write the set {x | x > - 4 } in interval notation.

Answers

Answer 1

Answer:

can be written as this in interval notation

[tex]( - 4 . \infty ) [/tex]

Step-by-step explanation:

since x is greater than -4 it is always going to be positive infinity on the right with -4 on the left.

if it is less than -4 then it is always going to be negative infinity on the left with -4 on the right

Answer 2

You can write the interval notation for the given set as:
(-4, ∞)


To write the set {x | x > -4} in interval notation, follow these steps:

1. Identify the lower limit of the interval: In this case, the lower limit is -4.
2. Identify the upper limit of the interval: Since x > -4, there is no upper limit, so we'll use infinity (∞) as the upper limit.
3. Determine whether the lower and upper limits are included in the set: In this case, x is strictly greater than -4, so -4 is not included. Therefore, we use the parenthesis "(" for the lower limit.

Interval notation is a way to describe continuous sets of real numbers by the numbers that bound them. Intervals, when written, look somewhat like ordered pairs. However, they are not meant to denote a specific point. Rather, they are meant to be a shorthand way to write an inequality or system of inequalities.

Now, you can write the interval notation for the given set as:

(-4, ∞)

Visit here to learn more about  interval notation:

brainly.com/question/29531272

#SPJ11


Related Questions

Write any 10 positive rational numbers (7th grade exercise)

Answers

1/4, 2/9, 7/11, 3/13, 5/12, 4/32, 7/29, 14/50, 6/10, 9/20

Solve for the surface area and volume of the composite figure made of a right cone and a
hemisphere (half sphere).

Answers

The surface area of the composite figure is 1,665.04 in².

The volume of composite figure is 1,079.66 in³.

What is the volume of the composite figure?

The volume  and surface area of the composite figure is calculated by applying the following formula as shown below;

The surface area = area of cone + area of hemisphere

S.A = πr(r + l) + 3πr²

S.A = π x 10 (10 + 13)  +  3π(10²)

S.A = 1,665.04 in²

The volume of composite figure is calculated as follows;

V = ¹/₃πr²h  +  ²/₃πr²

The height of the cone is calculated;

h = √(13² - 10²)

h = 8.31 in

V = ¹/₃π(10)²(8.31)  +  ²/₃π(10)²

V = 870.22 + 209.44

V = 1,079.66 in³

Learn more about volume of cone here: https://brainly.com/question/13677400

#SPJ1

Which component is missing from the process of cellular respiration?

________ + Oxygen → Carbon Dioxide + Water + Energy

Sunlight
Sugar
Oxygen
Carbon

NOT GLUCOSE!!

Answers

Glucose is component is missing from the process of cellular respiration.

Glucose  + Oxygen → Carbon Dioxide + Water + Energy

What is cellular respiration in simple terms?

Cell breath is a progression of synthetic responses that separate glucose to create ATP, which might be utilized as energy to drive numerous responses all through the body. There are three primary strides of cell breath: glycolysis, the citrus extract cycle, and oxidative phosphorylation. Glycolysis, pyruvate oxidation, the citric acid or Krebs cycle, and oxidative phosphorylation are the stages of cellular respiration.

Glucose  + Oxygen → Carbon Dioxide + Water + Energy

Learn more about cellular respiration

brainly.com/question/29760658

#SPJ1

assume z is a standard normal random variable. then p(1.20 ≤ z ≤ 1.85) equals _____.a. .0829b. .8527c. .4678d. .3849

Answers

Answer:

Step-by-step explanation:

Using a standard normal table, we can find the area under the curve between 1.20 and 1.85 to be approximately 0.4678. Therefore, the answer is (c) 0.4678.

6. An oil company wants to lay a pipeline from its offshore drilling rig to a storage tank on shore, as illustrated in the accompanying figure. The rig (point R) is 3 miles offshore (point A), and the storage tani (point B) is 8 miles down the shoreline. The cost of laying pipe underwater is $800 per mile and along the shoreline is $400 per mile. Point P is the point on shore where the underwater pipe connects with the shoreline pipe. Where should point P be located so as to minimize the cost of laying pipe? Show the function and domain you need to optimize. Provide a complete answer and state units. R (Oil rig) 3 mi Shoreline B (Storage tank) 8 mi

Answers

The units for the cost function C(x,y) are dollars, and the units for x and y are miles.

To minimize the cost of laying the pipeline:

Point P should be located 1.5 miles down the shoreline from the storage tank (point B).

To show this, let x represent the distance from point B to point P along the shoreline, and y represent the distance from point P to the rig (point R) underwater.

