The magnetic field between two coils is most uniform when the distance between them is equal to the radius of the coils. This is because the magnetic field produced by a coil is strongest near its center and gradually decreases as you move away from it.
When the distance between the coils is equal to the radius, the coils are aligned in such a way that the center of one coil aligns with the center of the other. This alignment allows for a more symmetrical distribution of magnetic field lines between the coils.
At this specific distance, the magnetic field lines from each coil are parallel and in the same direction, resulting in a more uniform and consistent magnetic field between the coils.
This uniformity is desirable in applications where a homogeneous magnetic field is needed, such as in scientific experiments, medical imaging, or industrial processes.
If the distance between the coils is smaller than the radius, the magnetic field will be stronger near the coils' centers and gradually diminish as you move away from them.
On the other hand, if the distance between the coils is larger than the radius, the magnetic field will be weaker and less uniform between the coils.
Therefore, to achieve the most uniform magnetic field between two coils, it is optimal to have the distance between them equal to the radius of the coils.
Learn more about magnetic field:
https://brainly.com/question/14411049
#SPJ11
determine the pressure drop per 100-m length of horizontal new 0.35-m-diameter cast iron water pipe when the average velocity is 2.9 m/s.
When the average velocity is 2.4 m/s, the horizontal 0.35 meter diameter cast iron water pipe experiences a pressure drop (P) of roughly 16457.14 kPa every 100 meters.
To determine the pressure drop per 100-meter length of a horizontal 0.35-meter diameter cast iron water pipe, we can use the Darcy-Weisbach equation. The equation is as follows:
[tex]\begin{equation}\Delta P = \frac{f \cdot \frac{L}{D} \cdot (\rho \cdot V^2)}{2}[/tex]
where ΔP is the pressure drop, f is the Darcy friction factor, L is the length of the pipe (100 meters in this case), D is the diameter of the pipe (0.35 meters), ρ is the density of water, and V is the average velocity of water.
To calculate the pressure drop, we need to determine the Darcy friction factor. For a rough cast iron pipe, we can estimate the friction factor to be around 0.02.
Using the given values and the estimated friction factor, the calculation becomes:
[tex]\begin{equation}\Delta P = \frac{0.02 \cdot \frac{100}{0.35} \cdot (\rho \cdot 2.4^2)}{2}[/tex]
Since the density of water (ρ) is approximately 1000 kg/m³, we can substitute this value and calculate the pressure drop:
ΔP = [tex]\frac{0.02 \times \frac{100}{0.35} \times 1000 \times 2.4^2}{2}[/tex]
Let's solve the expression to calculate the pressure drop (ΔP) in kilopascals (kPa):
ΔP = [tex]\frac{0.02 \times \frac{100}{0.35} \times 1000 \times 2.4^2}{2}[/tex]
First, let's simplify the expression:
ΔP = [tex]\frac{0.02 \times (285.714) \times (1000 \times 5.76)}{2}[/tex]
= 16457.14
Therefore, the pressure drop (ΔP) per 100-meter length of the horizontal 0.35-meter diameter cast iron water pipe, when the average velocity is 2.4 m/s, is approximately 16457.14 kPa.
To know more about the cast iron water pipe refer here :
https://brainly.com/question/32455854#
#SPJ11
Complete question :
Determine the pressure drop per 100 -m length of horizontal new 0.35−m-diameter cast iron water pipe when the average velocity 2.4 m/s. Δp= kPa
Learning Goal: To understand that centripetal acceleration is the acceleration that causes motion in a circle. Acceleration is the time derivative of velocity. Because velocity is a vector, it can change in two ways: the length (magnitude) can change and/or the direction can change. The latter type of change has a special name, the centripetal acceleration. In this problem we consider a mass moving in a circle of radius R with angular velocity ω, r⃗ (t)=R[cos(ωt)i^+sin(ωt)j^] =Rcos(ωt)i^+Rsin(ωt)j^. The main point of the problem is to compute the acceleration using geometric arguments. (Figure 1) Part A What is the velocity of the mass at a time t? You can work this out geometrically with the help of the hints, or by differentiating the expression for r⃗ (t) given in the introduction. (Figure 2) Express this velocity in terms of R, ω, t, and the unit vectors i^ and j^. V⃗ (t) = Part Assume that the mass has been moving along its circular path for some time. You start timing its motion with a stopwatch when it crosses the positive x axis, an instant that corresponds to t=0. [Notice that when t=0, r⃗ (t=0)=Ri^. ] For the remainder of this problem, assume that the time t is measured from the moment you start timing the motion. Then the time − t refers to the moment a time t before you start your stopwatch. Part B What is the velocity of the mass at a time − t? Express this velocity in terms of R, ω, t, and the unit vectors i^ and j^. V⃗ (−t) = SubmitMy AnswersGive Up Part C What is the average acceleration of the mass during the time interval from − t to t? (Figure 3) Express this acceleration in terms of R, ω, t, and the unit vectors i^ and j^.
