whihc of the following molecuels could interact via dipole dipole intermoleculer forces?A. CH4B. CO2C. CH3OCH3D. Cl2E. NaCl

Answers

Answer 1

Only molecule C. CH3OCH3 (dimethyl ether) can interact via dipole-dipole intermolecular forces.


To determine which of these molecules can interact via dipole-dipole intermolecular forces, we need to identify if they have a net molecular dipole, which occurs when there's an uneven distribution of electron density.
A. CH4 (methane) is a symmetrical tetrahedral molecule with C-H bonds. The difference in electronegativity between C and H is low, and the molecule is nonpolar. No dipole-dipole interactions.

B. CO2 (carbon dioxide) is a linear molecule with two C=O bonds. The electronegativity difference between C and O is significant, but due to its linear shape, the dipoles cancel each other out, making the molecule nonpolar. No dipole-dipole interactions.

C. CH3OCH3 (dimethyl ether) has a bent geometry with an O atom in the middle, and the C-H bonds around it. The difference in electronegativity between O and C is significant, creating a net molecular dipole. Dipole-dipole interactions are present.

D. Cl2 (chlorine gas) is a diatomic molecule with two Cl atoms. Since both atoms are the same, there's no difference in electronegativity, and it's nonpolar. No dipole-dipole interactions.

E. NaCl (sodium chloride) is an ionic compound, not a molecular one. It forms ionic bonds rather than interacting through dipole-dipole forces.

To know more about ionic bonds refer to

https://brainly.com/question/957239

#SPJ11


Related Questions

Individuals in this stage of change may sporadically engage in physical activity but without any form, structure, or consistency.
Select one:
a. Maintenance
b. Precontemplation
c. Preparation
d. Contemplation

Answers

Individuals who sporadically engage in physical activity without form, structure, or consistency are in the " Precontemplation" stage of change.
The correct answer is b.

Individuals in the pre-contemplation stage of the Transtheoretical Model of Behavior Change have no intention of changing their behavior in the near future.

They may be unaware of the need for change or may feel resigned to their current behavior. In terms of physical activity, individuals in this stage may engage in sporadic or irregular activity, but they are not yet considering making exercise a regular part of their lifestyle.

Therefore option b is correct.

Learn more about behavior:

https://brainly.com/question/1741474

#SPJ11

Predict the FINAL product for the following synthetic transformation: 1. EtONa (2 equiv), EtOH 2. Br,Br ____3. H2O+, H2O (axcess) _____ 4. heat -CO2 _____

Answers

The final product of the given synthetic transformation would be 2-ethyl-1-butene.

EtONa (2 equiv), EtOH - This step involves the deprotonation of ethanol by ethoxide ion, forming ethoxide anion. The ethoxide anion then reacts with another molecule of ethanol to form diethyl ether.Br, Br - In this step, the diethyl ether formed in step 1 is reacted with Br2 to form 2,2-dibromoethyl ethyl ether.H2O+, H2O (excess) - The 2,2-dibromoethyl ethyl ether obtained from step 2 is reacted with an excess of water in the presence of an acid catalyst to form 2-bromoethyl alcohol and ethanol.Heat -CO2 - The final step involves the elimination of HBr from 2-bromoethyl alcohol, which is achieved by heating the reaction mixture.

This step results in the formation of 2-ethyl-1-butene as the final product.

To know more about deprotonation click here:

https://brainly.com/question/30298709

#SPJ11

A mixture of 5 kg of H2 and 4 kg of O2 is compressed in a piston-cylinder assembly in a Polytropic process for which n = 1.6. The temperature increases from 40 to 250 degree C. Using constant values for the specific heat, determine (a) the heat transfer, in kJ (b) the entropy change, in kJ/K.

Answers

The heat transfer (a) is 663.12 kJ and the entropy change is 1.21 kJ/K.(B)

In a polytropic process, we can use the following equations to find the heat transfer and entropy change:

1. For heat transfer (Q): Q = m * Cv * (T2 - T1)
2. For entropy change (ΔS): ΔS = m * Cv * ln(T2/T1)

Given: m_H2 = 5 kg, m_O2 = 4 kg, n = 1.6, T1 = 40°C = 313 K, T2 = 250°C = 523 K

First, we need to find the specific heat at constant volume (Cv) for the mixture:
Cv_mix = (m_H2 * Cv_H2 + m_O2 * Cv_O2) / (m_H2 + m_O2)

Using Cv_H2 = 10.16 kJ/kgK and Cv_O2 = 6.45 kJ/kgK:
Cv_mix = (5 * 10.16 + 4 * 6.45) / (5 + 4) = 8.312 kJ/kgK

Now, calculate (a) heat transfer:
Q = (5 + 4) * 8.312 * (523 - 313) = 663.12 kJ

Finally, calculate (b) entropy change:
ΔS = (5 + 4) * 8.312 * ln(523/313) = 1.21 kJ/K. (B)

To know more about polytropic process click on below link:

https://brainly.com/question/13001350#

#SPJ11

solve for the ph of a solution that has 0.100 m hclo and 0.075 m naclo. ka (hclo) = 2.9 × 10−8

Answers

To solve for the pH of the solution, we need to use the Ka expression for HClO and set up an ICE table to determine the concentrations of H3O+ and ClO- in the solution.



Ka = [H3O+][ClO-]/[HClO], Let x be the concentration of H3O+ and ClO- formed from the dissociation of HClO.
Ka = x^2 / (0.100 - x).


Assuming x is much smaller than 0.100, we can simplify the denominator to 0.100, 2.9 × 10−8 = x^2 / 0.100



Solving for x, we get: x = 1.7 × 10−5 M
The concentration of H3O+ in the solution is the same as x, which is 1.7 × 10−5 M.


To determine the pH, we take the negative logarithm of the H3O+ concentration: pH = -log(1.7 × 10−5) = 4.77
Therefore, the pH of the solution with 0.100 M HClO and 0.075 M NaClO is 4.77.