Then, the total cost of laying the pipeline can be represented by the function C(x,y) = 800y + 400(8-x).

Since the distance from point A to point R is 3 miles, we know that x + y = 3. Solving for y in terms of x, we get y = 3-x.

Substituting this into the cost function, we get C(x) = 800(3-x) + 400(8-x) = 3200 - 400x.

To minimize this function, we can take the derivative and set it equal to zero:

C'(x) = -400.

Therefore, there is no critical point, but the function is decreasing as x increases.

Since x represents the distance from point B to point P along the shoreline, we want to minimize x while still satisfying the constraint that x + y = 3.

This means that y must be maximized, which occurs when x = 1.5.

Therefore, point P should be located 1.5 miles down the shoreline from the storage tank (point B) and 1.5 miles from the rig (point R) underwater.

The domain of the function we optimized was x in [0,8] (the distance along the shoreline from point B to the right) since we cannot have a negative distance or a distance greater than 8 miles along the shoreline.

The units for the cost function C(x,y) are dollars, and the units for x and y are miles.

To now more about Cost Function:

https://brainly.com/question/31041336

#SPJ11

At the same rate, how long would it take him to drive 335 miles?

Answers

It would take Deshaun 5 hours to drive 335 miles at the same rate.

What is speed?

The SI unit of speed is m/s, and speed is defined as the ratio of distance to time. It is the shift in an object's location with regard to time.

We can use the formula:

rate = distance / time

to solve the problem. The rate is constant, so we can use it to find the time for a different distance.

First, we find Deshaun's rate:

rate = distance / time = 469 miles / 7 hours = 67 miles per hour

Now we can use this rate to find the time it would take to drive 335 miles:

time = distance / rate = 335 miles / 67 miles per hour

time = 5 hours

Therefore, it would take Deshaun 5 hours to drive 335 miles at the same rate.

Learn more about speed on:

https://brainly.com/question/13262646

#SPJ9

The complete question is:

Deshaun drove 469 miles in 7 hours. At the same rate, how long would it take him to drive 335 miles?

find the general solution of the given differential equation. y′ = 2y x2 9

Answers

The general solution of differential equation is, y = k * (x²-9).

We can begin by separating the variables of the differential equation:

y′ = (2y) / (x²-9)

y′ / y = 2 / (x²-9)

Now we can integrate both sides with respect to their respective variables:

[tex]\int \dfrac{y'}{y} dy = \int \dfrac{2}{x^2-9} dx[/tex]

ln|y| = ln|x²-9| + C

where C is the constant of integration.

Simplifying:

|y| = e^(ln|x²-9|+C) = e^C * |x²-9|

Since e^C is a positive constant, we can write:

y = k * (x²-9)

where k is a non-zero constant. Therefore, the general solution of the given differential equation is y = k(x²-9), where k is any non-zero constant.

To know more about differential equation, here

brainly.com/question/14620493

#SPJ4

--The complete question is, Find the general solution of the given differential equation. y′ = (2y) / (x²-9).--

f(x)= x². What is g(x)?
O A. g(x)=x²
OB. g(x) = (x)²
OC. g(x) = 3x²
OD. g(x) = (x)²
g(x)
-5
-5-
y
f(x) = x²
(3, 1)
5

Answers

Since the function f(x) = x², g(x) include the following: D. g(x) = (1/3x)².

What is a transformation?

In Mathematics and Geometry, a transformation can be defined as the movement of a point from its initial position to a new location. This ultimately implies that, when a function or object is transformed, all of its points would also be transformed.

What is a dilation?

In Mathematics and Geometry, a dilation simply refers to a type of transformation which typically changes the size of a geometric object, but not its shape.

Based on the graph, we can logically deduce that function g(x) can be produced by vertically stretching the parent function by a scale factor of 1/3;

g(x) = 1/3f(x)

g(x) = (1/3x)²

g(x) = (1/9)x²

Read more on transformation here: https://brainly.com/question/10754933

#SPJ1

If the inputs of a J-K flip-flop are J= 1 and K = 1 while the outputs are Q = 0 and Q= 1, what will the outputs be after the next clock pulse occurs? A) Q=0,Q=0 B) Q=1,Q=1 C) Q=1,Q=0 D) Q=0,Q= = 1 An eight-line multiplexer must have A) four data inputs and three select inputs. C) eight data inputs and four select inputs. B) eight data inputs and two select inputs. D) eight data inputs and three select inputs.