Part A :The position of the particle in vector form is given by[tex]r⃗ (t)=R[cos(ωt)i^+sin(ωt)j^][/tex]where R is the radius of the circle and ω is the angular velocity.The velocity of the particle is given by taking the derivative of the position vector with respect to time.
Taking derivative with respect to time on both side we get [tex]v⃗ (t)=d/dt R[cos(ωt)i^+sin(ωt)j^]= R[-in(ωt)ωi^+cos(ωt)ωj^]=ωR[-sin(ωt)i^+cos(ωt)j^]v⃗ (t)=ωR[-sin(ωt)i^+cos(ωt)j^][/tex]Thus the velocity of the mass at a time t is given by [tex]v⃗ (t)=ωR[-sin(ωt)i^+cos(ωt)j^][/tex].
Part B :
We have to find the velocity at time -t. The velocity of the particle is given by taking the derivative of the position vector with respect to time. Thus the velocity of the mass at a time -t is given by [tex]v⃗ (-t) = ωR[sin(ωt)i^ - cos(ωt)j^][/tex]
[tex]v⃗ (-t) = ωR[sin(ωt)i^ - cos(ωt)j^][/tex]Part C :
The average acceleration of the particle can be computed using the formulaa = [tex]Δv/Δt[/tex]The velocity at time t is given by[tex]v⃗ (t) = ωR[-sin(ωt)i^+cos(ωt)j^][/tex]
The velocity at time -t is given by [tex]v⃗ (-t) = ωR[sin(ωt)i^ - cos(ωt)j^][/tex]
[tex]v⃗ (-t) = ωR[sin(ωt)i^ - cos(ωt)j^][/tex]The change in velocity over the interval from -t to t is therefore
[tex]Δv = v(t) - v(-t) = 2ωR[sin(ωt)i^ + cos(ωt)j^][/tex]
The time interval over which this change occurs is[tex]Δt = 2t[/tex]Thus the average acceleration of the particle is given by a = [tex]Δv/Δt = ω^2R[sin(ωt)i^ + cos(ωt)j^]/t[/tex]
[tex]a = Δv/Δt = ω^2R[sin(ωt)i^ + cos(ωt)j^]/t[/tex]
The acceleration can be expressed in terms of R, ω, t, and the unit vectors [tex]i^ and j^[/tex] as [tex]a = ω^2R[sin(ωt)i^ + cos(ωt)j^]/t[/tex].
To know more about angular velocity visit :
https://brainly.com/question/30237820
#SPJ11
Which of the following activities can be done thanks to observing asteroids?
[mark all correct answers]
A. Calculate and improve current calculations of their orbits.
B. Know more about the composition of asteroids
C. Identify characteristics of asteroids such as if they have rings or tails
D. Take samples of materials from asteroids
E. Identify asteroids that represent a threat to life on earth
To observe asteroids: Calculate and improve orbits. Know about asteroids. Identify characteristics of asteroids. Take samples from asteroids. Identify asteroids a threat to life on earth. The correct answers are A, B, C, D, and E.
Observing asteroids allows us to:
A. Calculate and improve current calculations of their orbits: By observing their positions and movements over time, we can refine our understanding of their orbits, predict future positions, and assess potential collision risks.
B. Know more about the composition of asteroids: By analyzing their reflected light, emission spectra, and studying meteorites that originate from asteroids, we can gain insights into their mineralogical and chemical compositions, helping us understand the formation and evolution of the solar system.
C. Identify characteristics of asteroids such as if they have rings or tails: Through careful observations, we can detect features like rings or tails associated with certain asteroids, providing valuable information about their structure and behavior.
D. Take samples of materials from asteroids: By sending spacecraft missions to asteroids, we can collect samples from their surfaces or even perform asteroid deflection experiments, enabling us to study their physical properties and potential resources.
