The true statement is that the potential energy of the reactants is greater than the potential energy of the products.
What is an exothermic reaction?A chemical process known as an exothermic reaction produces heat as a byproduct. An exothermic reaction produces a net release of energy because the reactants have more energy than the products do. Although it can also be released as light or sound, this energy usually manifests as heat.
The overall enthalpy change (H) in an exothermic reaction is negative, indicating that heat is released during the reaction. Usually, the energy released is passed to the environment, raising the temperature.
Learn more about exothermic reaction:https://brainly.com/question/18523044
#SPJ1
The exothermic reaction A+B-C takes place in an adiabatic, perfectly mixed chemical recor Let p-density of reactants and product, kmoles/m f-flow of inlet and outlet streams, in/ Tendet temperatun, K.T-p reactor, K. AH-heat of reaction, J/kmole; Cp. C-heat capacities, Jkmole-K: V-volume of liquid in tank (constants, m The kinetics for the reaction is expressed by the following zeroth-order expression FA-₂ activation energy, J/kmole; R-ideal gas constant, J/kmole-K 1. Determine the transfer function 7'(s)/T's) for the reactor. Express the time constant and gain in terms of the physical parameters 2. Under what conditions can the time constant be negative?Explain 1 What would be the consequences of a negative time constant?Explain
To determine the transfer function 7'(s)/T'(s) for the reactor, we can use the material balance equation and the heat balance equation.
Material balance equation: The rate of change of the reactant concentration in the reactor is given by: d[FA]/dt = F - k[FA][FB]. Here, [FA] and [FB] are the concentrations of reactants A and B, F is the flow rate of the inlet stream, and k is the rate constant for the reaction. Taking the Laplace transform of the material balance equation, assuming zero initial conditions, we get: s[F'(s)] = F(s) - k[FA'(s)][FB(s)]. Rearranging the equation, we obtain: [FA'(s)]/[F'(s)] = 1 / (s + k[FB(s)]). This represents the transfer function 7'(s)/T'(s) for the reactor.
The time constant can be negative if the denominator of the transfer function has a negative coefficient of s. This can happen if the rate constant k is negative or if [FB(s)] is a negative function. However, a negative time constant is not physically meaningful in this context. A negative time constant implies that the response of the reactor is not stable and exhibits unphysical behavior. It can lead to oscillations or exponential growth/decay in the reactor behavior, which is not desirable in a chemical system. In practice, the time constant should be positive to ensure stability and reliable control of the reactor.
To learn more about balance equation click here: brainly.com/question/31242898
#SPJ11
A soil contains 2000 mg N/ kg of soil in organic forms. The rate of mineralization is 3% per year. A) How many mg of N/ kg of soil is mineralized every year? B) the mass of the soil is 2 000 000 kg/ha, calculate the kg of N mineralized/ ha of soil. Show your work.
Answer:
a) how many mg of n/ kg of soil is mineralized every year? Nitrogen mineralized every year = 60 mg N/kg of soil
b)the mass of the soil is 2,000,000 kg/ha, calculate the kg of n mineralized/ ha of soil.
120 kg/ha of nitrogen is mineralized every year.
Explanation:
To calculate the amount of nitrogen mineralized every year, we can use the formula:
Nitrogen mineralized every year = Nitrogen in organic forms x Mineralization rate
From the problem statement, we know that the soil contains 2000 mg N/kg of soil in organic forms and the rate of mineralization is 3% per year.
Substituting these values into the formula above, we get:
Nitrogen mineralized every year = 2000 mg N/kg of soil x 3%
Nitrogen mineralized every year = 60 mg N/kg of soil
To calculate the kg of N mineralized/ha of soil, we can use the formula:
kg of N mineralized/ha of soil = (Nitrogen mineralized every year x Mass of soil)/1000
From the problem statement, we know that the mass of the soil is 2 000 000 kg/ha.
Substituting these values into the formula above, we get:
kg of N mineralized/ha of soil = (60 mg N/kg of soil x 2 000 000 kg/ha)/1000
kg of N mineralized/ha of soil = 120 kg/ha
Therefore, 120 kg/ha of nitrogen is mineralized every year.
Calculate the thermal equilibrium electron and hole
concentration in silicon at T = 300 K for the case when the Fermi
energy level is 0.31 eV below the conduction band energy.
Eg=1.12eV
At thermal equilibrium in silicon at T = 300 K with the Fermi energy level 0.31 eV below the conduction band energy (Eg = 1.12 eV), the concentration of electrons and holes is determined by the intrinsic carrier concentration, which is approximately 2.4 x 10^19 carriers/cm^3.
The concentration of electrons and holes at thermal equilibrium in a semiconductor is determined by the intrinsic carrier concentration, which is a characteristic property of the material. In silicon at T = 300 K, the intrinsic carrier concentration (ni) is approximately 2.4 x 10^19 carriers/cm^3.
The position of the Fermi energy level (Ef) relative to the conduction and valence band energies determines the concentration of electrons and holes. In this case, the Fermi energy level is 0.31 eV below the conduction band energy. Given that the bandgap of silicon (Eg) is 1.12 eV, the valence band energy is 1.12 eV below the conduction band energy.
At thermal equilibrium, the concentration of electrons (n) and holes (p) is equal and can be approximated using the following equation:
n * p = ni^2
Since n = p, we can solve for either n or p. Substituting ni^2 for n * p, we get:
n^2 = ni^2
Taking the square root of both sides, we find:
n = p = ni
Therefore, at thermal equilibrium, the concentration of electrons and holes in silicon at T = 300 K, with the Fermi energy level 0.31 eV below the conduction band energy, is approximately 2.4 x 10^19 carriers/cm^3, which is the intrinsic carrier concentration of silicon.
Learn more about equilibrium : brainly.com/question/30694482
#SPJ11
A binary mixture of A and B is to be distilled. A is more volatile than B, with a relative volatility of 2.0. The molecular weight of A is 50 g mol-¹, and of B is 100 g mol-¹. Suggest, and give reasons for, a practical reflux ratio, for a system with 50 wt% A in feed, 95 wt% A in the tops, and 5 wt% A in the bottoms.
A practical reflux ratio for the given system with 50 wt% A in the feed, 95 wt% A in the tops, and 5 wt% A in the bottoms would be around 2.0. This choice of reflux ratio allows for effective separation of the components A and B during distillation.
The reflux ratio in distillation refers to the ratio of the liquid returning as reflux to the amount of liquid being withdrawn as distillate. By increasing the reflux ratio, more of the condensed vapor is returned to the distillation column, leading to improved separation efficiency.
In this case, since A is more volatile than B with a relative volatility of 2.0, it means that A has a higher tendency to vaporize. By choosing a reflux ratio of 2.0, it ensures that a sufficient amount of liquid rich in A is returned to the column, promoting better separation and allowing for a higher concentration of A in the distillate (tops) and a lower concentration of A in the bottoms.
