius of half that value, i.e., 0.53 mm or 5.3 x [tex]10^{-4}[/tex] meters. The spot diameter is given as 10.0 μm, which is equivalent to a beam waist radius of 5 x [tex]10^{-6}[/tex] meters. The distance behind the lens is 20.0 cm, which is 0.2 meters.

Using the formula, we can rearrange it to solve for the focal length: [tex]f = \frac{S*\pi* w}{\lambda}[/tex]. Substituting the given values, we have f = (10.0 x [tex]10^{-6}[/tex]) * π * (5.3 x [tex]10^{-4}[/tex]) / (1.06 x [tex]10^{-3}[/tex]) = 7.44 meters (rounded to three significant digits). Therefore, a focal length of approximately 7.44 meters would be needed to achieve the desired focusing of the laser beam.

Learn more about laser here:

https://brainly.com/question/27853311

#SPJ11

An object that is 5 cm high is placed 70 cm in front of a concave (converging) mirror whose focal length is 20 cm. Determine the characteristics of the image: Type (real or virtual): Location: Magnification: Height:

Answers

The image formed by a concave mirror given the object's characteristics is real, inverted, and located 28 cm in front of the mirror.

The magnification is -0.4, implying the image is smaller than the object with a height of -2 cm.  The mirror formula, 1/f = 1/v + 1/u, is used to find the image's location (v), where f is the focal length (20 cm) and u is the object's distance (-70 cm). Solving, we get v = -28 cm, meaning the image is 28 cm in front of the mirror. The negative sign indicates the image is real and inverted. To find the magnification (m), we use m = -v/u, getting m = 0.4, again a negative sign indicating an inverted image. Lastly, the height of the image (h') can be found by multiplying the magnification by the object's height (h), giving h' = m*h = -0.4*5 = -2 cm.

Learn more about concave mirrors here:

https://brainly.com/question/33230444

#SPJ11

The force of attraction that a 37.5 μC point charge exerts on a 115 μC point charge has magnitude 3.05 N. How far apart are these two charges?

Answers

The force of attraction that a 37.5 μC point charge exerts on a 115 μC point charge has magnitude 3.05 NThe two charges, 37.5 μC and 115 μC, are attracted to each other with a force of magnitude 3.05 N.

Coulomb's law states that the force of attraction or repulsion between two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:

F = k * (|q1| * |q2|) / r^2

where F is the force of attraction or repulsion, k is the electrostatic constant (k = 8.99 × 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the distance between the charges.

In this case, we have a force of 3.05 N, a charge of 37.5 μC (3.75 × 10^-5 C), and a charge of 115 μC (1.15 × 10^-4 C). We need to find the distance (r) between the charges.

Using Coulomb's law, we can rearrange the formula to solve for the distance:

r = √(k * (|q1| * |q2|) / F)

Substituting the given values:

r = √((8.99 × 10^9 N m^2/C^2) * ((3.75 × 10^-5 C) * (1.15 × 10^-4 C)) / (3.05 N))

Simplifying the expression:

r = √(39.18 m^2)

r ≈ 6.26 m

Therefore, the two charges are approximately 6.26 meters apart.

Learn more about magnitude here:

https://brainly.com/question/31022175

#SPJ11

Show understanding by giving an explanation of what occurs in AC circuits when a number of waveforms combine and how and why it occurs.

Answers

There are two waveforms present in a circuit, A and B. When they combine, the total waveform has a different shape than either A or B. The amplitude and frequency of the combined waveform are different from those of the individual waveforms. The reason why the waveform combination occurs is that the voltage sources are not synchronized, and their waveforms are out of phase with one another.