To know more about concentrations click here

brainly.com/question/29072206

#SPJ11

Under which environmental condition will an organotroph growing anaerobically choose to use the TCA cycle rather than fermentation during glucose catabolism?
What are the three basic components of respiratory electron transport chains and what is the role of each one in electron transport and creating a PMF?

Answers

a. An organotroph growing anaerobically will choose to use the TCA cycle rather than fermentation during glucose catabolism when there is a suitable terminal electron acceptor available other than oxygen, which allows the cell to perform anaerobic respiration.

b. The three basic components of respiratory electron transport chains are electron donors, electron carriers, and terminal electron acceptors.

Three basic components of respiratory electron transport chains and what is the role of each one in electron transport and creating a PMF are:

a. Electron donors: These molecules, such as NADH or FADH₂, provide the initial source of electrons for the electron transport chain.

b. Electron carriers: These are protein complexes embedded in the membrane that transfer electrons from one carrier to another, facilitating the movement of electrons down the chain. Examples include cytochromes and quinones.

c. Terminal electron acceptors: These molecules, such as oxygen, nitrate, or sulfate, receive the electrons at the end of the electron transport chain. The transfer of electrons to the terminal acceptor helps generate a proton motive force (PMF) across the membrane, which can be used to generate ATP through oxidative phosphorylation.

Learn more about electron transport chains: https://brainly.com/question/12792516

#SPJ11

Place the boxes in the numbered boxes, 1 through 8, according to the order in which these events occur. Myosin filaments continue to slide actin toward the M-line. Sodium ions enter the cell, initiating an action potential. Calcium binds to troponin, causing tropomyosin to move. Myosin binds to actin. Calcium ions are released from the sarcoplasmic reticulum.

Answers

1. Acetylocholine binds sodium channels that are activated by ligands.

2. When sodium ions get inside the cell, an action potential starts.

3. The sarcolemma and T tubules carry an action potential.

From the sarcoplasmic reticulum, calcium ions are released in step 4.

5. Because calcium and troponin are bound together, tropomyosin moves.

6. Actin is bound by myosin.

7. Using ATP energy, myosin cross-bridges swing and detach in alternating fashion.

Actin is still being moved towards the M-line by myosin filaments in position 8.

Muscle contractions are regulated by calcium ions, troponin and tropomyosin proteins, AND the act of skeletal muscles contracting.

To know more about troponin, click here:

https://brainly.com/question/30506716

#SPJ4

C. Write the name of the alkane next to the drawing of the molecule.

Answers

Answer:

propane

Explanation:

the structure of propane

what is the equilibrium expression for the following reaction? 2na2o (s) ⇌ 4na (l) o2 (g)

Answers

The equilibrium expression for the reaction 2Na2O(s) ⇌ 4Na(l) + O2(g) is represented by Kc = [O2]^x

Chemical equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction, and the concentrations of the reactants and products remain constant over time. For the given reaction, we can represent the equilibrium constant (Kc) using the concentrations of the products and reactants raised to the power of their stoichiometric coefficients. However, since equilibrium constants only consider gases and aqueous solutions, the expression will exclude solid and liquid species. Therefore, the equilibrium expression for this reaction is: Kc = [O2]^x

Here, [O2] represents the concentration of oxygen gas (O2) in the equilibrium mixture, and x is the stoichiometric coefficient of O2 in the balanced equation, which is 1. The reaction involves the decomposition of solid sodium oxide (2Na2O) into liquid sodium (4Na) and gaseous oxygen (O2). Due to the exclusion of solid and liquid species from the equilibrium expression, only the concentration of oxygen gas is considered in the equilibrium constant calculation. In conclusion, the equilibrium expression for the reaction 2Na2O(s) ⇌ 4Na(l) + O2(g) is represented by Kc = [O2]^x

Learn more about chemical equilibrium at:

https://brainly.com/question/5537989

#SPJ11

Calculate the amount of heat released from combustion of 3 g of gasoline. The heat capacity of the bomb calorimeter is 9.96 kJ/°C. The initial temperature is 20°C and the final temperature is 24.7°C.

Answers

In the combustion of 3 g of gasoline, 46.99 kJ of heat are produced.

Determine how much heat is released during combustion.

We must utilize the heat capacity of the bomb calorimeter and the change in temperature to determine how much heat is released during the combustion of 3 g of gasoline.

We must first determine the temperature change:

T is the product of the initial and final temperatures.

ΔT = 24.7°C - 20°C

ΔT = 4.7°C

The amount of heat released can then be calculated using the equation below:

q = CΔT

where q is the amount of heat released, C is the bomb calorimeter's heat capacity, and T is the temperature change.

Inputting the specified values results in:

q = 9.96 kJ/°C × 4.7°C

q = 46.99 kJ

To know more about combusted visit:

https://brainly.com/question/17066788

#SPJ1

Calculate Hrxn for the combustion of octane (C8H18), a component of gasoline, by using average bond energies, and then calculate it using enthalpies of formation from Appendix IIB. What is the percent difference between your results? Which result would you expect to be more accurate?

Answers

Combustion is a chemical reaction in which a substance reacts with oxygen to produce heat and light. Gasoline is a mixture of hydrocarbons, including octane ([tex]C_{8} H_{18}[/tex]). The process of combustion involves the breaking of chemical bonds in the fuel molecules and the formation of new bonds with oxygen molecules.

To calculate the Hrxn for the combustion of octane, one approach is to use average bond energies, which are based on the energy required to break and form bonds. Another approach is to use enthalpies of formation, which are based on the energy required to form a compound from its constituent elements.
The percent difference between the two results can vary depending on the accuracy of the data used and the assumptions made in the calculations. However, in general, enthalpies of formation are considered to be more accurate than average bond energies because they take into account the specific conditions under which the reaction occurs, such as temperature and pressure. Enthalpies of formation also provide a more direct measure of the energy change involved in a reaction.
In summary, the Hrxn for the combustion of octane can be calculated using either average bond energies or enthalpies of formation. The percent difference between the results can vary, but enthalpies of formation are generally considered to be more accurate.