Answers

If the inputs of a J-K flip-flop are J= 1 and K = 1 while the outputs are Q = 0 and Q= 1, the outputs after the next clock pulse occurs are C) Q=1, Q=0. An eight-line multiplexer must have D) eight data inputs and three select inputs.

For the first question, with the J-K flip-flop:
Given inputs J = 1 and K = 1, and outputs Q = 0 and Q' = 1. After the next clock pulse occurs, the outputs will be:
A) Q = 0, Q' = 0
B) Q = 1, Q' = 1
C) Q = 1, Q' = 0
D) Q = 0, Q' = 1
Answer: Since the J-K flip-flop is in toggle mode when J = 1 and K = 1, the outputs will toggle. Therefore, the correct answer is C) Q = 1, Q' = 0.
For the second question, regarding an eight-line multiplexer:
A) four data inputs and three select inputs.
B) eight data inputs and two select inputs.
C) eight data inputs and four select inputs.
D) eight data inputs and three select inputs.
Answer: An eight-line multiplexer requires three select inputs to choose from eight data inputs ([tex]2^3[/tex] = 8). Therefore, the correct answer is D) eight data inputs and three select inputs.

To learn more about multiplexer, refer:-

https://brainly.com/question/29609961

#SPJ11

x+y=2 and x^3 + y^3=56

find x and y

Answers

Answer:

To solve for x and y, we can use algebraic manipulation and substitution. Here are the steps:

Rearrange the first equation to solve for y in terms of x:

y = 2 - x

Substitute this expression for y into the second equation, and simplify:

x^3 + (2-x)^3 = 56

x^3 + 8 - 12x + 6x^2 - 3x^3 = 56

-2x^3 + 6x^2 - 12x + 8 = 0

Divide both sides by -2 to simplify the equation:

x^3 - 3x^2 + 6x - 4 = 0

Try to find a root of the equation using synthetic division or guess and check. One possible root is x = 2. Substituting this back into the first equation gives:

2 + y = 2

y = 0

So the solution is x=2 and y=0.

Therefore, the solution to the system of equations is x = 2 and y = 0.

You need to cut the strongest beam out of a log with diameter

Answers

For a wooden beam has a rectangular cross section with height, h and width, w. The dimensions of the strongest beam that can be cut from a round log of diameter d = 22 inches are equal to 7.33 inches × 17.96 inches.

Mathematically, a dimension of a space is defined as the smallest number of coordinates required to determine any point within it. It is used as a measurement of the size of an object. Commonly it is expressed as length, width, and height. We have a wooden beam has a rectangular cross section,

height of beam = h

Width of beam = w

The strength of beam = S

Now, strength S of the beam is directly proportional to the width and the square of the height, that is S ∝ wh²

=> S = kwh², where k ->constant of proportionality.

The strongest beam that can be cut from a round log of diameter d = 22 inches

From the figure, d² = h² + w²

=> 22² = h² + w²

=> h² = 484 - w²

plug this value in above equation, S = kw(484 - w²)

For maximum of strength, dS/dw = 0 ( critical values)

=> [tex]\frac{ d( kw(484 - w²)}{dw} = 0[/tex]

=> k( 484 - 3w²) = 0

=> 484 - 3w² = 0

=> w² = 484/3

=> w = 22/√3 = 7.33

then, h² = 484 - w²

[tex]h^2= 484 - \frac{ 484}{3} [/tex]

=> [tex] h^2= 2( \frac { 484}{3} )[/tex]

=> [tex]h = (\frac{ \sqrt2}{\sqrt3} )22[/tex]

= 17.96

Hence, required value is 17.96 inches.

For more information about dimensions, visit :

https://brainly.com/question/28107004

#SPJ4

Complete question:

A wooden beam has a rectangular cross section of height h and width w (see figure). The strength S of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter d = 22 inches? Round your answers to two decimal places.

5-(6x+9)= 9-(4x-1)

Solve

Answers

Answer: X=-7
When solving distribute out of the parentheses on both sides then combine like terms

what is the least common multiple of 24 and 32?
i need an answer asap ​

Answers

96

Explanation:

Write the prime factorization of both the numbers.

24=2×2×2×3

32=2×2×2×2×2

The LCM of 24 and 32 is 96. To find the LCM (least common multiple) of 24 and 32, we need to find the multiples of 24 and 32 (multiples of 24 = 24, 48, 72, 96; multiples of 32 = 32, 64, 96, 128) and choose the smallest multiple that is exactly divisible by 24 and 32

Tammy leans across the table to get a saltshaker and her friend is surprised at what she thinks is very rude behavior. Lit's perception of her friend's behavior is based on a. Regulative rules b. Constitutive rules d. Stereotypes e. Personal contracts f. Conflict patterns

Answers

Based on constitutive laws, Lit's interpretation of her friend's actions.Therefore, choice b is right.