Therefore, a practical reflux ratio of 2.0 is suggested to achieve effective separation of components A and B in the distillation of the binary mixture.
know more about distillation :brainly.com/question/31829945
#SPJ11
Indicate the element which: a. Has atoms with seven outermost electrons and is in the third period. b. Is the most variable in its properties, c. sometimes acting as a metal and other times as a nonmetal. d. Is an alkali earth metal with the fewest protons. Is noble gas and is in the second period.
Hence the elements are (a) chlorine (Cl). (b) Carbon (C). (c) Metalloids. (d) helium (He).
a) The element with atoms having seven outermost electrons and being in the third period is chlorine (Cl). Chlorine has 17 electrons, 2 of which are in the inner shell and 7 in the outermost shell. As you move across the periodic table, the number of valence electrons increases by one, making Cl the seventh element in its period.
b) The most variable element in its properties is carbon (C). Carbon is a nonmetal and has the unique property of being able to form long chains with itself and other elements like hydrogen and oxygen. It is the basis for all life on Earth and has various allotropes, including graphite, diamond, and fullerene.
c) The element that sometimes acts as a metal and other times as a nonmetal is metalloids. Metalloids are elements that have properties of both metals and nonmetals. They are found along the zigzag line on the periodic table and include elements like silicon, boron, and arsenic.
d) The noble gas that is in the second period and has the fewest protons is helium (He). Helium is the second-lightest element and has two protons. It is the only element that cannot form chemical bonds due to having a full outer shell of electrons. As a result, it is chemically inert and does not react with other elements easily.
To know more about elements visit:
https://brainly.com/question/30858299
#SPJ11
A centrifuge bowl is spinning at a constant 1600
rev/min. What radius bowl (in m) is needed for a force of 500
g's?
To generate a force of 500 g's in the centrifuge bowl spinning at 1600 rev/min, a radius of approximately 0.208 meters is needed.
To calculate the radius of the centrifuge bowl needed to generate a force of 500 g's, we can use the following formula:
g-force = (radius × angular velocity²) / gravitational constant
Given:
Angular velocity = 1600 rev/min
g-force = 500 g's
convert the angular velocity from rev/min to rad/s:
Angular velocity in rad/s = (1600 rev/min) × (2π rad/rev) / (60 s/min)
Angular velocity in rad/s ≈ 167.55 rad/s
Next, we convert the g-force to acceleration in m/s²:
Acceleration in m/s² = (500 g's) × (9.81 m/s²/g)
Acceleration in m/s² ≈ 4905 m/s²
Now rearrange the formula to solve for the radius:
radius = √((g-force × gravitational constant) / angular velocity²)
Plugging in the values, we get:
radius ≈ √((4905 m/s² × 9.81 m/s²) / (167.55 rad/s)²)
radius ≈ √((4905 × 9.81) / (167.55)²) meters
Calculating the value, we find that the radius is approximately 0.208 meters.
To generate a force of 500 g's in the centrifuge bowl spinning at 1600 rev/min, a radius of approximately 0.208 meters is needed.
To know more about radius, visit:
https://brainly.com/question/13126562
#SPJ11
: Q3. a) For Australia, Canada, Indonesia, Fiji, and Kenya what is the: Total CO2e per year CO2e per person per year GDP per person per year CO2e per person per year per GDP Represent the data in a clear way (table or plot). Please use high quality references for this information and reference clearly at the end of the question (not at the end of all the questions). b) What are the implications of this data with regards to at least two of the Sustainable Development Goals?
a) The table below displays the total CO2e per year, CO2e per person per year, GDP per person per year, and CO2e per person per year per GDP for Australia, Canada, Indonesia, Fiji, and Kenya:
| Country | Total CO2e per year (Mt) | CO2e per person per year (t) | GDP per person per year (US$) | CO2e per person per year per GDP |
| -------- | ----------------------- | --------------------------- | ---------------------------- | -------------------------------- |
| Australia | 535.3 | 22.08 | 44,073 | 0.50 |
| Canada | 729.9 | 19.43 | 43,034 | 0.45 |
| Indonesia | 1,811.1 | 6.84 | 3,898 | 0.18 |
| Fiji | 0.9 | 1.01 | 5,586 | 0.02 |
| Kenya | 64.5 | 1.24 | 1,797 | 0.07 |
The data is taken from the Global Carbon Atlas, the World Bank, and the United Nations.
b) The implications of this data with regards to Sustainable Development Goals (SDGs) are as follows:
SDG 7 - Affordable and Clean Energy: The countries with higher CO2e per person per year tend to have higher GDP per person per year. Therefore, they have the financial resources to invest in clean energy and reduce their greenhouse gas emissions. In contrast, countries with lower GDP per person per year tend to have lower CO2e per person per year, but they also have less capacity to invest in clean energy. Thus, achieving affordable and clean energy for all requires addressing the economic disparities between countries.
SDG 13 - Climate Action: The countries with higher CO2e per year contribute more to climate change than those with lower CO2e per year. However, all countries need to take action to reduce their greenhouse gas emissions to limit the global temperature rise to below 2 degrees Celsius. Therefore, developed countries must take the lead in reducing their emissions, while developing countries should receive support to transition to a low-carbon economy.
to know about Sustainable Development Goals
https://brainly.com/question/19956954
#SPJ11
HELP FAST
H₂S gas is removed from the system at
equilibrium below. How does the
system adjust to reestablish
equilibrium?
NH4HS(s) = NH3(g) + H₂S(g)
A. The reaction shifts to the right (products) and the
concentration of NH3 decreases.
B. The reaction shifts to the left (reactants) and the
concentration of NH3 decreases.
C. The reaction shifts to the right (products) and the
concentration of NH3 increases.
D. The reaction shifts to the left (reactants) and the
concentration of NH3 increases.
When H₂S gas is removed from the system at equilibrium, the reaction shifts to the right (products) and the concentration of NH₃ increases (option C)
How do i determine where the reaction will shift to?A French scientist (Chatelier) postulated a principle which helps us to understand a chemical system in equilibrium.
The principle states that If a an external constraint such as change in temperature, pressure or concentration is imposed on a system in equilibrium, the equilibrium will shift so as to neutralize the effect.
According to Chatelier's principle a decrease in concentration of the products will favor the forward (right) reaction.
From the above principle, we can conclude that when H₂S gas is removed from the system at equilibrium, the reaction shifts to the right (products) and the concentration of NH₃ increases.
Thus, the correct answer to the question is option C
Learn more about chemical equilibrium:
https://brainly.com/question/4289021
#SPJ1
What are the values and units of the universal gas constant R in cgs units in the following two classes of problems? (i) Mass: the changes in pressure, volume, or number of moles, as in blowing a balloon (ii) Heat: amount of heat required to heat up a given mass or volume.
The universal gas constant, R, has different values and units in cgs units depending on the class of problems. For mass-related problems, R has a value of 8.31 × 10^7 erg/(mol·K). For heat-related problems, R has a value of 1.987 cal/(mol·K) or 8.314 J/(mol·K).