E. Identify asteroids that represent a threat to life on Earth: Continuous monitoring and observation of asteroids allow us to identify and track potentially hazardous asteroids that may pose a risk of impacting Earth, enabling us to plan and develop mitigation strategies if necessary.
Therefore, observing asteroids contributes to a wide range of activities, from refining orbital calculations and understanding their composition and characteristics to assessing potential threats and even collecting samples from them.The correct answers are A, B, C, D, and E.
To know more about asteroids, refer here:
https://brainly.com/question/29609638#
#SPJ11
The decay of uranium isotopes is used to provide what information about Earths history?
The decay of uranium isotopes is used to provide information about the age of earth.
Match the phrase with word please help!
Phrases:
1.) The amount of work done when jerry carries a box from his house to the moving truck . He exerts a force of 35 N while carrying the box 4 meters
2.) The power resulting from 420 Nm of work being completed in 3 seconds
3.) The amount of work done when Fido carries his toy from the backyard to his crate. He exerts a force of 1.2 N over a distance of 15 m
4.) The power resulting from 120 Nm of work being completed in 20 seconds
A.) 140 joules
B.) 140 Newton-meters
C.) 6 joules
D.) 6 Newton-meters
Answer:
1-B, 2-A, 3-D, 4-C
Explanation:
1. The force exerted is, F = 35 N
Distance the box is moved, d = 4 m
So the amount of work done is, W = F x d
= 35 x 4
= 140 Newton-meters
2. Work done, W = 420 Nm
Time, T = 3 seconds
Therefore, the power required is,
[tex]$P=\frac{W}{T}$[/tex]
[tex]$P=\frac{420}{3}$[/tex]
= 140 joules
3. The force exerted is, F = 1.2 N
Distance the box is moved, d = 5 m
So the amount of work done is, W = F x d
= 1.2 x 5
= 6 Newton-meters
4. Work done, W = 120 Nm
Time, T = 20 seconds
Therefore, the power required is,
[tex]$P=\frac{W}{T}$[/tex]
[tex]$P=\frac{120}{20}$[/tex]
= 6 joules
What are two main types of friction
Answer:There are two main types of friction, static friction and kinetic friction. Static friction operates between two surfaces that aren't moving relative to each other, while kinetic friction acts between objects in motion.
true or false
two different notes can have the same fundamental frequency
Answer:
true:)
Explanation:
microwaves travel with the speed of light, c = 3 × 108 m/s. at a frequency of 10 ghz these waves cause the water molecules in your burrito to vibrate. what is their wavelength?
The wavelength of microwaves with a frequency of 10 GHz is 0.03 meters or 3 centimeters. These microwaves cause the water molecules in the burrito to vibrate due to the absorption of their energy, resulting in the heating of the food.
The wavelength of microwaves with a frequency of 10 GHz can be calculated using the formula λ = c/f, where λ represents wavelength, c is the speed of light (3 × 10^8 m/s), and f is the frequency (10^10 Hz). Therefore, the wavelength of these microwaves is 0.03 meters or 3 centimeters.
The relationship between wavelength, frequency, and the speed of light is given by the equation λ = c/f, where λ represents wavelength, c is the speed of light, and f is the frequency. In this case, we have a frequency of 10 GHz, which is equivalent to 10^10 Hz. Plugging these values into the equation, we get:
λ = c/f
= (3 × 10^8 m/s) / (10^10 Hz)
= 3 × 10^(-2) meters
= 0.03 meters
= 3 centimeters
Learn more about wavelength of microwaves :
https://brainly.com/question/31616989
#SPJ11
A motion sensor emits sound, and detects an echo 0.0115 s after. A short time later, it again emits a sound, and hears an echo after 0.0183 s. How far has the reflecting object moved? (Speed of sound = 343 m/s) (Unit = m)
Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Hello everyone, Can you help me please I have to hand it in today and I can't do my calculation. Thank you in advance The sound emitted by blue whales has a speed in water of about 1,500 m/s. A male whale looking for a mate emits a sound that returns to him after 4 sec. How far away is the female whale? Give details of your calculation.
The female whale is approximately 3,000 meters away from the male whale.
To calculate the distance between the male and female blue whales, we can use the formula:
Distance = (Speed of sound in water × Time) / 2
Given that the speed of sound in water is approximately 1,500 m/s and the time taken for the sound to return is 4 seconds, we can substitute these values into the formula:
Distance = (1,500 m/s × 4 s) / 2
Simplifying the equation:
Distance = (6,000 m) / 2
Distance = 3,000 m
For more such questions on whale,click on
https://brainly.com/question/19852583
#SPJ8
HELP ME
PLZZZ
ASAP
HELP
LIFE
OR
DEATH
SITUATION
The half-life of carbon-14 is 5730 years.