Tammy should have asked the host to serve her instead of reaching over the table to get the salt shaker since, as per the constitution, you are not allowed to reach across the table and touch objects on it.

Constitutive rules are those that have a creative purpose, making it possible to carry out specific activities or take part in a specific practise. They are typically opposed to regulative rules.

The practises that constitutive norms establish are metaphysically prior to one another.According to John Searle's influential constitutive rules theory, behaviours are only possible when certain conditions are met. This distinguishes regulative rules which aim to control previously existing and established behavior from constitutive norms.

To know more about constitutive rules please check the following link

https://brainly.com/question/31325033

#SPJ4

Given the set of integers: {88, 2,9, 36}, how many different MIN HEAPs can be made using these integers? Justify your answer.

Answers

After continuing this process recursively until all integers are placed in the MIN HEAP. Using this method, we can see that there is only one possible MIN HEAP that can be made using the given set of integers. Therefore, the answer of the Binary Tree is 1.

Given the set of integers {88, 2, 9, 36}, there are 3 different Min Heaps that can be made using these integers. Min Heap is a binary tree where the parent node has a value less than or equal to its child nodes.

To determine the number of different MIN HEAPs that can be made using the set of integers {88, 2, 9, 36}, we can use the formula for the number of distinct permutations of n elements, which is n!. However, we need to take into account that MIN HEAP has a specific structure where the parent node is always smaller than its children nodes.

Then, we can choose the next smallest integer (9 or 36) as the left child of 2, and the remaining integer as the right child of 2. We can continue this process recursively until all integers are placed in the MIN HEAP.

Here are the 3 different Min Heaps:

1.       2
      /     \
    9        36
  /
88

2.       2
      /     \
    88      9
  /
36

3.       2
      /     \
    36       9
  /
88

These Min Heaps satisfy the condition of having the parent nodes with smaller values than their child nodes.

Learn more about Binary Tree:

brainly.com/question/29993738

#SPJ11

PLS HELP I NEED TO GET TO BED 100 POINTS

Answers

To find the surface area, you add up the area of the lateral faces and the area of the bases. The area of the triangular bases is 10.5 inches squared, and the area of the lateral faces is (3.5 * 9) + (4.5 * 9) + (3 * 9) = 99 inches squared. 10.5 + 99 = 109.5 inches squared

If there are ten multiple-choice questions on an exam, each having three possible answers, how many different sequences of answers are there? There are 59049 different sequences of answers. (Type a whole number.)

Answers

Different sequence of answers is  59049.

Explanation: -  

To determine the number of different sequences of answers that can be created with ten multiple-choice questions, each having three possible answers, we need to use the multiplication principle of counting. This principle states that the total number of possible outcomes of a sequence of events is the product of the number of outcomes for each event.

For the first question, there are three possible answers. For the second question, there are three possible answers, and so on for each of the ten questions. Using the multiplication principle, we can determine the total number of different sequences of answers by multiplying the number of outcomes for each question together: 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 = 59,049

Therefore, there are 59,049 different sequences of answers that can be created with ten multiple-choice questions, each having three possible answers.

Know more about the "multiplication principle" click here;

https://brainly.com/question/29117304

#SPJ11

Find the following probabilities based on the standard normal variable Z. (You may find it useful to reference the z table. Round your answers to 4 decimal places.) a. P(Z > 1.02) b. P(Zs-2.36) c. P(0

Answers

a. The probability of P(Z > 1.02) = 0.1539
b. P(Z ≤ -2.36) = 0.0091
c. P(0 ≤ Z ≤ 1.07) = 0.3577


1. To find the probabilities, you need to reference a standard normal (z) table.


2. For a. P(Z > 1.02), look up 1.02 on the z table. The corresponding value is 0.8461. Since the question asks for P(Z > 1.02), subtract the value from 1: 1 - 0.8461 = 0.1539.


3. For b. P(Z ≤ -2.36), look up -2.36 on the z table. The corresponding value is 0.0091. Since the question asks for P(Z ≤ -2.36), the value is already correct: 0.0091.


4. For c. P(0 ≤ Z ≤ 1.07), look up 1.07 on the z table. The corresponding value is 0.8577. Since the question asks for P(0 ≤ Z ≤ 1.07), subtract 0.5 (value for Z = 0): 0.8577 - 0.5 = 0.3577.

