Which of the following values of the phase constant o for a sinusoidally driven series RLC circuit, would be for a primarily capacitive load circuit? A) -150; B) +35.; C)*/3 rad; D) 1/6 rad. Answer

Answers

Answer 1

The primarily capacitive load circuit would have a phase constant of -150 degrees.

In a sinusoidally driven series RLC circuit, the phase constant determines the phase relationship between the current and voltage. A primarily capacitive load circuit is characterized by a leading current, meaning that the current waveform leads the voltage waveform. This implies that the phase constant should be negative.

Among the given options, the phase constant of -150 degrees corresponds to a primarily capacitive load circuit. A negative phase constant indicates that the current leads the voltage by 150 degrees.

This is characteristic of a circuit dominated by capacitive reactance.The other options (+35 degrees, */3 radians, and 1/6 radians) do not indicate a primarily capacitive load circuit.

Positive values for the phase constant would imply a lagging current, which is indicative of inductive loads. Therefore, the correct choice for a primarily capacitive load circuit is option A) -150 degrees.

Learn more about capacitive here ;

https://brainly.com/question/31871398

#SPJ11


Related Questions

When you run from one room to another, you're moving through:
A. Space
B. Time
C. Both
D. Cannot tell with the information given.

Answers

I think number c is the answer of this question

An energy service company wants to use hot springs to power a heat engine. If the groundwater is at 95 Celsius, estimate the maximum power output if the mass flux is 0.2 kg/s. The ambient temperature is 20 Celsius. Enter the value in kW, use all decimal places and enter only the numerical value.

Answers

The estimated maximum power output of the heat engine using hot springs with a groundwater temperature of 95 °C and a mass flux of 0.2 kg/s is approximately 0.0128 kW.

To estimate the maximum power output of the heat engine using hot springs, we can utilize the concept of the Carnot cycle, which provides an upper limit for the efficiency of a heat engine.

The Carnot efficiency is given by the formula:

η = 1 - (Tc/Th)

Where η is the efficiency, Tc is the temperature of the cold reservoir (ambient temperature), and Th is the temperature of the hot reservoir (groundwater temperature).

Given:

Tc = 20 °C = 293 K

Th = 95 °C = 368 K

The maximum power output can be calculated using the formula:

P = η * Q

Where P is the power output and Q is the heat transfer rate.

The heat transfer rate can be calculated using the formula:

Q = m * Cp * (Th - Tc)

Given:

m = 0.2 kg/s (mass flux)

Cp = specific heat capacity of water ≈ 4.18 kJ/kg°C

Let's calculate the maximum power output:

Tc = 293 K

Th = 368 K

m = 0.2 kg/s

Cp = 4.18 kJ/kg°C = 4.18 J/g°C = 4.18 * 10⁻³ J/kg°C

Q = m * Cp * (Th - Tc)

  = 0.2 kg/s * 4.18 * 10⁻³ J/kg°C * (368 K - 293 K)

  = 0.2 * 4.18 * 10⁻³ * 75

  = 0.0627 kW

η = 1 - (Tc/Th)

  = 1 - (293/368)

  ≈ 0.204

P = η * Q

  = 0.204 * 0.0627 kW

  ≈ 0.0128 kW

Therefore, the estimated maximum power output of the heat engine using hot springs with a groundwater temperature of 95 °C and a mass flux of 0.2 kg/s is approximately 0.0128 kW.

Learn more about power output on:

https://brainly.com/question/20038729

#SPJ11

This parcel of air that has been lifted to the LCL is raised further until it reaches a temperature of 50 degrees F. What is the air parcel’s SSH?
6 gm/kg
8 gm/kg
14 gm/ kg
18 gm/kg
24 gm/kg
36 gm/kg
33%
58%
77%
100%

Answers

The answer to the question is 100%. When an air parcel is lifted to its saturated adiabatic lapse rate (SALR), which is equal to the environmental lapse rate (ELR) if it is higher than the dry adiabatic lapse rate (DALR), the air parcel reaches its saturation point.

At this point, the temperature of the parcel is the same as its dew point temperature, indicating that it is fully saturated with moisture. Therefore, when the parcel reaches its saturation point, its Relative Humidity (RH) is 100%.

In atmospheric thermodynamics, the saturated adiabatic lapse rate (SALR) represents the rate of temperature change experienced by a rising air parcel when water vapor condenses into liquid or solid. The SALR may vary slightly depending on pressure and temperature conditions, typically ranging between 4 and 9 °C/km (2.2 and 4.9 °F/1000 ft).

When the dew point temperature is reached during the parcel's ascent, the air becomes saturated, indicating that it contains the maximum amount of moisture it can hold at its current temperature and pressure. At the saturation point, the relative humidity is 100%, signifying that the air is holding as much water vapor as it can at that specific temperature and pressure.

Therefore, in summary, the correct answer is 100%, as the relative humidity reaches its maximum value when an air parcel reaches its saturation point.

Learn more about environmental

https://brainly.com/question/21976584

#SPJ11

Determine the velocity required for a moving object 5.00×10 3
m above the surface of Mars to escape from Mars's gravity. The mass of Mars is 6.42×10 23
kg, and its radius is 3.40×10 3
m.