To know more about the combustion :

https://brainly.com/question/31123826

#SPJ11

What is the strongest intermolecular force in H2S?
A. dipole-dipole
B. london dispersion
C. ionic
D. hydrogen bonding

Answers

The strongest intermolecular force in H2S is dipole-dipole. H2S is a polar molecule with a permanent dipole moment. This means that the positive end of one molecule will attract the negative end of another molecule, leading to dipole-dipole interactions.

H2S does not have hydrogen bonding or ionic interactions, and while London dispersion forces are present in all molecules, they are weaker than dipole-dipole interactions in H2S.
The strongest intermolecular force in H2S is:
A. dipole-dipole
This is because H2S is a polar molecule with a bent molecular geometry, which results in the presence of a net dipole moment. Dipole-dipole interactions occur between the positive and negative ends of these polar molecules. Since H2S does not contain any ions (as in ionic forces) or a hydrogen atom bonded to a highly electronegative atom like nitrogen, oxygen, or fluorine (as in hydrogen bonding), the strongest intermolecular force present in H2S is dipole-dipole.

Visit here to learn more about  intermolecular force:

brainly.com/question/9007693

#SPJ11

What is the major organic product of the following reaction sequence? Note: The Dean-Stark trap is a contraption used to continuously remove water formed in a reaction.

Answers

Without knowing the specific reaction sequence, it is impossible to determine the major organic product. However, it is important to note that the Dean-Stark trap is used to continuously remove water formed in the reaction to shift the equilibrium towards the formation of the desired product. This can have a significant impact on the yield and selectivity of the reaction.

A major organic product is the primary compound formed during a chemical reaction involving organic molecules. The reaction sequence is a series of chemical reactions that lead to the formation of the major product. The Dean-Stark trap is a device used in chemistry to continuously remove water generated during a reaction, allowing the reaction to proceed towards completion. It is commonly used in reactions where water is a byproduct and its removal helps drive the reaction forward.

To learn more about equilibrium visit;

https://brainly.com/question/30807709

#SPJ11

The equilibrium constant for the reactionNH 4HS(s)⇔NH3(g)+H2​S(g) is correctly given by:

Answers

The following equation describes the equilibrium constant for the reaction NH4HS(s) NH3(g) + H2S(g):

Kc is equal to [NH3] [H2S]/[NH4HS].

An indicator of the location of an equilibrium in a chemical reaction is the equilibrium constant (Kc). Kc remains constant for a certain reaction at a specific temperature. The equilibrium concentrations of NH3, H2S, and NH4HS are utilised to compute Kc in the equation above. Each species' concentration is shown in brackets, and the units of Kc are determined by the units used for the concentrations.

According to the equation, Kc measures how much the reaction moves ahead or backward by comparing the product concentrations to the reactant concentrations. When Kc is high, the reaction greatly favours the products; when it is low, the reactants are significantly preferred.

learn more about equilibrium here:

https://brainly.com/question/30694482

#SPJ11

using the following information calculate the energy difference between the two conformations.
[H<-->H]eclipsed - 4 KJ/mol (CH3 <--> CH3] Letimes = 11 KJ/mol [CH3 <--> CH3]gauche = 3.8 KJ/mol [H<-->CH3]clipes = 6 KJ/mol)

Answers

The energy difference between the [H<--->H]eclipsed and [CH3<--->CH3]gauche conformations is 0.2 KJ/mol.

The total energy difference between the two conformations can be calculated by adding the Letimes energy to the energy difference between [H<--->H]eclipsed and [H<--->CH3]eclipsed, and subtracting the energy difference between [CH3<--->CH3]gauche and [H<--->CH3]eclipsed.

Thus, the total energy difference is:

Letimes + [H<--->CH3]eclipsed - [CH3<--->CH3]gauche - [H<--->H]eclipsed

= 11 KJ/mol + 6 KJ/mol - 3.8 KJ/mol - 4 KJ/mol

= 9.2 KJ/mol

Therefore, the energy difference between the [H<--->H]eclipsed and [CH3<--->CH3]gauche conformations is 9.2 KJ/mol. However, the question asks for the energy difference between the [H<--->H]eclipsed and [CH3<--->CH3]gauche conformations only.

Therefore, we need to subtract the energy difference between [H<--->CH3]eclipsed and [CH3<--->CH3]gauche to get the answer:

[H<--->H]eclipsed - [CH3<--->CH3]gauche = 4 KJ/mol - 3.8 KJ/mol = 0.2 KJ/mol

Hence, the energy difference between the [H<--->H]eclipsed and [CH3<--->CH3]gauche conformations is 0.2 KJ/mol.

For more questions like Energy click the link below:

https://brainly.com/question/12807194

#SPJ11

Calculate the pOH of a solution at 25.0°C that contains 2.95 x 10-12 M hydronium ions. a. 2.95 b. 11.53 c. 12.00 d. 7.00 e. 2.47

Answers

The pOH of the solution at 25.0°C that contains 2.95 x [tex]10^{-12[/tex] M hydronium ions is: 2.47. the correct option is (e).

To calculate the pOH of a solution at 25.0°C that contains 2.95 x  [tex]10^{-12[/tex] M hydronium ions, we first need to calculate the concentration of hydroxide ions using the equation:
Kw = [H+][OH-]
where Kw is the ion product constant for water at 25°C (1.0 x [tex]10^{-14[/tex]),
[H+] is the concentration of hydronium ions (2.95 x [tex]10^{-12[/tex] M), and
[OH-] is the concentration of hydroxide ions (unknown).