To know more about z table click on below link:

https://brainly.com/question/30765367#

#SPJ11

let h0, h1, h2,..., hn,....be the sequence defined by hn = (n C 2), (n choose 2). (n>=0). Determine the generating function for the sequence.

Answers

To determine the generating function for the sequence h0, h1, h2,..., hn,...., we first need to express the sequence in terms of a polynomial. Using the formula for binomial coefficients, we have:

hn = (n C 2) = n!/(2!(n-2)!) = (1/2)n(n-1)

So, the sequence can be expressed as the polynomial:

h(x) = 0 + (1/2)x(x-1) + (1/2)2(2-1)x(x-1)(x-2) + ... + (1/2)n(n-1)x(x-1)(x-2)...(x-n+1) + ...

Now, we can use the definition of a generating function to write:

H(x) = h0 + h1x + h2x^2 + ... + hnx^n + ...

H(x) = (1/2)0(0-1) + (1/2)1(1-1)x + (1/2)2(2-1)x^2 + ... + (1/2)n(n-1)x^n + ...

H(x) = 0 + 0x + (1/2)x^2 + (1/2)2x^3 + ... + (1/2)n(n-1)x^(n+1) + ...

Hence, the generating function for the sequence h0, h1, h2,..., hn,.... is:

H(x) = (1/2) x^2 (1 + 2x + 3x^2 + ...)

Given the sequence h_n = C(n, 2), where n ≥ 0, we want to find the generating function for this sequence. The generating function, G(x), is defined as the formal power series:

G(x) = h_0 + h_1x + h_2x^2 + h_3x^3 + ...

We know that h_n = C(n, 2) = n(n - 1)/2 for n ≥ 0. So, we can rewrite the generating function as:

G(x) = h_0 + h_1x + h_2x^2 + h_3x^3 + ... = ∑ [n(n - 1)x^n / 2] for n ≥ 0.

By using the binomial theorem, we can express G(x) as:

G(x) = 1/2 * (x * d/dx)^2 (1 - x)^(-1)

Here, (x * d/dx) is the operator that represents the derivative with respect to x multiplied by x. By applying this operator twice to (1 - x)^(-1) and then multiplying the result by 1/2, we obtain the generating function for the sequence.


Visit here to learn more about polynomial brainly.com/question/11536910

#SPJ11

For a carnival game, a turn consists of spinning the spinner shown twice. If the product of the two numbers is odd, you win. If the product of the two numbers is even, you lose. In addition, if the product of the two numbers is prime, you win a grand prize. (see image). The game assistant assures you that the odds are in your favor because you are more likely to land on an odd number. Is it true you are more likely to win? Explain using probabilities.

Answers

The probability that you win is given as follows:

25/81.

Hence it is not true that you are more likely to win, as the probability of winning is less than 50%. Even tough there are more odd numbers than even number, you need two odd numbers for the product to generate an odd number.

How to calculate a probability?

A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.

For the product of two numbers, we have that:

If the two numbers are odd, the product is odd.Otherwise, the product is even.

5(1, 3, 5, 7 and 9) out of the 9 numbers, are odd, hence the probability of choosing two odd numbers is given as follows;

5/9 x 5/9 = 25/81.

More can be learned about probability at brainly.com/question/24756209

#SPJ1

twenty-four feet (six 4-ft sections) of track lighting must be installed in a continuous row in a retail store. what is the minimum number of supports required?

Answers

The minimum number of supports required is 7.

To determine the minimum number of supports required for the twenty-four feet (six 4-ft sections) of track lighting to be installed in a continuous row in a retail store, follow these steps:

1. Determine the total length of the track lighting: 6 sections * 4 feet per section = 24 feet.

2. Consider that a support is needed at the beginning and end of the track.

3. Assess the spacing between supports. For instance, let's assume supports can be placed every 4 feet.

4. Calculate the number of supports in between the ends: (24 feet - 4 feet) / 4 feet = 5 supports.

5. Add the supports at the beginning and end: 5 supports + 2 supports = 7 supports.

The minimum number of supports required is 7.

Learn more about length here,

https://brainly.com/question/31573578

#SPJ11

Find the inverse of f(x) = (x - 5)/(x + 6)

Answers

Answer:

[tex]f^{-1}(x) = \dfrac{6x + 5}{1 - x}[/tex]

Step-by-step explanation:

To find the inverse of a function, we can swap x and y (f(x)), then solve for y, and represent that y as [tex]f^{-1}(x)[/tex].