Answers

The velocity required for a moving object 5.00 × 10^3 m above the surface of Mars to escape from Mars's gravity is approximately 5.03 × 10^3 m/s.

To determine the velocity required for an object to escape from Mars's gravity, we can use the concept of gravitational potential energy.

The gravitational potential energy (PE) of an object near the surface of Mars can be given by the equation:

PE = -GMm / r

where G is the gravitational constant (approximately 6.67430 × 10^-11 m^3 kg^-1 s^-2), M is the mass of Mars (6.42 × 10^23 kg), m is the mass of the object, and r is the distance between the center of Mars and the object.

At the surface of Mars, the gravitational potential energy can be considered zero, and as the object moves away from Mars's surface, the potential energy becomes positive.

To escape from Mars's gravity, the object's total energy (including kinetic energy) must be greater than zero. The kinetic energy (KE) of the object can be given by:

KE = (1/2)mv^2

where v is the velocity of the object.

At the escape point, the total energy (TE) of the object is the sum of its kinetic and potential energies:

TE = KE + PE

Since the object escapes Mars's gravity, its total energy at the escape point is zero:

0 = KE + PE

Rearranging the equation, we can solve for the velocity:

KE = -PE

(1/2)mv^2 = GMm / r

Simplifying the equation:

v^2 = (2GM) / r

Taking the square root of both sides:

v = √[(2GM) / r]

Now we can substitute the values into the equation:

v = √[(2 * 6.67430 × 10^-11 * 6.42 × 10^23) / (3.40 × 10^3 + 5.00 × 10^3)]

Calculating the value:

v ≈ 5.03 × 10^3 m/s

Therefore, the velocity required for a moving object 5.00 × 10^3 m above the surface of Mars to escape from Mars's gravity is approximately 5.03 × 10^3 m/s.

Learn more about velocity

https://brainly.com/question/15099477

#SPJ11

An object is placed 60 em from a converging ('convex') lens with a focal length of magnitude 10 cm. What is is the magnification? A) -0.10 B) 0.10 C) 0.15 D) 0.20 E) -0.20

Answers

An object is placed 60 em from a converging ('convex') lens with a focal length of magnitude 10 cm.  The magnification is -0.20.So option E is correct.

To find the magnification of an object placed in front of a converging lens, we can use the lens formula:

1/f = 1/do - 1/di

where f is the focal length of the lens, do is the object distance (distance of the object from the lens), and di is the image distance (distance of the image from the lens).

In this case, the object distance (do) is given as 60 cm, and the focal length (f) is 10 cm.

Substituting the given values into the lens formula:

1/10 = 1/60 - 1/di

Simplifying the equation:

1/10 = (60 - di)/ (60 × di)

Cross-multiplying:

di = (60 × di) / 10 - (60 ×di) / 60

di = 6di - di

di = 5di

di = do/5

The magnification (m) is given by:

m = -di / do

Substituting the values:

m = -(do/5) / do

m = -1/5

Therefore, the magnification is -0.20. Therefore option E is correct.

To learn more about magnification visit: https://brainly.com/question/131206

#SPJ11

An incompressible fluid flows steadily in the entrance region of a two-dimensional channel of height 2h = 100mm and width w = 25 mm. The flow rate is Q = 0.025m ^ 3 / s Find the uniform velocity U_{1} at the entrance. The velocity dis- tribution at a section downstream is
u u max =1-( y h )^ 2
Evaluate the maximum velocity at the downstream section. Calculate the pressure drop that would exist in the channel if viscous friction at the walls could be neglected..

Answers

U_1 = 0.2 m/s; u_max = 1 m/s; Pressure drop = 2.45 x 10^3 Pa.

Given,Width of the channel, w = 25 mmHeight of the channel, 2h = 100 mmQ = 0.025 m^3/sAt the entrance, we need to find the uniform velocity U_1. We know that,Q = U_1 x w x 2hQ = U_1 x 25 x 100/1000 = 0.025m^3/sU_1 = 0.1/25 = 0.004 m/sMaximum velocity occurs at y = 0.u_max = 1-( y/h )^2at y = 0, u_max = 1 m/s.

The velocity distribution is as follows:Now, we need to calculate the pressure drop that would exist in the channel if viscous friction at the walls could be neglected.We know that in case of ideal flow i.e. in the absence of frictional forces, Bernoulli’s equation holds good.P1 + (1/2) ρ u1^2 = P2 + (1/2) ρ u2^2We can assume the pressure at entrance as atmospheric pressure. Therefore, P1 = PatmThe velocity at the entrance is U_1 = 0.1 m/sThe velocity at the section where maximum velocity occurs is u_max = 1 m/sLet's calculate the pressure drop.ρ = density of fluid = 1000 kg/m^3At the entrance:P1 + (1/2) ρ U_1^2 = P2 + (1/2) ρ u_max^2P2 - P1 = (1/2) ρ (u_max^2 - U_1^2)P2 - P1 = (1/2) x 1000 x (1^2 - 0.004^2)Pressure drop = 2.45 x 10^3 PaThus, the pressure drop that would exist in the channel if viscous friction at the walls could be neglected is 2.45 x 10^3 Pa.