Rearranging the equation to solve for [OH-], we get:
[OH-] = Kw / [H+]
[OH-] = 1.0 x [tex]10^{-14[/tex] / 2.95 x [tex]10^{-12[/tex]
[OH-] = 3.39 x [tex]10^{-3[/tex] M

Now that we know the concentration of hydroxide ions, we can calculate the pOH using the equation:
pOH = -log[OH-]
pOH = -log(3.39 x [tex]10^{-3[/tex])
pOH = 2.47

To know more about "pOH" refer here:

https://brainly.com/question/1832304#

SPJ11#

Molar concentration of NaOH (mol/L) 2. Volume of weak acid (mL) 3. Buret reading of NaOH, Initial(mL) 4. Buret reading NaOH at stoichiometric point, final(mL) 5. Volume of NaOH dispensed(mL) 6. Instructor's approval of pH vs, V_ NaOH graph 7. Moles of NaOH to stoichiometric point (mol) 8. Moles of acid (mol) 9. Molar concentration of acid (mol/L) 10. Average molar mass of add (mol/L) Molar mass and the PK_a of a solid weak acid sample no.__ Monoprotic or diprotic acid? ____suggested mass____1. Mass of dry, solid acid(g) 2. Molar concentration of NaOH (mol/L) 3. Buret reading of NaOH, initial(mL) 4. Buret reading NaOH at stoichiometric point, final(mL) 5. Volume of NaOH dispensed (mL) 6. Instructor's approval of PH versus V_NaOH graph 7. Moles of NaOH to stoichiometric point(mol) 8.Moles of acid(mol) 9. Molar mass of acid (g/mol) 10. Average molar mass of acid(g/mol) 11. Volume of NaOH halfway to stoichiometric point(mL) 12. PK_a1 of weak acid(from graph) 13. Average PK_a1 14. How calculations for trial 1 on the next page.

Answers

1. Mass of dry, solid acid (g): This is the mass of the sample of the acid that you are titrating.

What is solid acid?

Solid acids are acids that exist in solid form rather than in solution. Unlike liquid acids, solid acids do not dissociate into ions when dissolved in water. Instead, they remain in their molecular form and can therefore act as a catalyst in many industrial and chemical reactions.

2. Molar concentration of NaOH (mol/L): This is the molar concentration of the NaOH solution that you are using to titrate the acid sample.
3. Buret reading of NaOH, initial (mL): This is the volume of the NaOH solution that is in the buret before you begin titrating the acid.
4. Buret reading NaOH at stoichiometric point, final (mL): This is the volume of the NaOH solution that is in the buret when you reach the stoichiometric point.
5. Volume of NaOH dispensed (mL): This is the difference between the initial and final buret readings of the NaOH solution.
6. Instructor's approval of PH versus [tex]V_{NaOH[/tex] graph: This is to ensure that the acid-base titration was done correctly and the graph accurately reflects the results.
7. Moles of NaOH to stoichiometric point (mol): This is the number of moles of NaOH required to reach the stoichiometric point.
8. Moles of acid (mol): This is the number of moles of acid that were titrated.
9. Molar mass of acid (g/mol): This is the molar mass of the acid sample.
10. Average molar mass of acid (g/mol): This is the average molar mass of the acid sample, which is calculated by taking the mass of the sample divided by the moles of the acid.
11. Volume of NaOH halfway to stoichiometric point (mL): This is the volume of the NaOH solution that is in the buret when you are halfway to the stoichiometric point.
12. [tex]PK_{a1[/tex] of weak acid (from graph): This is the [tex]PK_{a1[/tex] of the weak acid sample, which is calculated using the graph.
13. Average [tex]PK_{a1[/tex]: This is the average of the [tex]PK_{a1[/tex] of the weak acid sample.
14. How calculations for trial 1 on the next page: This is the instructions on how to calculate the results of the first titration trial.

To learn more about solid acid
https://brainly.com/question/15367135
#SPJ1

Do you think BaCrO_4 is soluble in acidic or in neutral solutions? Explain think your answer using relevant chemical reactions.

Answers

BaCrO_4 is insoluble in both acidic and neutral solutions. This is because BaCrO_4 is a salt that is highly insoluble in water due to its low solubility product constant (Ksp) value of 1.17 x 10^-10.

When BaCrO_4 is added to an acidic solution, it reacts with the hydrogen ions (H+) present in the solution to form chromic acid (H2CrO4) and barium ions (Ba2+). This reaction is represented by the following equation:
BaCrO4 + 2H+ → Ba2+ + H2CrO4
However, the formation of chromic acid does not increase the solubility of BaCrO_4, as both Ba2+ and H2CrO4 are also insoluble salts. In a neutral solution, BaCrO_4 does not undergo any significant reaction, and the salt remains insoluble. The BaCrO_4 particles may undergo some hydrolysis, but this does not increase their solubility in water.
Therefore, BaCrO_4 remains insoluble in both acidic and neutral solutions.

Learn more about acidic solution here:

https://brainly.com/question/13208021

#SPJ11

write the identity of the missing nucleus for the following nuclear decay reaction: ?→5927co 0−1e

Answers

the identity of the missing nucleus in the nuclear decay reaction is 59₂₆Fe (Iron-59). The complete reaction is: 59₂₆Fe → 59₂₇Co + ₀₋₁e.

To find the missing nucleus for the nuclear decay reaction "?→59₂₇Co + ₀₋₁e," we can use the conservation of mass and atomic numbers.
Step 1: Identify the given values.
The given product nuclei are:
- 59₂₇Co (Cobalt-59), which has a mass number of 59 and an atomic number of 27
- ₀₋₁e (an electron or beta particle), which has a mass number of 0 and an atomic number of -1
Step 2: Apply the conservation laws.
The mass number and atomic number of the missing nucleus should be equal to the sum of the mass and atomic numbers of the product nuclei.
Missing nucleus mass number = 59 (from Co) + 0 (from e)
Missing nucleus mass number = 59
Missing nucleus atomic number = 27 (from Co) + (-1) (from e)
Missing nucleus atomic number = 26
Step 3: Identify the element with the calculated atomic number.
An atomic number of 26 corresponds to the element iron (Fe).
So, the identity of the missing nucleus in the nuclear decay reaction is 59₂₆Fe (Iron-59). The complete reaction is:59₂₆Fe → 59₂₇Co + ₀₋₁e.