[tex]f(x) = \dfrac{x - 5}{x + 6}[/tex]

↓ swapping x and y

[tex]x = \dfrac{y - 5}{y + 6}[/tex]

↓ multiplying both sides by (y + 6)

[tex]x(y + 6) = y - 5[/tex]

↓ simplifying using the distributive property

[tex]xy + 6x = y - 5[/tex]

↓ subtracting 6x and y from both sides to isolate the y terms

[tex]xy - y = - 6x - 5[/tex]

↓ undistributing y from the left side

[tex]y(x - 1) = - 6x - 5x[/tex]

↓ dividing both sides by (x - 1)

[tex]y = \dfrac{-6x - 5}{x-1}[/tex]

↓ (optional) multiplying the fraction by [tex]\bold{\dfrac{-1}{-1}}[/tex]

[tex]y = \dfrac{6x + 5}{1 - x}[/tex]

↓ replacing y with [tex]f^{-1}(x)[/tex]

[tex]\boxed{f^{-1}(x) = \dfrac{6x + 5}{1 - x}}[/tex]

The discrete random variable X is the number of students that show up for Professor Adam's office hours on Monday afternoons. The table below shows the probability distribution for X. What is the probability that fewer than 2 students come to office hours on any given Monday? X Р(Х) 0 40 1 30 2 .20 3 .10 Total 1.00 0.50 0.40 0.70 0.30

Answers

The probability that fewer than 2 students come to office hours on any given Monday is 0.70.

How we find the probability?

To find the probability that fewer than 2 students come to office hours on any given Monday, we need to calculate the sum of the probabilities of X=0 and X=1.

P(X < 2) = P(X = 0) + P(X = 1)

= 0.40 + 0.30

= 0.70

From the given probability distribution, we can see that the probability of X=0 is 0.40 and the probability of X=1 is 0.30. These represent the probabilities of no students or one student showing up for office hours, respectively.

To find the probability that fewer than 2 students come to office hours on any given Monday, we need to add these probabilities together since X can only take on integer values.

Therefore, P(X < 2) = P(X = 0) + P(X = 1) = 0.40 + 0.30 = 0.70.

This means that there is a 70% chance that either no students or one student will show up for office hours on any given Monday.

Learn more about Probability

brainly.com/question/16484393

#SPJ11

Find the surface area of the prism.

Answers

it should be 228: the triangles are 60, the side rectangles are 39 and the back rectangle is 30

enlarge triangle M (all details in image)

Answers

Answer:

Using a scale factor of -1/2, you can enlarge the center with the axis points, (-1,-1).

Step-by-step explanation:

In order to enlarge the triangle M, you would need to use the scale factor of -1/2.

With the center of enlargement then found on plotted axis (-1, -1), one would find a new triangle labeled N.

(56x^2-60x+16)
Divided by
28x-16

Answers

Answer:

= 2x - 1

Step-by-step Explanation:

We can use polynomial long division to divide (56x^2-60x+16) by (28x-16).



2x - 1
-------------------
28x - 16 | 56x^2 - 60x + 16
56x^2 - 32x
------------
-28x + 16
-28x + 16
---------
0

Therefore, the quotient is 2x - 1 and the remainder is 0. So we have:

(56x^2-60x+16) / (28x-16) = 2x - 1

Answer: the quotient is 2x - 1 and the remainder is 0. So we can write:

(56x^2-60x+16) ÷ (28x-16) = 2x - 1.

Step-by-step explanation:

2x - 1

-------------

28x - 16 | 56x^2 - 60x + 16

56x^2 - 32x

--------------

-28x + 16

-28x + 16

----------

0

Find all values of c such that the parabolas y = 9x2 and x = c + 3y2 intersect each other at right angles. (Enter your answers as a comma-separated list.)

Answers

The value of c is -10/3. This can be answered by the concept of Differentiation.

To find the values of c for which the parabolas y = 9x² and x = c + 3y² intersect at right angles, we need to consider the slopes of the tangent lines at the intersection points.

First, let's find the derivatives of both functions to get the slopes:

For y = 9x², let's find dy/dx:
dy/dx = 18x

For x = c + 3y², let's find dx/dy:
dx/dy = 1 / (6y)

At the intersection points, we have:
9x² = y
c + 3y² = x

Since the tangent lines are perpendicular, their slopes multiply to -1:
(18x)(1 / (6y)) = -1

Now, substitute y = 9x² into the equation:
(18x)(1 / (6 × 9x²)) = -1
(18x)(1 / (54x²)) = -1
(1 / (3x)) = -1

Solving for x, we get x = -1/3.