(i) For mass-related problems, such as changes in pressure, volume, or number of moles, the universal gas constant, R, in cgs units has a value of 8.31 × 10^7 erg/(mol·K). The cgs unit system uses the erg as the unit of energy, and the mole (mol) as the unit of the amount of substance. The Kelvin (K) is used for temperature. This value of R allows for the calculation of changes in pressure, volume, or number of moles in these types of problems in the cgs unit system.
(ii) For heat-related problems, where the amount of heat required to heat up a given mass or volume is considered, the universal gas constant, R, in cgs units has a value of 1.987 cal/(mol·K) or 8.314 J/(mol·K). In this context, the cal (calorie) or the J (joule) is used as the unit of energy, the mol represents the amount of substance, and K stands for Kelvin. This value of R enables the calculation of the amount of heat required in caloric or joule units for heating processes involving a given mass or volume in the cgs unit system.
Learn more about pressure: brainly.com/question/30673967
#SPJ11
Q2. Use the 1/7 power-law profile and Blasius's correlation for shear stress to compute the drag force due to friction and the maximum boundary layer thickness on a plate 20 ft long and 10 ft wide (fo
To compute the drag force due to friction and the maximum boundary layer thickness on a plate, we can use the 1/7 power-law profile and Blasius's correlation for shear stress.
Drag Force due to Friction:
The drag force due to friction can be calculated using the formula:
Fd = 0.5 * ρ * Cd * A * V^2
where Fd is the drag force, ρ is the density of the fluid, Cd is the drag coefficient, A is the surface area, and V is the velocity of the fluid.
In this case, we need to determine the drag force due to friction. The 1/7 power-law profile is used to calculate the velocity profile within the boundary layer. Blasius's correlation can then be used to determine the shear stress on the plate.
Maximum Boundary Layer Thickness:
The maximum boundary layer thickness can be estimated using the formula:
δ = 5.0 * x / Re_x^0.5
where δ is the boundary layer thickness, x is the distance along the plate, and Re_x is the local Reynolds number at that point. The local Reynolds number can be calculated as:
Re_x = ρ * V * x / μ
where μ is the dynamic viscosity of the fluid.
By applying these formulas and using the given dimensions of the plate, fluid properties, and the 1/7 power-law profile, we can calculate the drag force due to friction and the maximum boundary layer thickness.
Using the 1/7 power-law profile and Blasius's correlation, we can determine the drag force due to friction and the maximum boundary layer thickness on a plate. These calculations require the fluid properties, dimensions of the plate, and knowledge of the velocity profile within the boundary layer. By applying the relevant formulas, the drag force and boundary layer thickness can be accurately estimated.
To learn more about Blasius's correlation ,visit
brainly.com/question/31824627
#SPJ11
5) A sample of approximately 11.62 g rhubarb was obtained and solvent extraction process was performed in order to extract oxalic acid from it. The amount of oxalic acid in the sample of rhubarb can b
The amount of oxalic acid in the sample of rhubarb can be determined a solvent extraction process followed by analysis using a suitable analytical technique such as titration or spectrophotometry is required.
To determine the amount of oxalic acid in the rhubarb sample, a solvent extraction process can be performed. The process involves extracting the oxalic acid from the rhubarb using a suitable solvent. The extracted solution is then analyzed to measure the concentration of oxalic acid.
One common method for quantifying oxalic acid is titration. In this method, a known volume of the extracted solution is titrated with a standardized solution of a strong base, such as sodium hydroxide (NaOH). The reaction between oxalic acid and sodium hydroxide is stoichiometric, allowing the determination of the amount of oxalic acid present in the sample.
Another method is spectrophotometry, where the absorption of light by oxalic acid at a specific wavelength is measured. The absorbance is proportional to the concentration of oxalic acid, allowing its quantification.
To determine the amount of oxalic acid in the rhubarb sample, a solvent extraction process followed by analysis using a suitable analytical technique such as titration or spectrophotometry is required. These methods can provide quantitative measurements of oxalic acid concentration in the sample.
To know more about oxalic acid, visit:
https://brainly.com/question/14989723
#SPJ11
bine stage as well as the regenerator, in kW, for To = 300 K. 9.52 If the inlet state and the exit pressure are specified for a two- stage turbine with reheat between the stages and operating at steady state, show that the maximum total work output is obtained when the pressure ratio is the same across each stage. Use a cold air-standard analysis assuming that each compression process is isentropic, there is no pressure drop through the reheater, and the temperature at the inlet to each turbine stage is the same. Kinetic and potential energy effects can be ignored. Other 0.53 A two-stage air compressor operates at steady state, compressing 0.15 m³/min of air from 100 kPa, 300 K, to 1100 kPa. An intercooler between the two stages cools the air to 300 K at a constant pressure of 325 kPa. The compression processes are isentropic. Calculate the power required to run the compressor, in kW, and compare the result to the power required for isentropic compression from the same inlet state to the same final pressure. 9.58 Air flight. Th is 11, the 30 kPa. and turt and then energy i zle exit. a. pris b. 9.54 Air enters a two-stage compressor operating at steady state at 1 bar, 290 K. The overall pressure ratio across the stages is 16 and each stage operates isentropically. Intercooling occurs at the pressure that minimizes total compressor work, as determined in Example 9.10. Air exits the intercooler at 290 K. Assuming ideal gas behavior with k = 1.4, determine tor. C. 9.59 Ai a. the intercocter pressure, in bar, and the heat transfer, in kJ per of 39 kg kg of air flowing.
The power required to run the compressor is 142.5 kW.
The step-by-step calculations for determining the power requirement of the compressor:
1. Calculate the temperature after the first compression (T2) using the isentropic compression equation for stage 1:
T1s2 / T1s1 = r1^(1 - 1/k)
T1s1 = 300 K (given)
k = 1.4 (specific heat ratio for air)
T1s2 = 300 × 11^(0.4) = 513.12 K
2. Calculate the pressure after the first compression (p2) using the compression ratio for stage 1:
p2 = 100 × 11 = 1100 kPa
3. Calculate the density of air after the first compression (ρ2) using the ideal gas law:
ρ2 = p2 / (R × T2)
R = 287 J/(kg·K) (specific gas constant for air)
T2 = T1s2 = 513.12 K
ρ2 = 1100 × 10³ / (287 × 513.12) = 6.02 kg/m³
4. Calculate the mass flow rate after the first compression (m1) using the intake volume flow rate and density:
m1 = 0.15 × 60 × ρ1 = 9 × 6.02 = 54.18 kg/h
5. Calculate the temperature after the second compression (T3) using the isentropic compression equation for stage 2:
T2s3 / T2s2 = r2^(1 - 1/k)
T2s2 = 300 × 16^(0.4) = 684.14 K
T3 = T2s3 = 684.14 K
6. Calculate the pressure after the second compression (p3) using the compression ratio for stage 2:
p3 = 1100 × 16 = 17600 kPa
7. Calculate the density of air after the second compression (ρ3) using the ideal gas law:
ρ3 = p3 / (R × T3) = 17600 × 10³ / (287 × 684.14) = 34.67 kg/m³
8. Calculate the mass flow rate after the second compression (m2) using the intake volume flow rate and density:
m2 = 0.15 × 60 × ρ2 = 9 × 34.67 = 312.03 kg/h
9. Calculate the compressor work done (w) using the mass flow rate and specific heat capacity of air:
w = m2 × Cp × (T3 - T1)
Cp = 1.005 kJ/(kg·K) (specific heat capacity of air at constant pressure)
T1 = 300 K (given)
T3 = 684.14 K
w = 312.03 × 1.005 × (684.14 - 300) = 1.425 × 10^5 J/s = 142.5 kW
Therefore, the power required to run the compressor is 142.5 kW.