To learn more about nuclear decay https://brainly.com/question/16677661

#SPJ11

Place the following gases in order of increasing density at STP.
N2 NH3 N2O4 Kr
a. Kr < N2O4 < N2 < NH3
b. N2 < Kr < N2O4 < NH3
c. Kr < N2 < NH3 < N2O4
d. NH3 < N2 < Kr < N2O4
e. N2O4 < Kr < N2 < NH3

Answers

The gases in order of increasing density at STP are NH₃ < N₂ < Kr < N₂O₄. The correct answer is option d.

To place the given gases in order of increasing density at STP, we need to consider their molar masses, as density is directly proportional to molar mass at constant temperature and pressure. Here are the molar masses of the gases:
N₂: 28 g/mol
NH₃: 17 g/mol
N₂O₄: 92 g/mol
Kr: 83.8 g/mol

The density of a gas can be calculated using the ideal gas law:

PV = nRT

where P is the pressure of the gas, V is its volume, n is the number of moles of the gas, R is the ideal gas constant, and T is the temperature of the gas in kelvin.

Rearranging the ideal gas law, we get:

n/V = P/RT

The quantity n/V represents the molar density of the gas, which is the number of moles of gas per unit volume. Multiplying this quantity by the molar mass of the gas (M) gives the mass density of the gas (ρ):

ρ = (n/V) x M

Now, we can arrange them in order of increasing density:

NH₃ < N₂ < Kr < N₂O₄

Therefore option d is the correct answer.

Learn more about density:

https://brainly.com/question/1354972

#SPJ11

ame the following compound.
ch3ch2c= cch2chch3 - oh
A. 3-hepten-6-ol
B. 3-heptyn-6-ol C. 4-hepten-2-ol D. 4-heptyn-2-ol E. 4-heptan-2-ol

Answers

The name of the compound CH₃CH₂C=CCH₂CHCH₃-OH is 4-hepten-2-ol (C).

To name this compound, follow these steps:


1. Identify the longest continuous carbon chain containing the functional group (OH): this is a 7-carbon chain, so the base name is "hept-".


2. Identify the functional group: alcohol (OH), which is indicated by the suffix "-ol".


3. Identify the position of the alcohol group: it's on the 2nd carbon, so the name becomes "hept-2-ol".


4. Identify the presence of a double bond: it's between the 4th and 5th carbons, so the name becomes "hept-4-en-2-ol".
5. Specify the position of the double bond by adding a number: "4-hepten-2-ol".(C)

To know more about functional group click on below link:

https://brainly.com/question/14618322#

#SPJ11

A 0.18-m rigid tank is filled with saturated liquid water at 120°C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in the liquid form. Heat is transferred to water from a source at 230°C so that the temperature in the tank remains constant.

Answers

During the process of withdrawing one-half of the total mass of saturated liquid water from the 0.18-m rigid tank at 120°C, heat is transferred from a 230°C source to maintain a constant temperature in the tank. This results in the remaining water in the tank staying in the saturated liquid state at 120°C.

Regarding the 0.18-m rigid tank filled with saturated liquid water at 120°C, where one-half of the total mass is withdrawn in liquid form and heat is transferred from a 230°C source to maintain a constant temperature, please consider the following steps:

1. The initial state of the system is a saturated liquid water at 120°C.
2. The valve at the bottom of the tank is opened, allowing one-half of the total mass to be withdrawn in the liquid form. This reduces the mass of water in the tank by 50%.
3. During this process, heat is transferred to the water from a 230°C source to maintain the constant temperature of 120°C in the tank. This heat transfer compensates for the cooling effect caused by the withdrawal of liquid water.
4. Since the temperature in the tank remains constant at 120°C, the water remains in the saturated liquid state throughout the process.

Know more about temperature - brainly.com/question/27944554

#SPJ11

a 529.8 ml sample of carbon dioxide was heated to 357 k. if the volume of the carbon dioxide sample at 357 k is 779.1 ml, what was its temperature at 529.8 ml?

Answers

If the volume of the carbon dioxide sample at 357 k is 779.1 ml the temperature at 529.8 ml is 310.3 K.

The ideal gas law states that PV=nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is temperature. The number of moles of carbon dioxide does not change, so the equation can be rearranged to T = PV/nR.

By replacing P with 1 and nR with 0.0821 L*kPa/mol*K, the equation becomes T = V/0.0821. Therefore, to find the temperature at 529.8 ml, the volume was plugged into the equation and multiplied by 0.0821. The result was 310.3 K.

Learn more about carbon dioxide at: https://brainly.com/question/22963529

#SPJ11

calculate the standard cell potential e^0 cell for the following reaction: 2ag cl2 --->2agcl

Answers

The standard cell potential, E°cell, is a measure of the tendency of a chemical reaction to occur spontaneously in a cell. It is defined as the difference in the standard electrode potentials of the two half-reactions

that make up the cell reaction. In the given reaction, 2AgCl(s) → 2Ag(s) + Cl2(g), two half-reactions can be identified: AgCl(s) + e- → Ag(s) + Cl-(aq) and Cl2(g) + 2e- → 2Cl-(aq). The standard electrode potentials for these half-reactions are -0.222 V and +1.36 V, respectively. To calculate the standard cell potential, the reduction half-reaction is flipped and multiplied by the stoichiometric coefficients to balance the electrons. Then, the standard electrode potentials of the half-reactions are added. In this case, the standard cell potential can be calculated as follows:

[tex]E°cell = E°(reduction) + E°(oxidation)= -0.222 V + (+1.36 V)= +1.14 V[/tex]

Therefore, the standard cell potential for the given reaction is +1.14 V. Since the value is positive, the reaction is spontaneous in the forward direction.

Learn more about  cell   here:

https://brainly.com/question/30046049

#SPJ11

Question of 12 What nuclide undergoes electron capture to produce 108Pd? A) 108 Rh B) 107 Ag C) 107Pd D) 108Ag E) 107Rh

Answers

The nuclide that undergoes electron capture to produce 108Pd is 108Ag (D) and A) 108 Rh. In this process, an electron from the atom's inner shell is captured by the nucleus, converting a proton into a neutron and resulting in the formation of 108Pd.