To know more about velocity visit:

https://brainly.com/question/16201327

#SPJ11

A proton and anti-proton are both moving at 0.995c. An electron and positron are both moving at 0.9995c a. What is the energy of the photon they create when they annihilate (please use units of MeV or GeV, whichever is most convenient). b. What is the mass (in kg) of the large particle this photon could pair produce? d. In Hydrogen, a photon of 93.076nm can move an electron from the ground state to what excited state? e. In Hydrogen, a photon of 383.65nm can move an electron from the second excited state to what excited state?

Answers

The mass of the large particle that can be created from the photon is approximately 1.66054 × 10^-27 kg. Using this information, the energy of the photon is 2.044MeV, the mass of the large particle that the photon could produce is 2.27× 10⁻³⁰ kg and for sub questions d and e, first and third excited states respectively.

a. Energy of the photon created by the proton and anti-proton annihilation: Given: Velocity of proton and anti-proton, v = 0.995cVelocity of electron and positron, v = 0.9995cEnergy equivalent to mass of a particle, E = mc²where,c = speed of light = 2.998 × 10⁸ m/sm = mass of proton = 1.6726219 × 10⁻²⁷ kg. Energy of the photon created by the proton and anti-proton annihilation is given by the formula: E = 2Ee = 2 (0.511 MeV) = 1.022 MeV (1 MeV = 10⁶ eV)Energy of the photon created by the electron and positron annihilation is given by the formula: E = 2Ee = 2 (0.511 MeV) = 1.022 MeV. Total energy of the two photons produced when the two pairs meet each other: Total energy = Energy due to proton-antiproton + Energy due to electron-positron = 1.022 MeV + 1.022 MeV = 2.044 MeV. Answer: Energy of the photon created is 2.044 MeV

b. Mass of the large particle this photon could pair produce: Given: Energy, E = 2.044 MeV = 2.044 × 10⁶ eV (1 MeV = 10⁶ eV). Using the formula E = mc²,m = E/c² = (2.044 × 10⁶ eV)/(9 × 10¹⁶ m²/s⁴) = 2.27 × 10⁻³⁰ kg. Answer: The mass of the large particle this photon could pair produce is 2.27 × 10⁻³⁰ kg.

d. In Hydrogen, a photon of 93.076nm can move an electron from the ground state to what excited state? The energy of the photon of 93.076nm is equal to the energy required to move the electron from the ground state to the first excited state. Therefore, the excited state of the hydrogen atom is the first excited state. The excited state of the hydrogen atom is the first excited state.

e. In Hydrogen, a photon of 383.65nm can move an electron from the second excited state to what excited state? The energy of the photon of 383.65nm is equal to the energy difference between the second excited state and the third excited state. Therefore, the excited state of the hydrogen atom is the third excited state. The excited state of the hydrogen atom is the third excited state.

Learn more about the excited state:

https://brainly.com/question/15829158

#SPJ11

A ball is launched with a horizontal velocity of 10.0 m/s from a 20.0−m cliff. How long will it be in the air? How far will it land from the base of the cliff?

Answers

The ball will land 20.2 m from the base of the cliff.

The time it takes for a ball launched horizontally from a 20 m cliff with a horizontal velocity of 10.0 m/s to hit the ground can be determined using the kinematic equation for vertical displacement given by `y=1/2*g*t^2` , where y is the vertical displacement or height of the cliff, g is the acceleration due to gravity and t is the time taken. The acceleration due to gravity is taken as -9.8 m/s^2 because it acts downwards.Using the formula,`y = 1/2*g*t^2 `=> t = √(2y/g) => t = √(2*20/9.8) => t = √4.08 => t = 2.02 sThe ball will take 2.02 seconds to reach the ground.The horizontal distance traveled by the ball can be calculated by multiplying the horizontal velocity with the time taken. Hence,Distance = velocity × time= 10.0 m/s × 2.02 s= 20.2 m. Therefore, the ball will land 20.2 m from the base of the cliff.

To know more about cliff. visit:

https://brainly.com/question/20343218

#SPJ11

Trie or Fafse: When an object is moving slower than 1% of the speed of light, Elnstein's Theory of Relativity would be the best tool to use to analyze the motion of the object. True False

Answers

The given statement is false and special relativity is not the best tool to use to analyze the motion of the object if the object is moving slower than 1% of the speed of light. Hence, this statement is False.

Trie or False: When an object is moving slower than 1% of the speed of light, Elnstein's Theory of Relativity would be the best tool to use to analyze the motion of the object. The given statement is FALSE. This statement contradicts Einstein's theory of relativity.The theory of relativity is divided into two parts, special relativity and general relativity.

Both theories work best in different situations. Special relativity explains the relationship between space and time, whereas general relativity describes the relationship between matter, gravity, and spacetime.In general relativity, when an object moves at a high speed or in a strong gravitational field, its motion can be analyzed accurately using this theory.

At low speeds or without a strong gravitational field, general relativity is not required to analyze the motion of an object.Einstein's theory of special relativity is more accurate and reliable than classical mechanics to analyze the motion of an object moving close to the speed of light, but it is not required to analyze the motion of an object moving slower than 1% of the speed of light.

Hence the given statement is false and special relativity is not the best tool to use to analyze the motion of the object if the object is moving slower than 1% of the speed of light. Hence, this statement is False.