Carbon-14 is used for carbon dating. Carbon dating can tell us how old some
objects are
A skeleton was carbon dated. The results showed that there was only 12.5% of the
original amount of carbon-14 left in the skeleton.
Calculate the age of the skeleton.
HELP ASAP PLZZZ I BEG YOUUUU
Answer:
13,308 MAYBE IF IT ISN'T IM SO SORRY
Explanation:
Which of the following equations is balanced correctly and has the correct products for the reactants RbNO3 and BeF2?
A balanced equation is a chemical equation in which the number of atoms of each element on both sides of the equation is equal. It represents a chemical reaction, indicating the reactants and products involved and the stoichiometric relationship between them.
The balanced equation for the reaction between RbNO3 and BeF2 is: 2RbNO3 + BeF2 → Be(NO3)2 + 2RbF.
To check if the equation is balanced or not, we can count the number of atoms of each element on both sides of the equation.
Here, we have Rb: 2 on both sides, N: 2 on both sides, O: 6 on both sides, Be: 1 on both sides, F: 2 on both sides.
Therefore, the balanced equation for the reaction between RbNO3 and BeF2 is 2RbNO3 + BeF2 → Be(NO3)2 + 2RbF, which has the correct products for the given reactants.
Learn more about balanced equation here ;
https://brainly.com/question/31242898
#SPJ11
____ satellites travel at a speed and direction that keeps pace with the earth’s rotation, so they appear (from earth) to remain stationary over a given spot.
The satellites that appear (from earth) to remain stationary over a given spot are called stationary satellites. They are also known as geostationary satellites. These types of satellites travel at a speed and direction that keeps pace with the earth’s rotation. This enables them to stay in a fixed position relative to the earth's surface at all times. They are commonly used for telecommunications, weather forecasting, and remote sensing applications.
A geostationary orbit is an orbit that is located directly above the equator and follows the direction of Earth's rotation. This type of orbit is around 36,000 km above Earth's surface. Satellites in this orbit have an orbital period of exactly one day, which is the same as the time it takes for the Earth to complete one rotation on its axis.A geostationary satellite is essentially a specialized communications satellite that remains stationary in the sky relative to a specific location on Earth's surface. This allows it to provide continuous coverage to that location, making it ideal for applications such as television broadcasting, weather forecasting, and remote sensing. In conclusion, geostationary or stationary satellites travel at a speed and direction that keeps pace with the earth’s rotation, so they appear (from earth) to remain stationary over a given spot.
To know more about geostationary satellites visit:
https://brainly.com/question/19862046
#SPJ11
El monoxido de carbono reacciona con el hidrogeno gaseoso para producir metanol (ch3oh) calcule el reactivo limite y el reactivo en exceso si la reaccion inicia con 2,0 g de cada reactivo calcule cuantos gramos de metanol se obtiene
Answer:
Se obtienen 2,27 gramos de metanol.
Explanation:
La reacción entre monóxido de carbono e hidrógeno para producir metanol es la siguiente:
CO + 2H₂ → CH₃OH
Para encontrar el reactivo limitante y el reactivo en exceso, debemos calcular el número de moles de CO y H₂:
[tex]\eta_{CO} = \frac{m}{M} [/tex]
En donde:
m: es la masa
M: es el peso molecular
[tex]\eta_{CO} = \frac{m}{M_{CO}} = \frac{2,0 g}{28,01 g/mol} = 0,071 moles [/tex]
[tex]\eta_{H_{2}} = \frac{2,0 g}{2,02 g/mol} = 0,99 moles [/tex]
Dado que la relación estequiométrica entre CO y H₂ es 1:2, el número de moles de hidrógeno gaseoso que reaccionan con el monóxido de carbono es:
[tex] \eta_{H_{2}} = \frac{2}{1}*0,071 = 0,142 moles [/tex]
Entonces, se necesitan 0,142 moles de H₂ para reaccionar con 0,071 moles de CO y debido a que se tienen más moles de H₂ (0,99 moles) entonces el reactivo limitante es CO y el reactivo en exceso es H₂.