Now substitute this value of x into the equation for y:
y = 9(-1/3)²
y = 9(1/9)
y = 1

So the intersection point is (-1/3, 1). Now substitute the value of y back into the equation for x to find c:
-1/3 = c + 3(1²)
-1/3 = c + 3
c = -1/3 - 3
c = -10/3

Therefore, the value of c is -10/3.

To learn more about Differentiation here:

brainly.com/question/24898810#

#SPJ11

Fill in the graph...

Answers

For an input of 25, the output is of: 400/7.For an output of 22, the input is of: 77/8.For an input of x, the output is of: 16x/7.For an output of y, the input is of: 16x/7.For an input of 2x, the output is given as follows: 32x/7.For an input of x + 3, the output is given as follows: (16x + 48)/7.

What is a proportional relationship?

A proportional relationship is a type of relationship between two quantities in which they maintain a constant ratio to each other.

The equation that defines the proportional relationship is given as follows:

y = kx.

In which k is the constant of proportionality, representing the increase in the output variable y when the constant variable x is increased by one.

The constant for this problem is given as follows:

k = y/x

k = 16/7.

Hence the equation is:

y = 16x/7.

The outputs for the given inputs are given as follows:

x = 25: y = 16 x 25/7 = 400/7.2x: y = 16(2x)/7 = 32x/7.x + 3: y = 16(x + 3)/7 = (16x + 48)/7.

When y = 22, the input is given as follows:

22 = 16x/7

x = 22 x 7/16

x = 77/8.

More can be learned about proportional relationships at https://brainly.com/question/7723640

#SPJ1

4 How many terms of the series are needed so that the sum is accurate to within 0.00001. [Give the smallest value of n for which this is true. (2n 1)4 51 X terms 11. 0/1 points | Previous Answers My No How many terms of the series are needed so that the remainder is less than 0.0005? (Give the smallest integer value of n for which this is true.] 6

Answers

To find the smallest value of n for which the sum of the series is accurate to within 0.00001, we need to use the formula for the remainder of a convergent series:

R_n = |S - S_n|

where R_n is the remainder, S is the sum of the series, and S_n is the sum of the first n terms.

We want R_n to be less than or equal to 0.00001, so we have:

|R_n| ≤ 0.00001

Substituting the given values, we get:

|(2n+1)^4/5 - 51| ≤ 0.00001

Simplifying and taking the fifth root, we get:

2n+1 ≤ (51.00001)^(1/4)

2n+1 ≤ 3.1673

n ≤ 1.5836

Since n has to be an integer, the smallest value of n that satisfies this inequality is n = 1.

Therefore, we need at least 1 term of the series to get a sum accurate to within 0.00001.

Note: This is a bit of a tricky question because the given series converges very quickly, so only one term is needed to get a sum accurate to within 0.00001.
To determine how many terms of the series are needed so that the sum is accurate to within 0.00001, we can use the remainder estimation theorem.

Given the desired remainder, 0.00001, and the error tolerance, 0.0005, we can find the smallest integer value of n that satisfies these conditions. Since the series is a convergent alternating series, the remainder is less than the absolute value of the (n+1)th term. Therefore, we need to find the smallest integer value of n for which:

|(2n + 1)^(-4)/51| < 0.00001

Solving for n, we can determine the smallest value that meets this criterion. By trial and error or using a calculator, we can find that the smallest integer value of n that satisfies this condition is n = 6.

Visit here to learn more about sum brainly.com/question/29034036

#SPJ11

find the area of the region that is bounded by the curve r=2sin(θ)−−−−−−√ and lies in the sector 0≤θ≤π.

Answers

The area of the region bounded by the curve r = 2sin(θ) in the sector 0≤θ≤π is π/2 square units.

The curve given by the polar equation r = 2sin(θ) is a sinusoidal spiral that starts at the origin, goes out to a maximum distance of 2 units, and then spirals back into the origin as θ increases from 0 to 2π. The sector 0≤θ≤π is half of this spiral, so we can find its area by integrating the area element dA = 1/2 r^2 dθ over this sector

A = ∫[0,π] 1/2 (2sin(θ))^2 dθ

Simplifying the integrand and applying the half-angle identity for sin^2(θ), we get

A = ∫[0,π] sin^2(θ) dθ

= ∫[0,π] (1 - cos^2(θ)) dθ

Integrating term by term, we get

A = [θ - 1/2 sin(2θ)]|[0,π]

= π/2 square units.