Learn more about gravitational field here,

https://brainly.com/question/28437652

#SPJ11

Suppose you have resistors 2.0kΩ,3.5kΩ, and 4.5kR and a 100 V power supply. What is the ratio of the total power deliverod to the rosietors if thiy are connected in paraleil to the total power dellyned in they are conriected in saries?

Answers

The ratio of the total power delivered in parallel to the total power delivered in series is approximately 8.49W/1W ≈ 2.64:1.

The ratio of the total power delivered to the resistors when connected in parallel to the total power delivered when connected in series is approximately 2.64:1. When the resistors are connected in parallel, the total resistance is calculated as the reciprocal of the sum of the reciprocals of individual resistances. In this case, the total resistance would be approximately 1.176kΩ. Using Ohm's Law (P = V^2/R), the total power delivered in parallel can be calculated as P = (100^2)/(1.176k) ≈ 8.49W.

When the resistors are connected in series, the total resistance is the sum of individual resistances. In this case, the total resistance would be 10kΩ. Using Ohm's Law again, the total power delivered in series can be calculated as P = (100^2)/(10k) = 1W.

Learn more about Ohm's Law:

https://brainly.com/question/1247379

#SPJ11

Find Tx (kinetic energy operator)
Tx = -h²δ² 2mδx²

Answers

The operator is Tx = -h²/2m * d²/dx², is called the kinetic energy operator.

The kinetic energy operator, often denoted as T or K, is a mathematical operator in quantum mechanics that represents the kinetic energy of a particle. In the case of one-dimensional motion, the kinetic energy operator is given by:

T = -((ħ^2)/(2m)) * d^2/dx^2

where:

- T is the kinetic energy operator

- ħ (pronounced "h-bar") is the reduced Planck's constant (h-bar = h / (2π))

- m is the mass of the particle

- d^2/dx^2 is the second derivative with respect to the position coordinate x

Please note that this expression assumes the particle is free and does not include any potential energy terms.

Learn more about kinetic energy https://brainly.com/question/8101588

#SPJ11

A 1.00 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 32.0 cm/s . What are
The amplitude of the subsequent oscillations?
The block's speed at the point where x= 0.550 A?

Answers

The amplitude of the subsequent oscillations is 0.0754 m and the block's speed at the point where x = 0.550A is approximately 2.26 m/s.

To find the amplitude of the subsequent oscillations, we need to consider the conservation of mechanical energy.

When the block is hit by the hammer, it gains kinetic energy.

This kinetic energy will be converted into potential energy as the block oscillates back and forth.

The total mechanical energy of the system is given by the sum of kinetic energy and potential energy:

E = K + U

Initially, the block is at rest, so the initial kinetic energy is zero. The potential energy at the equilibrium position (where x = 0) is also zero.

Therefore, the initial total mechanical energy is zero.

When the block is displaced from the equilibrium position, it gains potential energy due to the spring's deformation.

At the maximum displacement (amplitude), all the kinetic energy is converted into potential energy.

So, at the amplitude, the total mechanical energy is equal to the potential energy:

E_amplitude = U_amplitude

The potential energy of a spring is given by the equation:

U = (1/2)k[tex]x^2[/tex]

where k is the spring constant and x is the displacement from the equilibrium position.

Since the block is at rest when it is hit by the hammer, the initial kinetic energy is zero.

Therefore, the total mechanical energy after the hit is equal to the potential energy at the amplitude:

E_amplitude = U_amplitude = (1/2)k[tex]x^2[/tex]

Given that the mass of the block is 1.00 kg and the spring constant is 18.0 N/m, we can substitute these values into the equation:

E_amplitude = (1/2)(18.0 N/m)([tex]x^2[/tex])

To find the amplitude, we need to solve for x.

We know that the initial speed of the block after it is hit is 32.0 cm/s (or 0.32 m/s).

The kinetic energy at this point is given by:

K = (1/2)m[tex]v^2[/tex]

Substituting the values, we have:

(1/2)(1.00 kg)(0.32 m/s)^2 = (1/2)(18.0 N/m)([tex]x^2[/tex])

Simplifying and solving for x, we get:

0.0512 J = 9.0 N/m * [tex]x^2[/tex]

[tex]x^2[/tex] = 0.005688

x = 0.0754 m

Therefore, the amplitude of the subsequent oscillations is 0.0754 m.

To find the block's speed at the point where x = 0.550A, we can use the conservation of mechanical energy.

At any point during the oscillation, the total mechanical energy remains constant.

E = K + U

Initially, the total mechanical energy is zero.

At the point where x = 0.550A, all the potential energy is converted into kinetic energy:

E_point = K_point = (1/2)k(0.550A)^2

Substituting the values, we have:

E_point = (1/2)(18.0 N/m)(0.550A)^2

Simplifying, we get:

E_point = 2.5485 Nm

The kinetic energy at this point is equal to the total mechanical energy:

K_point = E_point = 2.5485 J

To find the speed, we can use the equation for kinetic energy:

K = (1/2)m[tex]v^2[/tex]

Substituting the values, we have:

2.5485 J = (1/2)(1.00 kg)[tex]v^2[/tex]

Simplifying, we get:

[tex]v^2[/tex]2 = 5.097

v = √(5.097) ≈ 2.26 m/s

Therefore, the block's speed at the point where x = 0.550A is approximately 2.26 m/s.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

A music dock transfers 46J of energy into sound waves every second. It uses a 230V mains supply. Work out the current through the dock.