Ahora podemos encontar la masa de metanol obtenida usando el reactivo limitante (CO) y sabiendo que la realcion estequiométrica entre CO y CH₃OH es 1:1.
[tex] \eta_{CH_{3}OH} = \eta_{CO} = 0,071 moles [/tex]
[tex] m = 0,071 moles*32,04 g/mol = 2,27 g [/tex]
Por lo tanto, se obtienen 2,27 gramos de metanol.
Espero que te sea de utilidad!
The rms speed of the molecules in 2.0 g of hydrogen gas is1600 m/s.
(a) What is the total translational kinetic energy of the gasmolecules?
(b) What the thermal energy of the gas?
(c) 500 J of work are done to compress the gas while, in thesame process, 1200 J of heat energy are transferred from the gas tothe environment. Afterward, what is the rms speed of themolecules?
(a) To find the total translational kinetic energy of the gas molecules, we can use the formula: Total kinetic energy = (3/2) * N * k * T, Where: N = Avogadro's number, k = Boltzmann's constant, T = temperature in Kelvin
First, let's convert the given mass of hydrogen gas (2.0 g) into moles: Number of moles = mass / molar mass Number of moles = 2.0 g / (2.016 g/mol) ≈ 0.993 mol. Next, we need to convert the temperature in Kelvin. Since only the rms speed is provided, we can use the following equation to relate it to temperature: v(rms) = sqrt((3 * k * T) / ms. where: v(rms) = rms speed m = molar mass of the gas. Rearranging the equation, we can solve for T: T = (m * v(rms)^2) / (3 * k) Using the given rms speed of 1600 m/s and the molar mass of hydrogen gas (2.016 g/mol), we can calculate the temperature in Kelvin: T = (2.016 g/mol * (1600 m/s)^2) / (3 * (1.381 × 10^-23 J/K)) Calculating T, we find: T ≈ 7309 K. Now, we can substitute the values into the formula for total kinetic energy: Total kinetic energy = (3/2) * N * k * T Total kinetic energy = (3/2) * (0.993 mol) * (1.381 × 10^-23 J/K) * (7309 K) Calculating the total kinetic energy, we find: Total kinetic energy ≈ 2.676 × 10^-19 J, Therefore, the total translational kinetic energy of the gas molecules is approximately 2.676 × 10^-19 J. (b) The thermal energy of the gas is equal to the total translational kinetic energy since we assume the gas is monoatomic and all its energy is in the form of kinetic energy. So, the thermal energy is also approximately 2.676 × 10^-19 J. (c) To find the new rms speed of the molecules after the work and heat transfer, we can use the principle of conservation of energy: Change in thermal energy = Work done + Heat transferred. Since the change in thermal energy is given as 1200 J, we have: 1200 J = 500 J + Heat transferred. Heat transferred = 1200 J - 500 J Heat transferred = 700 J Now, we can use the equation v(rms) = sqrt((3 * k * T) / m) to find the new rms speed. Rearranging the equation, we have: v(rms) = sqrt((3 * k * T') / m) Where T' is the new temperature in Kelvin. We can solve for T' by rearranging the equation: T' = (m * v(rms)^2) / (3 * k) Substituting the values into the equation, we have: T' = (2.016 g/mol * (1600 m/s)^2) / (3 * (1.381 × 10^-23 J/K)) Calculating T', we find: T' ≈ 7309 K, Therefore, the rms speed of the molecules after the work and heat transfer is approximately 1600 m/s, the same as before.
To learn more about energy, https://brainly.com/question/14959619
#SPJ11
The brick wall (of thermal conductivity
1.16 W/m ° C) of a building has dimensions
of 5 m by 7 m and is 18 cm thick.
How much heat flows through the wall in
a 17.2 h period when the average inside and
outside temperatures are, respectively, 24°C
and 8°C?
Answer in units of MJ.
Answer:223.46 MJ
Explanation:
Given
The thermal conductivity of brick wall is [tex]k=1.16\ W/m.^{\circ}C[/tex]
Cross-section of Wall [tex]A=5\m \times 7\ m[/tex]
time period [tex]t=17.2\ h=17.2\times 60\times 60=61,920\ s[/tex]
Inside temperature [tex]T_i=24^{\circ}C[/tex]
Outside temperature [tex]T_o=8^{\circ}C[/tex]
Heat transfer through the bricks
[tex]\dot{Q}=kA\dfrac{dT}{dx}[/tex]
[tex]\dot{Q}=1.16\times 35\times \dfrac{16}{0.18}\\\\\dot{Q}=3608.88\ W[/tex]
Heat flow for 17.2 h
[tex]Q=3608.88\times 61,920=223.46\ MJ[/tex]
I will mark you brainlist!