In electron capture, an electron is captured by the nucleus, combining with a proton to produce a neutron. This changes the atomic number of the nuclide, but not the mass number. So, in this case, a 108Rh nuclide undergoes electron capture to produce 108Pd, where the atomic number of Rh (45) is reduced by one to become the atomic number of Pd (46).

Learn more about electrons here: brainly.com/question/28977387

#SPJ11

calculate the concentrations of h , hco3−, and co32− in a 0.087 m h2co3 solution.

Answers

The concentrations of H+, HCO₃-, and CO₃₂- in a 0.087 M H₂CO₃ solution are 3.06 x 10⁻⁴ M, 0.0867 M, and 4.06 x 10⁻⁶ M, respectively.

The dissociation reactions for carbonic acid (H₂CO₃) are as follows:

H₂CO₃ ⇌ H+ + HCO₃- (Ka₁ = 4.45 x 10⁻⁷)

HCO₃- ⇌ H+ + CO₃₂- (Ka₂ = 4.69 x 10⁻¹¹)

Let x be the concentration of H+ in the solution. Then, the concentration of HCO₃- is (0.087 - x) and the concentration of CO₃₂- is equal to the concentration of H+.

Using the first dissociation equation, we can write the equilibrium expression:

Ka1 = [H+][HCO₃-]/[H₂CO₃]

Substituting the values and simplifying, we get:

4.45 x 10⁻⁷ = x(0.087 - x)/0.087

Solving for x, we get:

x = 3.06 x 10⁻⁴ M

Therefore, the concentration of H+ in the solution is 3.06 x 10⁻⁴ M.

Using the second dissociation equation, we can write the equilibrium expression:

Ka₂ = [H+][CO₃₂-]/[HCO₃-]

Substituting the values and simplifying, we get:

4.69 x 10⁻¹¹ = x²/(0.087 - x)

Since the concentration of CO₃₂- is equal to the concentration of H+, we can simplify the equation as:

4.69 x 10⁻¹¹ = x²/0.087

Solving for x, we get:

x = 4.06 x 10⁻⁶ M

Therefore, the concentration of CO₃₂- in the solution is 4.06 x 10⁻⁶ M.

To find the concentration of HCO3-, we can use the equation:

[HCO₃-] = 0.087 - [H+] - [CO₃₂-]

Substituting the values, we get:

[HCO₃-] = 0.087 - 3.06 x 10⁻⁴ - 4.06 x 10⁻⁶

[HCO₃-] = 0.0867 M

Therefore, the concentration of HCO₃- in the solution is 0.0867 M.

In summary, the concentrations of H+, HCO₃-, and CO₃₂- in a 0.087 M H₂CO₃ solution are 3.06 x 10⁻⁴ M, 0.0867 M, and 4.06 x 10⁻⁶ M, respectively.

Learn More about concentrations

https://brainly.com/question/28564792

#SPJ4

Is the low solubility of KHT a result of an unfavorable ∆H° or an unfavorable ∆S° value? Give your reasoning.

Answers

The low solubility of KHT is likely a result of an unfavorable ∆H° value. This is because KHT is a relatively large and complex molecule, which means that breaking apart its solid structure requires a significant amount of energy.

Additionally, the molecule contains multiple hydrogen bonds, which are relatively strong intermolecular forces. These factors contribute to a relatively large positive ∆H° value, which makes it energetically unfavorable for KHT to dissolve in water.

On the other hand, the ∆S° value for the dissolution of KHT is likely not a major contributing factor, as the process does not involve a significant change in the degree of disorder or randomness of the system. The unfavorable ∆H° means that energy is absorbed during the dissolution, making the process less favorable and leading to low solubility.

Learn more about solubility here:

https://brainly.com/question/28170449

#SPJ11

draw the lewis structure for h2nnh2. now answer the following questions based on your lewis structure: (enter an integer value only.)

Answers

In H2NNH2, we have two Nitrogen atoms in the center, so N-N is the central bond. The Hydrogen atoms are bonded to the Nitrogen atoms, so the structure will look like this: H-N-N-H.

How many lone pairs are in the Lewis structure of H2NNH2?

The Lewis structure for H2NNH2 and answer your questions,follow these steps:

Count the total number of valence electrons: Nitrogen has 5 valence electrons, and Hydrogen has 1 valence electron. There are 2 Nitrogens and 4 Hydrogens in H2NNH2, so the total number of valence electrons is (2x5) + (4x1) = 10 + 4 = 14 valence electrons.
Place the least electronegative atom in the center, which is Nitrogen in this case. Connect the other atoms to the central atom with single bonds. In H2NNH2, we have two Nitrogen atoms in the center, so N-N is the central bond. The Hydrogen atoms are bonded to the Nitrogen atoms, so the structure will look like this: H-N-N-H.
Distribute the remaining valence electrons to satisfy the octet rule for each atom. In H2NNH2, each Nitrogen needs 3 more electrons to satisfy the octet rule. Assign a lone pair of electrons to each Nitrogen, and the remaining 4 electrons will form a double bond between the Nitrogen atoms. So, the final Lewis structure is:
  H
  |
  N=N
 / \
H   H
Based on the Lewis structure, the integer value you are looking for might be the number of valence electrons (14) or the number of bonds in the molecule (4).

Learn more about Lewis structure of hydrazine H2NNH2

brainly.com/question/29756061

#SPJ11

In H2NNH2, we have two Nitrogen atoms in the center, so N-N is the central bond. The Hydrogen atoms are bonded to the Nitrogen atoms, so the structure will look like this: H-N-N-H.

How many lone pairs are in the Lewis structure of H2NNH2?