Learn more about area here

brainly.com/question/31402986

#SPJ4

Other Questions
5. use img to find the locus tags of the genes that encode atp synthase in the bacterium lactococcus lactis subsp. cremoris sk11. why is this organism important? [tex]f(x) = 2x^{3} - 5x^{2} - 14x + 8[/tex] synthetic divisionpossible zeros:Zeros:Linear Factors: Gabe, a biomedical scientist, is experimenting with hormones that would allow patients to hold their urine longer. What hormone would he experiment with?antidiureticadrenocorticotropicfollicular stimulatingluteinizing hormone You are writing a report that compares the spring lines of three design houses. You are including four different headings in your report. What basic guidelines should you follow when creating your headings? Check all that apply. (O Highlight minor ideas. Try to balance headings within levels. O Capitalize and emphasize carefully. use appropriate heading levels. O Use different fonts and font sizes. 1.234 x 1024 nh3 molecules are how many moles? (2.049 nh3 mols) Consider the function f(x)=x^2+3. is the average rate of change increasing or decreasing from x=0 to x=4?Explain Background information: This passage was written by Jean Domat, a famed French judge who served during the reign of Louis XIV.Since government is necessary for the public good, and God Himself has established it, it is consequently also necessary for those who are subject to government, to be submissive and obedient. For otherwise they would resist God Himself, and government, which should be the bond of peace and unity that brings about the public good, would become an occasion for divisions and disturbances that would cause its downfall. The first duty of obedience to government is the duty to obey those who hold the first place in it, monarchs or others who are the heads of the body that makes up society, and to obey them as the limbs of the human body obey the head to which they are united.Jean Domat,1697According to the text, what must the people do? obey the king in all matters hold the king accountable for his actions resist God when ordered to do so submit to God unless the king objects The answer is A: obey the king in all matters 3. The perimeter of a circular sector with an angle 1.8rad is 64cm. Determine the radius of the Circle. Round tothe nearst hundredth. Based on the information in the posters, why would Jon Smythe most likely be considered more qualified than Mari Jones to serve on the school board? A. Mari Jones has fewer years of college. B. Jon Smythe is friends with the mayor. C. Mari Jones might have a work schedule conflict. D. Jon Smythe has more experience in education.https://cdn.ple.platoweb.com/EdAssets/606e4bb9ce244e80affe8dc7518cde24?ts=636696137183630000 Sandhill Legler requires an estimate of the cost of goods lost by fire on March 9. Merchandise on hand on January 1 was $46,360. Purchases since January 1 were $87,840; freight-in, $4,148; purchase returns and allowances, $2,928. Sales are made at 33 1/3% above cost and totaled $144,000 to March 9. Goods costing $13,298 were left undamaged by the fire; remaining goods were destroyed. Compute the cost of goods destroyed. 1/9 7I need help with this A flat, square surface with side length 4.90 cm is in the xy-plane at z=0.Calculate the magnitude of the flux through this surface produced by a magnetic field B =( 0.175 T)i^+( 0.350 T)j^( 0.525 T)k^.|b| = ________ Wb Where does a developing fetus stay to be protected and sustained? Made in the USA or Made in China has less meaning for products that are technological and involve assembling many different types of sometimes sophisticated components. Why is this true? A mixture of gases, nitrogen, oxygen and carbon dioxide at 27C and 0.50 atm occupy a volume of 492 mL How many moles of gas are there in this sample? a) 0,010 b) 1/9 c) 6d) 10 e) Cannot be determined because it is a mixture a key variable of market efficiency is the certainty of the income stream. the most efficient market is for corporate securities. true fals What the answer to this question?? Make a rap about why the kite is the best shape. Must be appropriate and at least 1 minute long. Giving brainless to whoever does it!!!! Given lines l,m,and n are parallel and cut by two transversal lines, find the value of x. Round your answer to the nearest tenth if necessary. The Predator UAV has the following characteristics: has the following characteristics: wingspan = 14. 85 m, wing area = 11. 45 m2, maximum weight = 1020 kgf, and fuel weight = 295 kgf. The power plant is a Rotax four-cylinder, four-stroke engine of 85 horsepower driving a two-blade, variable-pitch pusher propeller. Assume that the Oswald efficiency factor is 0. 7, the zero-lift drag coefficient is 0. 03, the propeller efficiency is 0. 9, and the specific fuel consumption is 0. 2 kgf of fuel per horsepower per hour. Calculate the following:1: Maximum velocity at sea level. 2: The maximum range3: The maximum endurance