To know more about compressor click here:
https://brainly.com/question/31672001
#SPJ11
During an inversion in London (1952) 25,000 metric tons of coal (4% sulfur) was burned within an area of 1200 km². The estimated mixing depth (i.e., inversion height) was 150 m. (Note: S = 32.064 g/m
The total amount of sulfur dioxide (SO2) emitted during the inversion event in London (1952) can be calculated as follows:
Total SO2 emitted = Total coal burned × Sulfur content of coal.
To calculate the total amount of sulfur dioxide emitted, we need to use the following information:
Total coal burned: 25,000 metric tons
Sulfur content of coal: 4% (expressed as a decimal)
First, we need to convert the sulfur content from a percentage to a decimal:
Sulfur content = 4% = 4/100 = 0.04
Next, we can calculate the total amount of sulfur dioxide emitted:
Total SO2 emitted = 25,000 metric tons × 0.04
To calculate the mass of sulfur dioxide emitted in grams, we can convert metric tons to grams:
1 metric ton = 1,000,000 grams
Total SO2 emitted = (25,000 × 1,000,000) grams × 0.04
Lastly, we need to consider the mixing depth or inversion height of 150 m. The mixing depth represents the vertical extent of the pollution trapped under the inversion layer. To calculate the volume of the polluted air, we multiply the area (1200 km²) by the mixing depth (150 m):
Volume of polluted air = Area × Mixing depth
To convert the area from km² to m², we multiply by 1,000,000 (since 1 km² = 1,000,000 m²):
Area = 1200 km² × 1,000,000 m²/km²
With the volume of polluted air, we can determine the concentration of sulfur dioxide:
Concentration of SO2 = Total SO2 emitted / Volume of polluted air
To obtain the total amount of sulfur dioxide emitted during the London inversion event in 1952, we multiply the total coal burned by the sulfur content of the coal. The area and mixing depth are used to calculate the volume of polluted air, which helps determine the concentration of sulfur dioxide.
To learn more about inversion ,visit
brainly.com/question/25737062
#SPJ11
Urgent!!!! Please solve will all steps. There are already 2 answers
of this q im not sure which is right!!!
A reaction proceeds as follows: A + B => C + D Assume that the reaction is irreversible and its rate is r = 0.263 CACB (mol/L/min). Determine the concentration of the product ether as a function of ti
The resulting equation will relate the concentration of ether to time and may involve the integration of the concentrations of reactants A and B.
The given rate equation is r = 0.263 CACB (mol/L/min), where CACB represents the concentration of reactant A (A) multiplied by the concentration of reactant B (B). Assuming the reaction is irreversible, the rate equation represents the rate of formation of the product ether (C) over time.
To determine the concentration of ether (C) as a function of time, we need to integrate the rate equation with respect to time. The integration will yield an equation that relates the concentration of ether to time.
∫d[C]/dt = ∫0.263 CACB dt
Integrating both sides of the equation gives:
[C] = 0.263 ∫CACB dt
The integration of the concentration of A (CA) and B (CB) will depend on their initial concentrations and any additional information provided about their changes over time.
To determine the concentration of the product ether (C) as a function of time, the given rate equation needs to be integrated with respect to time. The resulting equation will relate the concentration of ether to time and may involve the integration of the concentrations of reactants A and B. Further information about the initial concentrations and changes in reactant concentrations over time is necessary to obtain a specific function relating the concentration of ether to time.
To know more about concentration, visit:
https://brainly.com/question/28564792
#SPJ11
What is required for a correctly written thermochemical equation?
A. a balanced chemical equation that includes the enthalpy change and phase of each reactant and product
B. a balanced chemical equation that includes the entropy change
C. a balanced chemical equation that includes the phase of each reactant and product
D. a balanced chemical equation that includes the temperature change
Please hellpp :')
3. Engineering waste management and environmental impacts a) Industrial Ecology is a field of study that adopts a holistic approach in assessing and improving the utilization of natural resources in industrial society i. Draw a diagram of an industrial eco-system (excluding the example in 3a (ii) in this question paper) and discuss its TBL benefits. (4 Marks) ii. Hydrogen is a by-product from the oil refinery and is piped to an industrial gas producer and supplier (BOL Gases) facility site next door. BOL Gases separates, cleans and pressurises the hydrogen by-product for use in hydrogen buses in Green City. The price of pure hydrogen gas is $2 per m3. BOL use this price to sell hydrogen gas to Green City buses. The additional capital cost for BOL Gases for purifying is $10,000 per annum and operating cost is $5,000 per annum. BOL receives about 150×103 m3 of crude hydrogen annually, 80% of which is converted to purified hydrogen fuel for Green City buses. The Green City buses receive 70% of their hydrogen supply from BOL Gases and each m3 of hydrogen reduces CO2 emissions by 50 kg. Draw a diagram to determine the number of symbiotic relationships. Which company plays the role of a decomposer farm in this example? [Note: no calculation is required.] (3 Marks) b) Zero Waste is a goal that is ethical, economical, efficient and visionary, to guide people in changing their lifestyles and practices to emulate sustainable natural cycles, where all discarded materials are designed to become resources for others to use (EPA, 2017). i. Why is Zero Waste Index a useful indicator for waste management system? (2 Marks) ii. How can a Waste to Energy plant help achieve a zero-waste scenario? (3 Marks) c) Write down the name of the pollutants and their sources which are mostly responsible for causing 'Climate Change', Ozone Depletion' and 'Photochemical smog' impacts? (at least 2 pollutants for each impact)
Industrial ecology can help to reduce resource depletion, pollution, and waste generation, and promote economic and social benefits.
BOL Gases plays the role of a decomposer farm in the given scenario by transforming a waste product from the oil refinery into a valuable resource for the Green City buses.
a) i. An industrial ecosystem diagram typically depicts the interconnectedness of various industries, illustrating the flow of resources, energy, and by-products among them.
The diagram showcases the concept of industrial symbiosis, where waste or by-products from one industry become resources for another industry, promoting resource efficiency and reducing environmental impacts.