The Lewis structure for H2NNH2 and answer your questions,follow these steps:

Count the total number of valence electrons: Nitrogen has 5 valence electrons, and Hydrogen has 1 valence electron. There are 2 Nitrogens and 4 Hydrogens in H2NNH2, so the total number of valence electrons is (2x5) + (4x1) = 10 + 4 = 14 valence electrons.
Place the least electronegative atom in the center, which is Nitrogen in this case. Connect the other atoms to the central atom with single bonds. In H2NNH2, we have two Nitrogen atoms in the center, so N-N is the central bond. The Hydrogen atoms are bonded to the Nitrogen atoms, so the structure will look like this: H-N-N-H.
Distribute the remaining valence electrons to satisfy the octet rule for each atom. In H2NNH2, each Nitrogen needs 3 more electrons to satisfy the octet rule. Assign a lone pair of electrons to each Nitrogen, and the remaining 4 electrons will form a double bond between the Nitrogen atoms. So, the final Lewis structure is:
  H
  |
  N=N
 / \
H   H
Based on the Lewis structure, the integer value you are looking for might be the number of valence electrons (14) or the number of bonds in the molecule (4).

Learn more about Lewis structure of hydrazine H2NNH2

brainly.com/question/29756061

#SPJ11

The Ka value for acetic acid, CH3COOH(aq), is 1.8x10^-5. Calculate the ph of a 2.80 M acetic acid solution.PH=

Answers

The pH of a 2.80 M acetic acid solution is approximately: 2.65.

To calculate the pH of a 2.80 M acetic acid solution, given the Ka value for acetic acid, [tex]CH^3COOH[/tex](aq), is 1.8x[tex]10^{-5[/tex], follow these steps:

1. Write the ionization equation for acetic acid: [tex]CH^3COOH[/tex](aq) ⇌ [tex]CH^3COO-[/tex](aq) + H+(aq)
2. Set up an ICE (Initial, Change, Equilibrium) table to represent the concentrations of each species at equilibrium.
3. Since the initial concentration of [tex]CH^3COOH[/tex] is 2.80 M, assume x M of [tex]CH^3COOH[/tex] dissociates into x M of[tex]CH^3COO-[/tex] and H+ ions.
4. Write the expression for Ka: Ka = [[tex]CH^3COO-[/tex]][H+]/[[tex]CH^3COOH[/tex]]
5. Substitute the equilibrium concentrations into the Ka expression: 1.8x[tex]10^{-5[/tex] = (x)(x)/(2.80-x)
6. Since Ka is very small, the change in concentration (x) is negligible compared to the initial concentration of acetic acid. Therefore, you can simplify the expression to: 1.8x10^-5 = x^2/2.80
7. Solve for x (concentration of H+ ions): x = √(1.8x[tex]10^{-5[/tex] * 2.80) ≈ 0.00224 M
8. Calculate the pH using the formula pH = -log10[H+]: pH = -log10(0.00224) ≈ 2.65

To know more about "pH" refer here:

https://brainly.com/question/30761746#

#SPJ11

The following half-cells are available: Ag+ (aq, 1.0 M) | Ag(s), Zn2+(aq, 1.0 M) | Zn(s), Cu2+(aq, 1.0 M) | Cu(s), and Co2+(aq, 1.0 M) | Co(s). Linking any two half-cells makes a voltaic cell. Given four different half-cells, six voltaic cells are possible. These are labeled, for simplicity, Ag-Zn, Ag-Cu, Ag-Co, Zn-Cu, Zn-Co, and Cu-Co.
(a) In which of the voltaic cells does the copper electrode serve as the cathode? In which of the voltaic cells does the cobalt electrode serve as the anode?
(b) Which combination of half-cells generates the highest voltage? Which combination generates the lowest voltage?

Answers

(a) In the Ag-Cu voltaic cell, the copper electrode serves as the cathode since Cu2+ ions are reduced to Cu(s) on the copper electrode. In the Ag-Co voltaic cell, the cobalt electrode serves as the anode since Co(s) is oxidized to Co2+ ions.

(b) The highest voltage is generated by the Ag-Zn voltaic cell because the reduction potential of Ag+ is higher than that of Zn2+. The lowest voltage is generated by the Cu-Co voltaic cell because the reduction potential of Co2+ is higher than that of Cu2+.

A voltaic cell, also known as a galvanic cell, is an electrochemical cell that converts chemical energy into electrical energy. It consists of two half-cells, each containing an electrode and an electrolyte solution. The two half-cells are connected by a salt bridge or porous membrane to allow for ion flow between them. In a voltaic cell, a spontaneous redox reaction occurs, which generates an electric potential difference between the two electrodes. This potential difference drives the flow of electrons through an external circuit, which can be used to power devices or perform work.

Visit here to learn more about voltaic cell brainly.com/question/1370699

#SPJ11

The solubility of calcium sulfate at a given temperature is 0.217 g/100 mL. Calculate the Ksp at this temperature. After you get your answer, take the negative log and enter that (so it's like you're taking the pKsp)!can someone please help i got 5.32 and it was wrong

Answers

The pKsp of calcium sulfate at this temperature is 5.60.

To calculate the Ksp of calcium sulfate, we need to use the equation:

CaSO4 (s) ⇌ Ca²⁺ (aq) + SO₄²⁻ (aq)

When, solubility = 0.217 g/100 mL and,

The molar mass of CaSO4 = 40.08 (Ca) + 32.07 (S) + 4*16.00 (O) = 136.15 g/mol

Then the molar solubility is:

Molar solubility = (0.217 g/100 mL) / (136.15 g/mol)

                         = 0.00159 mol/100 mL

                         = 0.00159 mol/L

The Ksp expression for calcium sulfate is:

Ksp = [Ca²⁺] × [SO₄²⁻]

At equilibrium, the concentration of Ca2+ and SO42- will be equal to the solubility of calcium sulfate:

[Ca2+] = 0.00159 mol/L

[SO42-] = 0.00159 mol/L

Substituting these values into the Ksp expression:

Ksp = (0.00159 mol/L)(0.00159 mol/L)

      = 2.53 × 10⁻⁶

Taking the negative log of the Ksp:

pKsp = -log(Ksp)

         = -log(2.53 × 10^-6)