Answers

To work out the current through the music dock, we can use the formula:

Power (P) = Voltage (V) × Current (I)

Given that the power consumed by the dock is 46 J/s (watts) and the voltage of the mains supply is 230V, we can rearrange the formula to solve for the current:

Current (I) = Power (P) / Voltage (V)

Substituting the given values:

Current (I) = 46 J/s / 230V

Calculating the result:

Current (I) = 0.2 A

Therefore, the current through the music dock is 0.2 Amperes.

In a football stadium, an announcer call plays over a loud speaker. The sound wave has a frequency of 192 Hz. If it take 3.13 seconds to reach a fan that is seated 89.68 m away from the loud speaker, find the speed of the sound wave? Answer to the hundreths place or two decimal places.

Answers

The speed of the sound wave in the football stadium is approximately 288.43 m/s.

To find the speed of the sound wave, we can use the formula: speed = distance / time. Given that the distance from the loud speaker to the fan is 89.68 m and it takes 3.13 seconds for the sound wave to reach the fan, we can substitute these values into the formula. Therefore, the speed of the sound wave is 89.68 m / 3.13 s = 28.64 m/s.

However, this calculation only provides the speed of the sound wave over that specific distance. To obtain the actual speed of the sound wave, we need to consider the frequency of the wave.

The formula for the speed of a sound wave is speed = frequency × wavelength. Since we know the frequency of the sound wave is 192 Hz, we need to calculate the wavelength.

The wavelength of a sound wave can be determined using the formula wavelength = speed / frequency. Plugging in the previously calculated speed (28.64 m/s) and the frequency (192 Hz), we can find the wavelength: wavelength = 28.64 m/s / 192 Hz = 0.1492 m.

Now, we can use the calculated wavelength to find the actual speed of the sound wave using the formula speed = frequency × wavelength. With the frequency of 192 Hz and the wavelength of 0.1492 m, the speed of the sound wave is 192 Hz × 0.1492 m = 28.71 m/s.

Therefore, the speed of the sound wave in the football stadium is approximately 28.71 m/s, rounded to two decimal places, or 288.43 m/s.

Learn more about speed here ;

brainly.com/question/2141628

#SPJ11

Momentum is conserved for a system of objects when which of the following statements is true?
-The sum of the momentum vectors of the individual objects equals zero.
-The forces external to the system are zero and the internal forces sum to zero, due to Newton’s Third Law.
-The internal forces cancel out due to Newton’s Third Law and forces external to the system are conservative.
-Both the internal and external forces are conservative.

Answers

The following statement is true. Momentum is conserved for a system of objects when the internal forces cancel out due to Newton's Third Law, and the forces external to the system are zero or conservative.

In order for momentum to be conserved in a system of objects, two conditions must be satisfied. First, the internal forces within the system must cancel out due to Newton's Third Law. This means that for every action force, there is an equal and opposite reaction force within the system, resulting in a net force of zero on the system as a whole.

Second, the external forces acting on the system must either be zero or conservative. If the external forces are zero, there is no external influence on the system's momentum. If the external forces are conservative, they can be accounted for in terms of potential energy, and their effects on momentum can be accounted for through the principle of conservation of mechanical energy.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ11

A bar is free to fall while completing the circuit. The resistor has resistance 38.8 Ω. The rod has a length of 1.42 m. The magnetic field is out of the page a magnitude of 0.10 T. The bar is falling with a speed of 95.77 m/s, and the speed is now constant because the force of gravity and the electromotive force are balanced. What is the mass of the bar?

Answers

From the equation of motion, the gravitational force acting on the bar is equal to its mass times the acceleration due to gravity.So, the mass of the bar is given as:m = F/g= 0.4038 N/9.81 m/s²= 0.0411 kgHence, the mass of the bar is 0.0411 kg.

A bar of mass m is free to fall while completing the circuit. The resistor has resistance 38.8 Ω. The rod has a length of 1.42 m. The magnetic field is out of the page at a magnitude of 0.10 T. The bar is falling with a speed of 95.77 m/s, and the speed is now constant because the force of gravity and the electromotive force are balanced.In order to determine the mass of the bar,

we need to make use of the following expression:emf = Blvwhere,emf = Electromotive forceB = Magnetic fieldl = Length of the conductorv = Velocity of the conductorNow, the electromotive force induced is given as:emf = Blv= 0.10 T × 1.42 m × 95.77 m/s= 1.365 VThe voltage drop across the resistor is equal to the electromotive force, therefore,

the current through the circuit is given by:V = IR38.8 Ω = I × 1.365 VI = 28.32 AThe force acting on the conductor is given by:F = BIl= 0.10 T × 1.42 m × 28.32 A= 0.4038 N

From the equation of motion, the gravitational force acting on the bar is equal to its mass times the acceleration due to gravity.So, the mass of the bar is given as:m = F/g= 0.4038 N/9.81 m/s²= 0.0411 kgHence, the mass of the bar is 0.0411 kg.

to know more about gravitational

https://brainly.com/question/23586829

#SPJ11

Determining the value of an unknown resistance using Wheatstone Bridge and calculating the stiffness of a given wire are among the objectives of this experiment. Select one: True o False

Answers

The statement "Determining the value of an unknown resistance using Wheatstone Bridge and calculating the stiffness of a given wire are among the objectives of this experiment" is true because the Wheatstone bridge is a circuit used to measure the value of an unknown resistance. It is a very accurate method of measuring resistance, and is often used in scientific and industrial applications.