An AC circuit consists of an alternating current generator that supplies a voltage to a circuit. The voltage can change over time, and its wave shape is sinusoidal. In an AC circuit, waveforms combine when there are two or more voltage sources. When different waveforms combine in an AC circuit, they interact with one another, resulting in a combined waveform that has a unique shape. The process of waveform combination in AC circuits is called superposition. It's based on the principle that each individual voltage source contributes to the circuit's total voltage. The voltage produced by each voltage source is proportional to its magnitude and the resistance of the circuit.

The combined voltage is obtained by adding the individual voltages at each point in the circuit. Suppose there are two waveforms present in a circuit, A and B. When they combine, the total waveform has a different shape than either A or B. The amplitude and frequency of the combined waveform are different from those of the individual waveforms. The reason why the waveform combination occurs is that the voltage sources are not synchronized, and their waveforms are out of phase with one another.

As a result, the total voltage in the circuit fluctuates between positive and negative values.

know more about waveform

https://brainly.com/question/31528930

#SPJ11

Other Questions
a. Consider each 3 consecutive digits in your ID as a key value. Using Open Hashing, insert items with those keys into an empty hash table and show your steps. Example ID: 201710349. You must use your own ID. Key values: 201, 710, 340 tableSize: 2 hash(x) = x mod tableSize b. Calculate the number of edges in a complete undirected graph with N vertices. Where N is equal to the 3rd and 4th digits in your ID. Show your steps. Example ID: 201710340. You must use your own ID. N = 17 Consider the sets and A {5, 10, 15} and C = {8, 12, 25}. A relation R1 is defined in Ax C = as R = {(a,b)Ax C: a/b}. The relation has only one element (a1, b). The value of a1 is: and the value of b1 is: Write some code to print the word "Python" 12 times. Use a for loop. Copy and paste your code into the text box Select the lightest available W section of Gr. 50 steel for a beam that is simply supported on the left end and a fixed support on the right end of a 10 meter span. The member supports a service dead load of 3kN/m, including its self weight and a service live load of 4KN/m. The nominal depth of the beam is provided at the ends and 1/3 point of the span. Use cb equivalent to 1.0. After reading THE ANIMAL FARM, choose ONLY ONE QUESTION and prepare a 90-second video to answer such question. Make sure that your answer includes references to the story. This means that you back up Let the universe of discourse be the set of negative integers. By selecting True or False, give the truth value of thefollowing:ForEvery x (| 2x+1 | > 1).Select one:O TrueO False Let a truth table have 512 rows. Then, the number of atomic propositions in the table isa. 8.b. 9.c. 10.d. 12.e. 16. The proposition p q is logically equivalent toa. [(NOT q -> NOT p) AND (q -> p)].b. [(p-> NOT q) OR (q -> NOT p)].c. [(NOT p->q) AND (q -> NOT p)].d. [(p > NOT q) OR (NOT q -> p)]. The following statement is given:If you will give me a smartphone, then I will give you crystal ball.From the following sentences, state the one that is the converse:a. If you will give me a smartphone, then I will not give you crystal ball.O b. If I will not give you crystal ball, then you will not give me a smartphone.c. If I will give you crystal ball, then you will give me a smartphone.d. If you will not give me a smartphone, then I will not give you crystal ball.e. You will give me a smartphone and I will not give you crystal ball.f. If I will give you crystal ball, then you will not give me a smartphone. The pendulum of a big clock is Y meters long. In New York City, where the gravitational acceleration is g = 9.8 meters per second squared, how long does it take for that pendulum to swing back and forth one time? Show your work and give your answer in units of seconds. Y= 1.633 1- Analyze the Davis-Moore thesis. Do you agree? Does social stratification have an important function in society? What examples can you think of that support or refuse the thesis?2- Consider social stratification from the symbolic interactionist perspective. How does social stratification influence the daily interactions of individuals? How do systems of class, based on factors such as prestige, power, income, and wealth, influence your own daily routines, as well as your beliefs and attitudes? Illustrate your ideas with