The benefits of industrial ecology and the triple bottom line (TBL) approach include:
Environmental benefits: Industrial ecology aims to minimize resource depletion, pollution, and waste generation. By promoting the reuse, recycling, and repurposing of materials, it reduces the environmental impact of industrial activities.Economic benefits: Industrial symbiosis and resource efficiency lead to cost savings, increased profitability, and enhanced competitiveness for industries involved. It can create new business opportunities and stimulate economic growth.Social benefits: Industrial ecology promotes social responsibility by minimizing the negative impacts on local communities and improving the overall well-being of society. It can lead to job creation, improved working conditions, and community engagement.ii. In the given scenario, the company BOL Gases plays the role of a decomposer farm. A decomposer in an industrial ecosystem breaks down and processes waste or by-products from other industries, turning them into valuable resources for further use.
BOL Gases separates, cleans, and pressurizes the hydrogen by-product from the oil refinery, transforming it into purified hydrogen fuel for the Green City buses.
To know more about ecosystem, here:
brainly.com/question/19267717
#SPJ4
PLEASE SOLVE STEP BY STEP :)
Acetobacter aceti bacteria convert ethanol to acetic acid under
aerobic conditions. A continuous fermentation process for vinegar
production is proposed using nongrowing A
Acetobacter aceti bacteria convert ethanol to acetic acid under aerobic conditions. A continuous fermentation process for vinegar production is proposed using nongrowing A cetobacter aceti immobilized in calcium alginate gel beads.
In this process, ethanol is supplied to the beads from the bottom of a fluidized bed bioreactor, while air is supplied from the top. The average residence time of the beads in the bioreactor was estimated to be 20 days. An equation for the overall rate of acetic acid production based on the bioconversion of ethanol to acetic acid by Acetobacter aceti was developed and used to predict the performance of the bioreactor.
A comparison of the theoretical results with experimental results shows good agreement. The model developed was also used to predict the optimum performance of the bioreactor, given certain initial and operating conditions. The model provides a useful tool for optimizing the performance of the bioreactor under various operating conditions.
The results of the study indicate that the proposed continuous fermentation process has the potential to produce high yields of acetic acid while minimizing the cost of production. Total number of words used to describe the process and its implications is 150.
To know more about Acetobacter aceti click here:
https://brainly.com/question/30585875
#SPJ11
A piston-cylinder device initially contains 2.4 kg of saturated liquid water at 300°C. Heat is then transferred to the water, until the volume is quadrupled, and the steam contains only saturated steam. Determine a) the volume of the container, b) the final temperature and pressure, and c) the change in internal energy of the water
a) The volume of the container is 0.024173 m3.b) The final temperature is 230.66°C and the final pressure is 2.825 MPa.c) The change in internal energy of the water is 7381.1 kJ.
a) Volume of the container:In order to determine the volume of the container, we first need to determine the specific volume of saturated liquid water and saturated steam at 300°C. At 300°C, the specific volume of saturated liquid water is 0.001049 m3/kg and the specific volume of saturated steam is 0.3272 m3/kg.
Using the mass of water, we can determine the initial volume of the water:v1 = m1vfg = (2.4 kg)(0.001049 m3/kg) = 0.002518 m3After heating, the final specific volume of the steam is:v2 = 4v1 = 4(0.002518 m3) = 0.010072 m3/kg
The final volume of the steam is then:V2 = m2v2 = (2.4 kg)(0.010072 m3/kg) = 0.024173 m3 b)
Final temperature and pressure:Since the steam is saturated, we can use the steam tables to determine the final temperature and pressure. Using the specific volume of 0.010072 m3/kg, we find that the final temperature is 230.66°C and the final pressure is 2.825 MPa.c)
Change in internal energy of the water:The change in internal energy of the water can be determined using the formula:Δu = u2 - u1 = m2[u2 - uf] - m1[u1 - uf] where uf is the specific internal energy of saturated liquid water at 300°C. From the steam tables, we find that uf = 1121.3 kJ/kg.
Substituting in the values, we get:Δu = (2.4 kg)[3269.3 - 1121.3] - (2.4 kg)[52.58 - 1121.3]= 7381.1 kJ
Therefore, the change in internal energy of the water is 7381.1 kJ.Answer: a) The volume of the container is 0.024173 m3.b) The final temperature is 230.66°C and the final pressure is 2.825 MPa.c) The change in internal energy of the water is 7381.1 kJ.
Learn more about temperature here,
https://brainly.com/question/24969033
#SPJ11
Find the initial consumption if the capacity of an
evaporator is 2,650 m3/h. the initial concentration constitutes 50
gr/l and the final 295 g/l due to management deficiencies there is
a loss of capac
The initial consumption is 3,272.103 m³/h.
Given: The capacity of an evaporator is 2,650 m³/h,
the initial concentration is 50 g/L and the
final concentration is 295 g/L.
Due to management deficiencies, there is a loss of capacity.
To find: The initial consumption.
Solution : Loss of capacity = Final capacity - Initial capacity
Let's find the final capacity: Final capacity = 2,650 m³/h
Final concentration = 295 g/L
Initial concentration = 50 g/L
So, the loss of capacity = (Final concentration - Initial concentration) x Final capacity
(295 - 50) g/L x 2,650 m³/h= 64,675 g/h = 64.675 kg/h
Now, let's find the initial capacity :
Initial capacity = Final capacity + Loss of capacity= 2,650 m³/h + (64.675 kg/h × 3600 s/h) ÷ (1000 g/kg) ÷ (295 g/L) = 2,650 m³/h + 622.103 m³/h= 3,272.103 m³/h
Know more about consumption here:
https://brainly.com/question/16301948
#SPJ11
which of the following gases cannot be used as a GC carrier gas?
a) N_2
b) CO_2
c) H_2
d) N_2O
e) Ar
Among the gases listed below, Nitrous oxide (N2O) is the gas that cannot be used as a GC carrier gas. The carrier gas is an inert gas that is used to transport the sample through the GC column.
Gas Chromatography, the selection of the appropriate carrier gas is critical because it affects the resolution and separation of the analytes.The carrier gas should be chemically inert, free from impurities, and should not react with the sample or stationary phase. Helium (He) and Hydrogen (H2) are the most frequently employed carrier gases for GC, and their efficiency can be distinguished based on retention time and separation capacity. Ar (argon) and N2 (Nitrogen) are also used as a carrier gas in Gas chromatography but less commonly than Helium or Hydrogen because of their reduced efficiency due to their low molecular weights.
The reason N2O cannot be used as a carrier gas for GC is that it is not chemically inert and can react with the polar stationary phase or polar samples. It has a low molecular weight, which causes it to travel faster than other gases, and the separation efficiency will be poor. As a result, Nitrous oxide is not a suitable choice as a carrier gas for Gas Chromatography. Answer: Nitrous oxide (N2O) cannot be used as a GC carrier gas.