Here are some of the objectives of the Wheatstone bridge experiment:

   To determine the value of an unknown resistance using a Wheatstone bridge.    To calculate the stiffness of a given wire from its resistance.    To investigate the factors that affect the resistance of a wire, such as its length, cross-sectional area, and material.    To learn how to use a Wheatstone bridge to measure resistance.

The Wheatstone bridge is a versatile and powerful tool that can be used to measure resistance, calculate stiffness, and investigate the factors that affect the resistance of a wire. It is a valuable tool for scientists and engineers in a variety of field.

To learn more about resistance visit: https://brainly.com/question/25997303

#SPJ11

Two life preservers have identical volumes, but one is filled with styrofoam while the other is filled with small lead pellets. If you fell overboard into deep water, which would provide you the greatest buoyant force? same on each as long as their volumes are the same styrofoam filled life preserver O not enough information given lead filled life preserver

Answers

Two life preservers have identical volumes, but one is filled with styrofoam while the other is filled with small lead pellets. the buoyant force provided by both the styrofoam-filled and lead-filled life preservers would be the same,

The buoyant force experienced by an object immersed in a fluid depends on the volume of the object and the density of the fluid. In this case, the two life preservers have identical volumes, which means they displace the same volume of water when submerged.nThe buoyant force experienced by an object is equal to the weight of the fluid displaced by the object. The weight of the fluid is directly proportional to its density.  Since the life preservers have the same volume, the buoyant force they experience will be the same as long as the density of the fluid (water, in this case) remains constant.

Therefore, the buoyant force provided by both the styrofoam-filled and lead-filled life preservers would be the same, assuming their volumes are identical. The choice of material (styrofoam or lead pellets) inside the life preserver does not affect the buoyant force as long as the volumes of the preservers are the same. The buoyant force solely depends on the volume of the object and the density of the fluid.

Learn more about buoyant force here:

https://brainly.com/question/21990136

#SPJ11

Galaxies in the universe generally have redshifted spectra. A student has read about a cluster galaxy with a blueshifted spectrum. They think it was a galaxy in either the Virgo cluster (at a distance of 20 Mpc from us) or in the Coma Cluster (at a distance of 90 Mpc from us). Estimate whether a blueshifted galaxy in the Virgo or Coma cluster is plausible.

Answers

The presence of a blueshifted spectrum in a galaxy within the Virgo or Coma cluster is examined to determine its plausibility.

In general, galaxies in the universe exhibit redshifted spectra, indicating that they are moving away from us due to the universe's expansion. However, the student has come across a cluster galaxy with a blueshifted spectrum, which seems unusual. We can consider the distances of the Virgo and Coma clusters from us to determine the plausibility of such a scenario.

The Virgo cluster is located at a distance of 20 Mpc (megaparsecs) from us, while the Coma Cluster is significantly farther away, at a distance of 90 Mpc. The observed blueshift indicates that the galaxy is moving towards us. Given that the blueshift is contrary to the general redshift trend, it suggests that the galaxy is relatively close to us.

Considering the distances involved, a blueshifted galaxy in the Virgo cluster (at 20 Mpc) is more plausible than one in the Coma Cluster (at 90 Mpc). The closer proximity of the Virgo cluster makes it more likely for a galaxy within it to exhibit a blue-shifted spectrum.

Learn more about redshifted here:

https://brainly.com/question/30257423

#SPJ11

a ball rolls of a table that 1.2 meter above the ground.
how much time does it take for the ball to hit the ground
how far from the table does the ball hit the ground

Answers

The ball will hit the ground 1.2 m away from the table. Therefore, the ball will hit the ground in 0.49 s and 1.2 m away from the table.

Given that the height of the table above the ground is 1.2 m, we need to find out how much time it will take for the ball to hit the ground. We can use the formula for time t, given the height h of the table and acceleration due to gravity g.t = sqrt(2h/g)t = sqrt(2 × 1.2/9.8) = 0.49 s.

Therefore, the ball will hit the ground in 0.49 s.Using the formula for the distance d traveled by an object under constant acceleration, we can find out how far from the table the ball will hit the ground.d = ut + 1/2 at², where u is the initial velocity, which is 0 in this case, and a is the acceleration due to gravity, which is 9.8 m/s²d = 0 × 0.49 + 1/2 × 9.8 × 0.49²d = 1.2 mTherefore, the ball will hit the ground 1.2 m away from the table. Therefore, the ball will hit the ground in 0.49 s and 1.2 m away from the table.

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11

c) What is the work done in the process between b and c? explain

Answers

To determine the work done in the process between points B and C, additional information or context is necessary to provide a specific answer.

The work done in a process between points B and C depends on the nature of the process and the specific system involved. In physics, work is defined as the transfer of energy due to the application of a force over a displacement. To calculate work, you need to know both the force applied and the displacement undergone by the system.

In the absence of further information, it is not possible to determine the work done between points B and C. Additional details are required, such as the type of system (e.g., mechanical, thermodynamic) and the specific forces acting on the system during the process. For example, in a mechanical system, work can be calculated using the equation W = F * d * cos(theta), where F is the applied force, d is the displacement, and theta is the angle between the force and displacement vectors.