What mythical creature do you think is possibly real, and not actually a myth? Why?
Examples of mythical creatures: Mermaids/Merman, Fairies/ Pixie, Nymphs, Dragons, Unicorn, Leprechauns, Werewolf, Loch Ness Monster, Sphinx, Centaur, Griffin, Yeti, Pegasus, Basilisk, Chimera, Ghoul, Imp, Gnome, Manticore, Troll, Bigfoot, Phoenix, Vampire etc.
You can choose one that is listed or not listed.
Explanation:
With most of our blue planet covered by water, it's little wonder that, centuries ago, the oceans were believed to hide mysterious creatures including sea serpents and mermaids. Merfolk (mermaids and mermen) are, of course, the marine version of half-human, half-animal legends that have captured human imagination for ages. One source, the "Arabian Nights," described mermaids as having "moon faces and hair like a woman's but their hands and feet were in their bellies and they had tails like fishes."
C.J.S. Thompson, a former curator at the Royal College of Surgeons of England, notes in his book "The Mystery and Lore of Monsters" that "Traditions concerning creatures half-human and half-fish in form have existed for thousands of years, and the Babylonian deity Era or Oannes, the Fish-god ... is usually depicted as having a bearded head with a crown and a body like a man, but from the waist downwards he has the shape of a fish." Greek mythology contains stories of the god Triton, the merman messenger of the sea, and several modern religions including Hinduism and Candomble (an Afro-Brazilian belief) worship mermaid goddesses to this day.
PLEASE HELP ME I AM TIMED!
Answer:
they all need a source of oxygen
Answer:
B
Explanation:
what is the frequency (in hz) of light that has a wavelength of 400 nm? (you can enter your answer in scientific notation using e. include three significant figures.)
The frequency of light with a wavelength of 400 nm is approximately [tex]7.494 * 10^{14} Hz[/tex] (or 749.4 THz).
To calculate the frequency of light, you can use the equation:
Frequency = Speed of light / Wavelength
The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). We need to convert the given wavelength of 400 nm to meters.
[tex]1 nm = 1 * 10^{-9}[/tex] meters
Converting 400 nm to meters:
[tex]400 nm = 400 * 10^{-9} meters = 4 * 10^{-7} meters[/tex]
Now, we can calculate the frequency:
Frequency = (Speed of light) / (Wavelength)
[tex]= 299,792,458 m/s / (4 * 10^{-7} meters)\\ =7.494 * 10^{14} Hz[/tex]
Therefore, the frequency of light with a wavelength of 400 nm is approximately [tex]7.494 * 10^{14} Hz[/tex] (or 749.4 THz).
To learn more about Wavelength visit:
brainly.com/question/32201888
#SPJ11
The gravitational field strength on the moon is 1.63 N/kg. If a rock on the moon weighs 2000N, how
much does the same rock weigh on the earth?
Answer:
12000N
Explanation:
gravity on earth is six times one on the moon
The fastest crossing of the Atlantic Ocean by an ocean
linger was made in July of 1952. The ship, the S.S. United States, traveled 4727 km east by northeast in 3 days, 15 hours, and 20 minutes. Assume that the ship had traveled the same speed, but directly east. What would the velocity of the S.S United States be in km/h?
Three beads are placed along a thin rod. The first bead, of mass m1 = 27 g, is placed a distance d1 = 1. 3 cm from the left end of the rod. The second bead, of mass m2 = 14 g, is placed a distance d2 = 1. 9 cm to the right of the first bead. The third bead, of mass m3 = 49 g, is placed a distance d3 = 3. 1 cm to the right of the second bead. Assume an x-axis that points to the right. A) write a symbolic equation for the location of the center of mass of the three beads relative to the left end of the rod, in terms of the variables given in the problem statement.