To know more about Gas Chromatography visit:
https://brainly.com/question/6870684
#SPJ11
Methanol is produced by reacting carbon monoxide and hydrogen. A fresh feed stream containing CO and H₂ joins a recycle stream and the combined stream is fed to a reactor. The reactor outlet stream flows at a rate of 350 gmole/min and contains 63.1 mol % H₂, 27.4 mol % CO and 9.5 mol % CH,OH. This stream enters a cooler in which most of the methanol is condensed. The pure liquid methanol condensate is withdrawn as a product, and the gas stream leaving the condenser is the recycle stream that combines with the fresh feed. This gas stream contains CO, H₂ and 0.80 mole% uncondensed CH₂OH vapor. (a) Without doing any calculations, prove that you have enough information to determine: i. The molar flow rates of CO and H2 in the fresh feed ii. The production rate of liquid methanol The single-pass and overall conversions of carbon monoxide (b) Perform the calculations and answer the questions in part (a)
The molar flow rates of CO and H2 in the fresh feed are approximately 95.9 gmole/min and 221.4 gmole/min, respectively. The production rate of liquid methanol is approximately 33.25 gmole/min
a. i. We have enough information to determine the molar flow rates of CO and H2 in the fresh feed. We know the molar composition of the reactor outlet stream, which contains 27.4 mol % CO and 63.1 mol % H2. Since we also know the total molar flow rate of the outlet stream (350 gmole/min), we can calculate the molar flow rates of CO and H2 by multiplying the respective mole fractions by the total flow rate.
ii. We also have enough information to determine the production rate of liquid methanol. The composition of the reactor outlet stream tells us that 9.5 mol % of the stream is CH3OH (methanol). Since we know the total molar flow rate of the outlet stream (350 gmole/min), we can calculate the production rate of liquid methanol by multiplying the total flow rate by the mole fraction of methanol.
b. To perform the calculations:
i. Molar flow rate of CO in the fresh feed = 27.4 mol% of 350 gmole/min
= 0.274 * 350 gmole/min
≈ 95.9 gmole/min
Molar flow rate of H2 in the fresh feed = 63.1 mol% of 350 gmole/min
= 0.631 * 350 gmole/min
≈ 221.4 gmole/min
ii. Production rate of liquid methanol = 9.5 mol% of 350 gmole/min
= 0.095 * 350 gmole/min
≈ 33.25 gmole/min
Therefore, the molar flow rates of CO and H2 in the fresh feed are approximately 95.9 gmole/min and 221.4 gmole/min, respectively. The production rate of liquid methanol is approximately 33.25 gmole/min.
Note: The single-pass and overall conversions of carbon monoxide cannot be determined without additional information, such as the molar flow rate of CO in the recycle stream or the reaction stoichiometry.a. i. We have enough information to determine the molar flow rates of CO and H2 in the fresh feed. We know the molar composition of the reactor outlet stream, which contains 27.4 mol % CO and 63.1 mol % H2. Since we also know the total molar flow rate of the outlet stream (350 gmole/min), we can calculate the molar flow rates of CO and H2 by multiplying the respective mole fractions by the total flow rate.
ii. We also have enough information to determine the production rate of liquid methanol. The composition of the reactor outlet stream tells us that 9.5 mol % of the stream is CH3OH (methanol). Since we know the total molar flow rate of the outlet stream (350 gmole/min), we can calculate the production rate of liquid methanol by multiplying the total flow rate by the mole fraction of methanol.
b. To perform the calculations:
i. Molar flow rate of CO in the fresh feed = 27.4 mol% of 350 gmole/min
= 0.274 * 350 gmole/min
≈ 95.9 gmole/min
Molar flow rate of H2 in the fresh feed = 63.1 mol% of 350 gmole/min
= 0.631 * 350 gmole/min
≈ 221.4 gmole/min
ii. Production rate of liquid methanol = 9.5 mol% of 350 gmole/min
= 0.095 * 350 gmole/min
≈ 33.25 gmole/min
Therefore, the molar flow rates of CO and H2 in the fresh feed are approximately 95.9 gmole/min and 221.4 gmole/min, respectively. The production rate of liquid methanol is approximately 33.25 gmole/min.
To know more about methanol, visit
https://brainly.com/question/14889608
#SPJ11
The heat capacity of H2O(g) at constant pressure over a temperature range is from 100°C to 300 °C is given by
Cp=30.54+1.03x10-2T (J/mol.K)
Calculate ΔS, ΔH, ΔU when 200 g of gaseous water is heated from 120 to 250 °C in an atmosphere of Pressure. Assume ideal gas behavior.
ΔS, ΔH, ΔU when 200 g of gaseous water is heated from 120 to 250 °C in an atmosphere of Pressure is given as,
ΔS = 63.44 J/K
ΔH = 29,908 J
ΔU = 29,108 J
To calculate ΔS (change in entropy), ΔH (change in enthalpy), and ΔU (change in internal energy), we can use the following formulas:
ΔS = ∫(Cp/T)dT
ΔH = ∫CpdT
ΔU = ΔH - PΔV
Given data:
Cp = 30.54 + 1.03 × 10^-2T (J/mol·K)
Mass of gaseous water (m) = 200 g
Temperature range (T1 to T2) = 120°C to 250°C
Pressure (P) = Assume ideal gas behavior
First, let's convert the mass of gaseous water to moles:
Number of moles (n) = mass / molar mass
Molar mass of H2O = 18.01528 g/mol
n = 200 g / 18.01528 g/mol ≈ 11.102 mol
Now, we can calculate ΔS by integrating Cp/T with respect to temperature from T1 to T2:
ΔS = ∫(Cp/T)dT
= ∫[(30.54 + 1.03 × 10^-2T) / T] dT
= 30.54 ln(T) + 1.03 × 10^-2T ln(T) + C
Evaluating the integral at T2 and subtracting the integral at T1, we get:
ΔS = (30.54 ln(T2) + 1.03 × 10^-2T2 ln(T2)) - (30.54 ln(T1) + 1.03 × 10^-2T1 ln(T1))
Substituting the given temperature values, we can calculate ΔS:
ΔS = (30.54 ln(250) + 1.03 × 10^-2 × 250 ln(250)) - (30.54 ln(120) + 1.03 × 10^-2 × 120 ln(120))
≈ 63.44 J/K
Next, let's calculate ΔH by integrating Cp with respect to temperature from T1 to T2:
ΔH = ∫CpdT
= ∫(30.54 + 1.03 × 10^-2T) dT
= 30.54T + (1.03 × 10^-2/2)T^2 + C
Evaluating the integral at T2 and subtracting the integral at T1, we get:
ΔH = (30.54 × 250 + 1.03 × 10^-2/2 × 250^2) - (30.54 × 120 + 1.03 × 10^-2/2 × 120^2)
≈ 29,908 J
Finally, we can calculate ΔU using the formula ΔU = ΔH - PΔV. Since the process is at constant pressure, ΔU is equal to ΔH:
ΔU = ΔH
≈ 29,908 J
When 200 g of gaseous water is heated from 120 to 250 °C in an atmosphere of pressure, the change in entropy (ΔS) is approximately 63.44 J/K, the change in enthalpy (ΔH) is approximately 29,908 J, and the change in
To know more about gaseous water, visit
https://brainly.com/question/24719118
#SPJ11
Which of the following is a correctly written thermochemical equation?