To accurately determine the work done between points B and C, it is essential to have specific information about the system, the forces involved, and the displacement undergone. Only with this additional information can the work done in the process be calculated using the appropriate equations and principles of physics.

Learn more about thermodynamic here:

https://brainly.com/question/32217565

#SPJ11

A particular older car has a 5.95-V electrical system. (a) What is the hot resistance of a 31.0-W headlight in such a car? Ω (b) What current flows through it? A

Answers

(a) the hot resistance of the headlight is approximately 11.37 Ω. (b) The current flowing through the headlight is approximately 0.523 A.      

To calculate the hot resistance of the headlight, we can use Ohm's Law, which states that the resistance (R) is equal to the voltage (V) divided by the current (I).

(a) The hot resistance (R) of the headlight can be calculated using the formula:

R = V^2 / P

where V is the voltage and P is the power.

Given:

V = 5.95 V

P = 31.0 W

Plugging in the values, we have:

R = (5.95 V)^2 / 31.0 W

R = 35.2025 V^2 / 31.0 W

R ≈ 11.37 Ω

So, the hot resistance of the headlight is approximately 11.37 Ω.

(b) To calculate the current (I) flowing through the headlight, we can use Ohm's Law:

I = V / R

Given:

V = 5.95 V

R = 11.37 Ω

Plugging in the values, we have:    

I = 5.95 V / 11.37 Ω

I ≈ 0.523 A

So, the current flowing through the headlight is approximately 0.523 A.

Learn more about hot resistance

https://brainly.com/question/29174894

#SPJ11

3 1.2.A 4052 40.2 12 V V 5 Fig. 7.20 Calculate the total energy developed in 5 minutes by the system above. A 120 J B D 740 J E 144 J 144 J C 240 J 8640 J (SSCE)​

Answers

The total energy developed by the system in 5 minutes is 18,000 joules (J).

To calculate the total energy developed by the system in 5 minutes, we can use the formula:

Energy = Power × Time

The power can be calculated using the formula:

Power = Voltage × Current

Given that the voltage is 12 V and the current is 5 A, we can substitute these values into the formula:

Power = 12 V × 5 A

Power = 60 W

Now, we can calculate the total energy by multiplying the power by the time, which is 5 minutes:

Energy = 60 W × 5 minutes

To ensure consistency in units, we need to convert minutes to seconds since power is typically expressed in watts and time in seconds.

There are 60 seconds in a minute, so we multiply the time by 60:

Energy = 60 W × 5 minutes × 60 seconds/minute

Energy = 60 W × 300 seconds

Energy = 18,000 J

Therefore, the total energy developed by the system in 5 minutes is 18,000 joules (J).

For more questions on energy

https://brainly.com/question/30403434

#SPJ8

The probable question may be:

Calculate the total energy developed by the system in 5 minutes, given the following information voltage = 12 V and current = 5 A.

When a bar magnet is placed static near a loop of wire, a magnetic field will the loop. A. moves B. induce C. change D. penetrates A device that converts mechanical energy into electrical energy is A. Motor B. Generator C. Loudspeaker D. Galvanometer

Answers

When a bar magnet is placed near a loop of wire, it induces a magnetic field in the loop. A device that converts mechanical energy into electrical energy is a generator.

When a bar magnet is placed near a loop of wire, it induces a magnetic field in the loop. This phenomenon is known as electromagnetic induction. As the magnetic field of the bar magnet changes, it creates a changing magnetic flux through the loop, which in turn induces an electromotive force (EMF) and an electric current in the wire. This process is the basis of how generators and other electrical devices work. Therefore, the correct answer is B. induce.

A device that converts mechanical energy into electrical energy is a generator. A generator utilizes the principle of electromagnetic induction to convert mechanical energy, such as rotational motion, into electrical energy. It consists of a coil of wire that rotates within a magnetic field. As the coil rotates, the magnetic field induces a changing magnetic flux through the coil, which generates an EMF and produces an electric current. This electric current can be used to power electrical devices or charge batteries. Therefore, the correct answer is B. Generator.

Learn more about magnetic fields here:

https://brainly.com/question/19542022

#SPJ11

An RLC circuit is driven by an AC generator. The voltage of the generator is V RMS

=97.9 V. The figure shows the RMS current through the circuit as a function of the driving frequency. What is the resonant frequency of this circuit? Please, notice that the resonance curve passes through a grid intersection point. 4.00×10 2
Hz If the indurtance of the inductor is L=273.0mH, then what is the capacitance C of the capacitor? Tries 11/12 Previous Tries What is the ohmic resistance of the RLC circuit? 122.4 ohm Previous Tries What is the power of the circuit when the circuit is at resonance?

Answers

Therefore, the power of the circuit when the circuit is at resonance is 77.8 W.

An RLC circuit is driven by an AC generator. The voltage of the generator is V_RMS = 97.9 V. The figure shows the RMS current through the circuit as a function of the driving frequency. The resonant frequency of this circuit is given by 4.00×10^2 Hz.