          = 5.60

To know more about Ksp and pKsp, click on the below link:

https://brainly.com/question/22782525

#SPJ11

Other Questions
The five girls had their refreshments at thekitchen table, and it was while Rosie wasshowing the sisters her trick of swallowing peachslices without chewing (she chased each slippery crescent down with a swig of tea) that her father brought his empty teacup and untouched saucerto the sink and said, "Come on, Rosie, we'regoing home now.""Already?" asked Rosie."Work tomorrow," he said.He sounded irritated, and Rosie, puzzled, gulped one last yellow slice and stood up to go, whilethe sisters began protesting, as was their wont."We have to get up at five-thirty," he told them, going into the front room quickly, so that theydid not have their usual chance to hang onto his hands and plead for an extension of time.Seventeen Syllables,Hisaye YamamotoRead the excerpt. What is the conflict in this scene?Rosie wants to swallow peach slices whole, but her father does not approve of this.Rosies father wants his family to leave, while the Hayano sisters want them to stay.Rosies father wants her to go to work early tomorrow, while Rosie wants to go later.Rosie wants to leave, but the Hayano sisters want to watch her swallow peach slices. IRAC: Two colleagues decide to incorporate their Internet social networking business. They want complete control of the business, yet they need additional capital to expand the business. The two colleagues enter negotiations with eight friends willing to provide capital to the corporation. The friends agree that they will not be allowed to elect directions, but they want to make sure that they will receive a return on their investments by receiving payments from the corporation quarterly or semiannually. What securities with what rights should the corporation create to achieve the objectives of the friends and colleagues? For each security you create, sketch the rights of the holders. 3. what is the spring constant? k = 0.49 incorrect: your answer is incorrect. n/cm 4. what is the force of the spring 2 Aggregate production strategies are part of your _______________ planning.a. Long rangeb. Short rangec. Intermediate range Mammals have fur, they suckle their young and the young develop inside the mother. is it True or False decribe teh mechansims resonpitble for con-a induced hemagglucnation reaction answer fast pls Translate these descriptions into a numerical expression:Find the sum of 2 and 4, then multiply by 7.Divide 12 by 3, then multiply by 5 In the first stage of photosynthesis, light energy is converted into chemical energy and reducing equivalents (NADPH + H+). This phenomenon is called A) energy transduction B) decay c) radiation D) kinetic energy E) potential energy 16.5 ft tall giraffe casts a 12-ft. shadow. at the same time a zookeeper casts a 4-ft shadow how tall in feet is the zookeeper how many grams of na2co3 (fm 105.99) should be mixed with 5.00 g of nahco3 (fm 84.01) to produce 100 ml of buffer with ph 10.00? After plotting the voltage waveform, obtain a 0.2-mp expressions and generate plots for (t), p (t), and w (t) for i by capacitor. The voltage waveforms are given:(a) v_1(t) = 5r(t) - 5r(t 2) V (b) v_2(t) = 10u(-t) + 10u(t) - 5r(t-2) + 5r(t-4) V (c) v_3(t) = 15u(-t) + 15e^(-0.5t) u(t) V (d) v_4(t) = 150[1 - e^(-0.5t)] u(t) V angles of a triangle Are dichotomous keys purely a human invention? Explain. in galatians, paul uses ___________ as an example of one justified by faith. It is recommended to interview the HIS users to identify vital information to daily operation in contingency planning True False Which network topology is the most reliable and why?OA. Ring topology, because data flows in one direction from node tonode around the ringB. Star topology, because the server manages all network traffic inone location, making it convenientC. Bus topology, because on large networks it is easy to fix if a cablefails and all nodes lose connectionD. Fully connected mesh topology, because it provides a connectionfrom each node to every other node in the network A rule that CANNOT be violated by database users is called a:(A) password.(B) program.(C) constraint.(D) view. Which of the following variables of an asteroid collision affects the impact crater they leave behind?O SizeO SpeedO MassO All of the above 1. You want to clone a human DNA sequence into a plasmid. This DNA fragment was cut out of the human genome with restriction enzyme Sunl, whose restriction site is shown in the figure below. Sunl restriction site CGTACG GCATGC Plasmid cloning region AGGATCCCGAGTGTACACGTGGTACCAGAATTCCTTGGTACCTTTAAAACA TCCTAGGGCTCACATGTGCACCATGGTCTTAAGGAACCATGGAAATTTTGT BamHI Kpl EcoRI Asp7181 Dral Aau This figure also shows the multiple cloning region of your plasmid, with the potential restriction sites marked. A. Which of these restriction enzymes could be used to cleave the plasmid for successful insertion of this human DNA fragment? Note that there could be more than one correct answer B. Briefly explain how you would go about cloning the fragment into the plasmid. C. You successfully clone the human DNA into the plasmid, and store it in the freezer. Several months later, your advisor asks you to use this recombinant plasmid to prepare a large quantity of the human insert sequence with as little plasmid sequence as possible. Can you do this with restriction enzymes? What enzymes would you choose? Question 1. You want to clone a human DNA sequence into a plasmid. This DNA fragment was cut out of the human genome with restriction enzyme Sunl, whose restriction site is shown in the figure below. Sunl restriction site CGTACG GCATGC Plasmid cloning region AGGATCCCGAGTGTACACGTGGTACCAGAATTCCTTGGTACCTTTAAAACA TCCTAGGGCTCACATGTGCACCATGGTCTTAAGGAACCATGGAAATTTTGT BamHI Kpl EcoRI Asp7181 Dral Aau This figure also shows the multiple cloning region of your plasmid, with the potential restriction sites marked. A. Which of these restriction enzymes could be used to cleave the plasmid for successful insertion of this human DNA fragment? Note that there could be more than one correct answer B. Briefly explain how you would go about cloning the fragment into the plasmid. C. You successfully clone the human DNA into the plasmid, and store it in the freezer. Several months later, your advisor asks you to use this recombinant plasmid to prepare a large quantity of the human insert sequence with as little plasmid sequence as possible. Can you do this with restriction enzymes? What enzymes would you choose? You are spinning two identical balls attached to strings in uniform circular motion, Ball 2 has a string that is twice as long as the string with ball 1, and the rotational speed (v) of ball 2 is three times the rotational speed of ball 1. What is the ratio of the centripetal force of ball 2 to that of ball 1?