B) find the center of mass in centimeters relative to the left end of the rod
C) write a symbolic equation for the location of the center of mass of the three beads relative to the center bead in terms of the variables given in the statement problem
D) find the center of mass in centimeters relative to the middle bead
A. Symbolic equation for the location of the center of mass of the three beads relative to the left end of the rodIn order to find the center of mass, we need to use the formula:
[tex](M1x1 + M2x2 + M3x3) / M\\where\\M \\ =\\ m1 + m2 + m3M1 = m1M2 = \\m2M3 = m3x1 \\= d1x2 = d1 + d2x3 = d1 + d2 + d3\\\\Now, we have\\\\M1x1 + M2x2 + M3x3 = 27 × 0.013 + 14 × 0.032 + 49 × 0.062 \\= 0.1310M \\= m1 + m2 + m3 \\= 27 + 14 + 49 = 90[/tex]
The location of the center of mass is given
[tex]asx = (M1x1 + M2x2 + M3x3) / M = 0.1310 / 90= 0.00146 cmB.[/tex]
Find the center of mass in centimeters relative to the left end of the rodThe center of mass is located at a distance of 0.00146 cm relative to the left end of the rod.C. Symbolic equation for the location of the center of mass of the three beads relative to the center beadWe need to find the distance between the center bead and the center of mass.Let d = distance between center bead and the center of mass.
Find the center of mass in centimeters relative to the middle beadFrom the above equation in part C, we know
[tex]x2 + d = 0.1304[/tex]
Let's calculate the distance between center bead and the center of mass,
[tex]d = x - x2 = 0.00146 cm[/tex]
Now, we can find the center of mass in centimeters relative to the middle bead asx - x2 = 0.00146 cmThe center of mass is 0.00146 cm away from the middle bead.
To know more about Symbolic equation visit :
https://brainly.com/question/11565028
#SPJ11
In this reaction, how many miles of CO2 would be produced when methane (CH4) fully reacts with 6 moles of O2? CH4 + 2O2 - 2H2O + CO2
Answer:
3 moles
Explanation:
Ratio of O2 to CO2 = 2 : 1 = 6 : 3
While operating at 120 volts, an electric toaster has a resistance of 15 ohms. The power used by the toaster is
Answer:
960 Watt
Explanation:
From the question,
Electric power = Voltage squared/Resistance
P = V²/R ..................... Equation 1
Where P = power, V = Voltage, R = Resistance
Given: V = 120 volts, R = 15 ohms.
Substitute these values into equation 1
P = 120²/15
P = 14400/15
P = 960 Watt
When a charged particle moves along a helical path in a uniform magnetic field, which component determines the pitch of the path? the velocity component perpendicular to the magnetic field vector the velocity component parallel to the magnetic field vector the acceleration component perpendicular to the magnetic field vector the acceleration component parallel to the magnetic field vector the acceleration component radially inward the acceleration component radially outward
Answer:
the velocity component parallel to the magnetic field vector
Explanation:
When a charged particle moves in a helical path, we can decompose its velocity into two parts v_parallel and v_perpendicular to the magnetic field.
Let's analyze which component receives a force
F = q vxB
the bold letters indicate vectors, in the vector product if the two vectors are parallel the angle is zero and the sin 0 = 0 for which there is no force. therefore the velocity parallel to the field remains constant
If the two vectors are perpendicular, the angle is 90º and the sin 90 = 1, for which there is a force, which has a radial direction and consequently a centripetal acceleration that gives a circular path that does not remove the particle from the magnetic field
When checking the different answers, the correct one is: the velocity component parallel to the magnetic field vector
a particle moves in simple harmonic motion according to x = 2cos(50t), where x is in meters and t is in seconds. its maximum velocity is:
The maximum velocity of the particle is 100 m/s. Negative sign indicates that the velocity is in the opposite direction of the displacement at that particular point in time.
To find the maximum velocity of a particle in simple harmonic motion, we need to differentiate the position function with respect to time and then find the maximum value of the resulting velocity function.
Given the position function x = 2cos(50t), we can find the velocity function v(t) by taking the derivative of x with respect to t:
v(t) = dx/dt = -2(50)sin(50t) = -100sin(50t)
The maximum velocity occurs when the sine function has a maximum value of 1. Therefore, the maximum velocity can be found by evaluating the velocity function at that point. In this case, the maximum value of sin(50t) is 1 when 50t = π/2 or t = π/100.
Substituting t = π/100 into the velocity function:
v_max = -100sin(50(π/100)) = -100sin(π/2) = -100(1) = -100 m/s
Therefore, the maximum velocity of the particle is 100 m/s. Note that the negative sign indicates that the velocity is in the opposite direction of the displacement at that particular point in time.
To know more about simple harmonic motion
https://brainly.com/question/26114128
#SPJ4
draw all stereoisomers formed when the following alkene is treated with mcpba. be sure to answer all parts.