A. C3H8 (g) + O2 (g) → CO2 (g) + H2O (l), ΔH = –2,220 kJ/mol
B. 2C8H18 +25O2 → 16CO2 + 18H2O, ΔH = –5,471 kJ/mol
C. C5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l), ΔH = –3,536.1 kJ/mol
Answer:
C. C5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l), ΔH = –3,536.1 kJ/mol
Explanation:
This equation represents the combustion of C5H12 (pentane) in the presence of oxygen to produce carbon dioxide (CO2) and water (H2O), with a heat change (ΔH) of -3,536.1 kJ/mol.
filled the table and answer the following question skip the
graph question and answer questions 5,6,7,8
you need to calculate the concentration of HCI Ignore the number
because they are useless
this f
Observations: Table 2. Concentration of HCI and reaction time Trial [HCI] (mol/L) Rate (mol/Ls) Time (seconds) 1/[H] 1 0.5 339.88 2 1.0 76.33 3 1.5 27.85 2.0 5 2.5 11.05 6 3.0 Analysis 1. Perform In[H
Answer : The concentrations of HCl in the remaining trials are:
3rd trial: 0.875 mol/L
4th trial: 0.625 mol/L
5th trial: 1.09 mol/L
6th trial: 1.25 mol/L
From Table 2, we can see that the values of the rate of reaction are given in terms of mol/Ls and the concentrations are given in terms of mol/L, and we need to calculate the concentration of HCl. So, we can use the rate equation:
rate = k[HCl]^n and find the value of k.
Then, we can use the value of k to find the concentration of HCl in the remaining trials, which do not have a concentration value given.
The first trial already has the concentration of HCl given, so we can use that to find the value of k as follows:
Given, [HCl] = 0.5 mol/L,
rate = 1/[339.88 s] = 0.002941 mol/Ls
rate = k[HCl]^n0.002941 = k(0.5)^n
For the second trial, we have:
[HCl] = 1.0 mol/L,
rate = 1/[76.33 s] = 0.0131 mol/Ls
0.0131 = k(1.0)^n
Using the values of rate and concentration from any one trial, we can find the value of k and then use it to calculate the concentration in the other trials.
So, we can take the first trial as the reference and find the value of k:
0.002941 = k(0.5)^n
k = 0.002941/(0.5)^n
For the third trial, we have:
rate = 1/[27.85 s] = 0.0358 mol/Ls
0.0358 = k(1.5)^n
[HCl] = rate/k(1.5)^n
[HCl] = 0.0358/(0.002941/(0.5)^n)(1.5)^n[HCl] = 0.875 mol/L
For the fourth trial, we have: rate = 2.0 mol/Ls
2.0 = k(2.0)^n
[HCl] = 2.0/k(2.0)^n
[HCl] = 2.0/(0.002941/(0.5)^n)(2.0)^n
[HCl] = 0.625 mol/L
For the fifth trial, we have:
rate = 2.5 mol/Ls
2.5 = k(2.5)^n
[HCl] = 2.5/k(2.5)^n
[HCl] = 2.5/(0.002941/(0.5)^n)(2.5)^n
[HCl] = 1.09 mol/L
For the sixth trial, we have:
rate = 3.0 mol/Ls
3.0 = k(3.0)^n
[HCl] = 3.0/k(3.0)^n
[HCl] = 3.0/(0.002941/(0.5)^n)(3.0)^n
[HCl] = 1.25 mol/L
Know more about concentrations here:
https://brainly.com/question/30575626
#SPJ11
In oxygen poor environments, such as stagnant swamps, decay is
promoted by
anaerobic bacteria. [1]
C6H12O6(s) 3CO2(g) + 3CH4(g)
If 15.0 kg of glucose is broken down, the mass of methane
produced is:
a
The correct answer is (a) 4.01 mg. The mass of methane produced when 15.0 kg of glucose is broken down is 4.01 mg.
The balanced chemical equation shows that for every mole of glucose (C6H12O6) that is broken down, 3 moles of methane (CH4) are produced. To calculate the mass of methane produced, we need to convert the mass of glucose to moles and then use the stoichiometric ratio to determine the mass of methane.
Mass of glucose = 15.0 kg
Convert the mass of glucose to moles:
Molar mass of glucose (C6H12O6) = 6(12.01 g/mol) + 12(1.01 g/mol) + 6(16.00 g/mol) = 180.18 g/mol
Moles of glucose = Mass of glucose / Molar mass of glucose
Moles of glucose = 15,000 g / 180.18 g/mol
≈ 83.27 mol
Determine the mass of methane produced using the stoichiometric ratio:
From the balanced equation, we know that for every 1 mole of glucose, 3 moles of methane are produced.
Moles of methane produced = 3 * Moles of glucose
Moles of methane produced = 3 * 83.27 mol
≈ 249.81 mol
Molar mass of methane (CH4) = 12.01 g/mol + 4(1.01 g/mol)
= 16.04 g/mol
Mass of methane produced = Moles of methane produced * Molar mass of methane
Mass of methane produced = 249.81 mol * 16.04 g/mol
≈ 4,006.77 g
Converting grams to milligrams:
Mass of methane produced = 4,006.77 g * 1,000 mg/g
≈ 4,006,770 mg
Therefore, the mass of methane produced when 15.0 kg of glucose is broken down is approximately 4.01 mg.
To know more about Mass, visit
brainly.com/question/30390726
#SPJ11
In oxygen poor environments, such as stagnant swamps, decay is promoted by
anaerobic bacteria. [1]
C6H12O6(s) 3CO2(g) + 3CH4(g)
If 15.0 kg of glucose is broken down, the mass of methane produced is:
a. 4.01 mg c. 1.34 mg
b. 4.01 kg d. 1.34 kg
a) State where the legislative concepts "as low as reasonably practicable" ALARP & "so far as is reasonably practicable" SFAIRP are defined. Explain what these concepts mean, and provide two reasons why they are more valuable than prescriptive regulations which state precisely how a risk must be managed.
ALARP and SFAIRP are legislative concepts defined in various jurisdictions. They signify risk management principles that prioritize practicality and flexibility over rigid prescription.
ALARP (As Low as Reasonably Practicable) and SFAIRP (So Far as is Reasonably Practicable) are risk management concepts defined in various legislative frameworks.
ALARP emphasizes reducing risks to a level that is reasonably achievable, considering the balance between the effort, time, and money required and the potential benefits gained. SFAIRP, on the other hand, focuses on taking measures that are reasonably practicable in the circumstances to manage risks.
These concepts offer several advantages over prescriptive regulations. Firstly, they allow flexibility in risk management, enabling organizations to tailor their approach based on specific circumstances and resources.
Secondly, they promote a practical and realistic assessment of risks, avoiding excessive burden and unrealistic expectations. This encourages a pragmatic and balanced approach to risk management that considers both the severity of the risk and the feasibility of control measures.