specific examples and anecdotes from your own life and the lives of people in your community.3- Consider the matter of rock-bottom prices at Walmart. What would a functionalist think of Walmart's model of squeezing vendors to get the absolute lowest prices so it can pass them along to core nation consumers? A solenoid of length 2.30 m and radius 1.90 cm carries a current of 0.180 A. Determine the magnitude of the magnetic field inside if the solenoid consists of 1600 turns of wire. You just inherited a sum of money from a distant uncle. The only stipulation is that you need to save it for 10 years and then you can do whatever you want with it. The amount of the inheritance is $25,000.Option one: You can put it into a saving account that earns 6% compounded quarterly.Option two: You can put it into a checking account that earns 4% compounded monthly.Option three: You can place it into a money market account that earns 3% compounded daily.Which option is best for you? Why?Submit a report detailing the reasons you have for the decision you make. Student DetailsNameMajorGPANo student matches the ID A certain radioactive material in known to decay at the rate propo- tional to the amount present. If initially there is 100 miligrams of the material present and after two hours it is observed that the material has lost 10 percent of its original mass. By using growth population formula, dx dt = kx, findi. an expression for the mass of the material remaining at any time t.ii. the mass of the material after five hours.iii. the time at which the material has decayed to one half of its initial mass. Which of the following statement(s) about Electron Shells is(are) true: (i) Different shells contain different numbers and kinds of orbitals. (ii) Each orbital can be occupied by a maximum of two unpaired electrons. (iii) The 5th shell can be subdivided into subshells (s, p, d, f orbitals). (iv) The maximum capacity of the 2nd shell is 8. (v) Orbitals are grouped in electron shells of increasing size and decreasing energy. Describe the operation of each functional block in the Cathode Ray Oscilloscope and Regulated Power Supply Which of these qualification requirements applies to an employee stock ownership plan (ESOP)?A. At retirement, a lump sum distribution of employer securities is subject to ordinary income tax on the fair market value of the securities at the time of the distribution.B. Assets may be invested primarily in qualifying employer securities.C. Stock is sold via a public offering and the cash received on the table is contributed to the qualified plan by the employer.D. No more than 50% of plan assets may be invested in employer securities Consider a fabric ply (satin 8HS) carbon/epoxy G803/914 that is 0.5 mm thick and that presents the following characteristics of elastic properties and failure strains: (p=1600 kg / m E, = E, = E = 52 GPA V = V = 0.03 G = G = 3.8 GPa E' = ,' = e' = 8000ue &* = ," = e = -6500JE = We are only interested in the final fracture, and we will suppose that the material obeys a strain fracture criterion: S&* SE, SE LE SE, SE! a) Determine the compliance matrix of this ply at 0 (depending on E, v and G). b) Determine the stiffness matrix of this ply at 0 (depending on E, v and G). c) Determine the compliance matrix of this ply at 45 (depending on E, v and G). Explain why sie and S26 (or Q16 and Q26) are null. d) Determine the stiffness matrix of this ply at 45 (depending on E, v and G). What do you think of the term Q66 compared to the case of the ply at 0? You wish to make a 0.334M hydrobromic acid solution from a stock solution of 6.00M hydrobromic acid. How much concentrated acid must you add to obtain a total volume of 75.0 mL of the dilute solution? Jupiter, Saturn, Uranus, and Neptune are larger than the terrestrial planets because They formed in cooler parts of the solar nebula where the most abundant elements could condense They formed before the Sun formed whereas the rocky planets formed from leftover material They formed in a different solar system and were captured by the Sun's gravity They formed close to the Sun but have been gradually moving away from the Sun for the past 4.6 billion years TRUE / FALSE. "In conditionals that are true, the antecedent specifies acondition that is necessary for the consequent. The state of stress at a point is shown on the element. Use Mohr's Circle to determine: (a) The principal angle and principal stresses. Show the results on properly oriented element. (b) The maximum in-plane shear stress and associated angle. Include the average normal stresses as well. Show the results on properly oriented element.