When the given alkene is treated with MCPBA (meta-chloroperoxybenzoic acid), four stereoisomers are formed due to the presence of a double bond.
These stereoisomers can be classified as cis-trans isomers and enantiomers. When an alkene reacts with MCPBA, it undergoes an epoxidation reaction, resulting in the formation of an epoxide. The given alkene has a double bond between two carbon atoms, and MCPBA adds an oxygen atom across this double bond, forming an epoxide.
The first type of stereoisomer formed is the cis-trans isomers. The cis isomer refers to the arrangement where the two substituents on the same side of the double bond in the alkene remain on the same side in the resulting epoxide. The trans isomer refers to the arrangement where the substituents on the alkene's two carbons switch sides in the resulting epoxide. Thus, two cis-trans isomers are formed.
The second type of stereoisomer formed is enantiomers. Enantiomers are non-superimposable mirror images of each other. In the case of the given alkene, if the substituents attached to the double bond are different, two enantiomers are formed as a result of the epoxidation reaction.
In total, four stereoisomers are formed when the given alkene is treated with MCPBA. These stereoisomers can be identified by their different arrangements of substituents around the newly formed epoxide group.
To learn more about stereoisomers refer:
https://brainly.com/question/18120547
#SPJ11
Calculate the speed of a periodic wave that has a wavelength of 2.0 m and a frequency of 3.0 Hz.
Answer:
v=wavelength x f = 2 x 3 = 6 m/s
Explanation:
The speed of a wave is the product of its frequency and wavelength. The speed of the periodic wave with the frequency of 3 Hz and wavelength of 2 m is 6 m/s.
What is frequency?Frequency of a wave is the number of wave cycles per unit time. It is the inverse of the time period of the wave. Frequency is inversely proportional to the wavelength of the wave.
The relation between speed, frequency and wavelength of a wave is given by the expression as written below:
c =νλ
where, c is the speed, ν be the frequency and λ be the wavelength.
Given that ν = 3 Hz or 3 s⁻¹
and λ = 2 m
then speed c = 2 m × 3 Hz = 6 m/s
Therefore, the speed of the periodic wave is 6 m/s.
Find more on periodic waves :
https://brainly.com/question/12396838
#SPJ6
as light travels from air into the water through the oil film,
When light travels from air into water through an oil film, several optical phenomena come into play: refraction, reflection, and interference.
First, refraction occurs at the air-water interface. As light enters the water, it undergoes a change in speed and direction due to the change in the refractive index between the two mediums. This causes the light to bend or deviate from its original path. Next, reflection occurs at the interface between the water and the oil film. A portion of the light is reflected back into the water, following the law of reflection. The angle of incidence is equal to the angle of reflection.
Interference also plays a role in this scenario. When the light waves reflect off the oil film, they can interfere constructively or destructively depending on their phase relationship. This interference can result in the appearance of colorful patterns, commonly known as thin-film interference. The colors observed in the oil film are due to the constructive and destructive interference of different wavelengths of light. The thickness of the oil film determines which wavelengths interfere constructively and produce visible colors.
Learn more about refractive index here:
https://brainly.com/question/30761100
#SPJ11
at what speed does a 1800 kg compact car have the same kinetic energy as a 1.80×104 kg truck going 25.0 km/hr ?
Kinetic energy refers to the energy possessed by an object due to its motion. The formula for kinetic energy is given as follows: Kinetic energy = 1/2 × mass × velocity², Where: mass = the mass of the object, velocity = the speed of the object.
We can equate the kinetic energies of the car and truck using the formula above. Let's assume that the speed of the car is v. Therefore, we can write:1/2 × 1800 × v² = 1/2 × 1.80×10⁴ × (25/3.6)², Where:25/3.6 is used to converting the speed of the truck from km/h to m/s.
Simplifying the right-hand side of the equation, we get:1/2 × 1.80×10⁴ × (25/3.6)² = 781250 J.
Now, we can solve for v by dividing both sides of the equation by 1/2 × 1800:1/2 × 1800 × v² = 781250v² = 781250 ÷ 900v² = 868.056v ≈ 29.47 m/s.
Therefore, the speed at which an 1800 kg compact car has the same kinetic energy as a 1.80×10⁴ kg truck going 25.0 km/h is approximately 29.47 m/s.
Learn more about Kinetic energy here ;
https://brainly.com/question/999862
#SPJ11