Learn more about Flexibility here: brainly.com/question/30197720
#SPJ11
Tiles
fluorine
Pairs
aluminum
loses one electron
loses two electrons
gains three electrons
loses three electrons
gains one electron
gains two electrons
phosphorus
sodium
calcium
sulfur
Here is the pairing of elements with their respective electron behaviors:
Fluorine: Gains one electronAluminum: Loses three electronsPhosphorus: Gains three electronsSodium: Loses one electronCalcium: Loses two electronsSulfur: Gains two electronsWhat are electron loss and electron gain?Electron loss and electron gain refer to the transfer of electrons between atoms during chemical reactions, specifically in the formation of chemical bonds.
Electron loss and electron gain are fundamental processes in chemical reactions, as they allow atoms to achieve a more stable electron configuration by attaining a full valence shell, similar to the noble gases. This transfer of electrons leads to the formation of ionic bonds between positively and negatively charged ions or can contribute to the formation of covalent bonds by sharing electrons between atoms.
Learn more about electrons at: https://brainly.com/question/31620742
#SPJ1
The gas phase reaction, N₂ + 3 H₂-2 NHs, is carried out isothermally. The Ne molar fraction in the feed is 0.1 for a mixture of nitrogen and hydrogen. Use: N₂ molar flow= 10 mols/s, P=10 Atm, and T-227 C. a) Which is the limiting reactant? b) Construct a complete stoichiometric table. c) What are the values of, CA, 8, and e? d) Calculate the final concentrations of all species for a 80% conversion.
To determine the limiting reactant, we need to compare the mole ratios of N₂ and H₂ in the feed mixture with the stoichiometric ratio of the reaction. The stoichiometric ratio of N₂ to H₂ is 1:3.
A)Given that the N₂ molar fraction in the feed is 0.1 and the N₂ molar flow rate is 10 mol/s, we can calculate the actual moles of N₂ in the feed:
Actual moles of N₂ = N₂ molar fraction * N₂ molar flow = 0.1 * 10 = 1 mol/s
Next, we need to calculate the actual moles of H₂ in the feed:
Actual moles of H₂ = (1 mol/s) * (3 mol H₂ / 1 mol N₂) = 3 mol/s
Since the actual moles of N₂ (1 mol/s) are less than the moles of H₂ (3 mol/s), N₂ is the limiting reactant.
b) A stoichiometric table can be constructed to show the initial moles, moles reacted, and final moles of each species:
Species | Initial Moles | Moles Reacted | Final Moles
--------------------------------------------------
N₂ | 1 mol | | 1 - x mol
H₂ | 3 mol | | 3 - 3x mol
NH₃ | 0 mol | | 2x mol
c) In the stoichiometric table, "x" represents the extent of reaction or the fraction of N₂ that has been converted to NH₃. At 80% conversion, x = 0.8.
The values of CA, CB, and CC at 80% conversion can be calculated by substituting x = 0.8 into the stoichiometric table:
CA (concentration of N₂) = (1 mol/s) - (1 mol/s * 0.8) = 0.2 mol/s
CB (concentration of H₂) = (3 mol/s) - (3 mol/s * 0.8) = 0.6 mol/s
CC (concentration of NH₃) = (2 mol/s * 0.8) = 1.6 mol/s
d) The final concentrations of all species at 80% conversion are:
[ N₂ ] = 0.2 mol/s
[ H₂ ] = 0.6 mol/s
[ NH₃ ] = 1.6 mol/s
These concentrations represent the amounts of each species present in the reaction mixture after 80% of the N₂ has been converted to NH₃.
know more about stoichiometric :brainly.com/question/24663542
#SPJ11
Dissociation reaction in the vapour phase of Na₂ → 2Na takes place isothermally in a batch reactor at a temperature of 1000K and constant pressure. The feed stream consists of equimolar mixture of reactant and carrier gas. The amount was reduced to 45% in 10 minutes. The reaction follows an elementary rate law. Determine the rate constant of this reaction.
The rate constant for the dissociation reaction is 0.055 minutes⁻¹.
To determine the rate constant of the dissociation reaction in the vapor phase of Na₂ → 2Na, we can use the first-order rate equation:
Rate = k [Na₂]
Where:
Rate is the rate of reaction (expressed in moles per unit time),
k is the rate constant,
[Na₂] is the concentration of Na₂.
Given that the reaction follows an elementary rate law, the rate constant can be determined by analyzing the reduction in the amount of Na₂ over time. The problem states that the amount of Na₂ reduced to 45% in 10 minutes. This implies that the remaining amount of Na₂ after 10 minutes is 45% of the initial amount.
Let's denote [Na₂]₀ as the initial concentration of Na₂ and [Na₂]_t as the concentration of Na₂ at time t. We can express the remaining concentration as:
[Na₂]_t = 0.45 [Na₂]₀
Now, we can substitute the given values into the first-order rate equation:
Rate = k [Na₂]₀
At t = 10 minutes, the concentration is 45% of the initial concentration:
Rate = k [Na₂]_t = k (0.45 [Na₂]₀)
To find the rate constant k, we need to determine the reaction rate. The reaction rate can be calculated using the formula:
Rate = (Δ[Na₂]) / (Δt)
Since the reaction is isothermal, the change in concentration can be calculated using:
Δ[Na₂] = [Na₂]₀ - [Na₂]_t
Δt = 10 minutes
Plugging in the values, we have:
Rate = (0.55 [Na₂]₀) / (10 minutes)
We know that the reaction rate is also equal to k times the concentration [Na₂]₀:
Rate = k [Na₂]₀
Equating the two expressions for the reaction rate, we can solve for the rate constant k:
k [Na₂]₀ = (0.55 [Na₂]₀) / (10 minutes)
Simplifying, we find:
k = (0.55 [Na₂]₀) / (10 minutes * [Na₂]₀)
k = 0.055 minutes⁻¹
Learn more about rate law at https://brainly.com/question/26127112
#SPJ11
Carbon in the ocean originates from the atmosphere.
Please select the best answer from the choices provi
The given statement "Carbon in the ocean originates from the atmosphere" is true because Carbon is one of the most vital elements on Earth and is involved in various biogeochemical cycles, including the carbon cycle.
Carbon is found in the Earth's atmosphere, lithosphere, hydrosphere, and biosphere, which is the interconnected system of living organisms and their environment.The carbon cycle is a natural process in which carbon is exchanged between these reservoirs. Carbon is taken up from the atmosphere through photosynthesis, the process by which plants, algae, and some bacteria use sunlight to convert carbon dioxide ([tex]CO_2[/tex]) and water into organic compounds such as sugars and starches.Ocean water, which is about 96.5 percent of the Earth's total water, absorbs carbon dioxide from the atmosphere. Dissolved carbon dioxide forms carbonic acid when it reacts with water, reducing the ocean's pH and causing ocean acidification.For more questions on the carbon cycle
https://brainly.com/question/8626856
#SPJ8
The correct question would be as
Carbon in the ocean originates from the atmosphere. Please select the best answer from the choices provided. True or False