The inductance of the inductor is L = 273.0 mH.The capacitive reactance X_c of the capacitor in the RLC circuit can be calculated using the formula:$$X_C=\frac{1}{2\pi fC}$$where f is the frequency of the AC voltage source and C is the capacitance of the capacitor.

The resonant frequency of the circuit occurs when the capacitive and inductive reactances are equal and opposite. Therefore,X_L = X_CwhereX_L = 2πfL and X_C = 1/2πfCTherefore,2πfL = 1/2πfCwhere f is the resonant frequency of the circuit.Substituting the values of f and L, we get:2π × 4.00×10^2 × 273.0×10^-3 = 1/2π × CTherefore, C = 1/(2π × 4.00×10^2 × 273.0×10^-3) = 0.296 × 10^-6 FThe ohmic resistance of the RLC circuit is 122.4 ohm.

The power of the circuit when the circuit is at resonance can be calculated using the formula:P = V_RMS^2/Rwhere R is the resistance of the circuit.Substituting the values of V_RMS and R, we get:P = (97.9)^2/122.4 = 77.8 W

Therefore, the power of the circuit when the circuit is at resonance is 77.8 W.

to know more about frequency

https://brainly.com/question/254161

#SPJ11

(6%) Problem 10: The unified atomic mass unit, denoted, is defined to be 1 u - 16605 * 10 9 kg. It can be used as an approximation for the average mans of a nucleon in a nucleus, taking the binding energy into account her.com LAS AC37707 In adare with one copy this momento ay tumatty Sort How much energy, in megaelectron volts, would you obtain if you completely converted a nucleus of 19 nucleous into free energy? Grade Summary E= Deductions Pool 100

Answers

The unified atomic mass unit, denoted u, is defined to be 1u=1.6605×10^-27 Kg . It can be used as an approximation for the average mass of a nucleon in a nucleus, taking the binding energy into account. if you completely convert a nucleus of 14 nucleons into free energy, you would obtain approximately 111.36 million electron volts (MeV) of energy.

To calculate the energy released when completely converting a nucleus of 14 nucleons into free energy, we need to use the Einstein's mass-energy equivalence equation, E = mc², where E is the energy, m is the mass, and c is the speed of light (approximately 3 × 10^8 m/s).

Given that the mass of 1 nucleon is approximately 1.6605 × 10^-27 kg (as defined by the unified atomic mass unit), and we want to convert a nucleus of 14 nucleons, we can calculate the total mass:

Total mass = mass per nucleon × number of nucleons

Total mass = 1.6605 × 10^-27 kg/nucleon × 14 nucleons

Now, we can calculate the energy released:

E = mc²

E = (1.6605 × 10^-27 kg/nucleon × 14 nucleons) × (3 × 10^8 m/s)²

To simplify the units, we can convert kilograms to electron volts (eV) using the conversion factor 1 kg = (1/1.60218 × 10^-19) × 10^9 eV.

E = [(1.6605 × 10^-27 kg/nucleon × 14 nucleons) × (3 × 10^8 m/s)²] / [(1/1.60218 × 10^-19) × 10^9 eV/kg]

Calculating the value, we have:

E = 14 × (1.6605 × 10^-27 kg) × (3 × 10^8 m/s)² / [(1/1.60218 × 10^-19) × 10^9 eV/kg]

E ≈ 111.36 MeV

Therefore, if you completely convert a nucleus of 14 nucleons into free energy, you would obtain approximately 111.36 million electron volts (MeV) of energy.

To learn more about mass-energy equivalence visit: https://brainly.com/question/3171044

#SPJ11

When you drop a rock into a well, you hear the splash 0.9 seconds later. The sound speed is 340 m/s. How deep is the well ? (Hint: the depth will defiitely be less than a kilometer..) Number Units If the depth of the well were doubled, would the time required to hear the splash be greater than 1.8 S equal to 1.8 S less than 1.8 S

Answers

The depth of the well is 306 meters. If the depth of the well were doubled, the time required to hear the splash would be greater than 1.8 seconds. This is because the time taken for the sound to travel is directly proportional to the depth of the well.

To calculate the depth of the well, we can use the formula:

depth = (speed of sound) x (time taken for sound to travel)

Given that the speed of sound is 340 m/s and the time taken to hear the splash is 0.9 seconds, we can calculate the depth of the well:

depth = 340 m/s x 0.9 s

= 306 m

To know more about depth

https://brainly.com/question/13804949

#SPJ11

The flat dome of the sky is thought of as the Celestial Sphere. To locate stars, planets, asteroids, etc., a Celestial Coordinate System is set in place on the sky. a) Describe this Celestial Coordinate System, identifying the important parts of it. Do the coordinates of the stars ever change in this System? Do the Coordinates of the Planets ever change? Give reasons for these answers.

Answers

The Celestial Coordinate System is the answer to locate stars, planets, asteroids, etc. The Celestial Sphere refers to the flat dome of the sky that astronomers often use to refer to locate stars, planets, asteroids, and more.

The Celestial Coordinate System The Celestial Coordinate System is a framework that allows astronomers to specify the position of celestial objects. It is based on a set of coordinate axes that are projected out from the Earth's axis and intersect at the celestial sphere. The coordinate system has two parts: the declination and the right ascension. Declination, or declination angle, is equivalent to latitude on Earth.

It measures the angle north or south of the celestial equator. The right ascension, or celestial longitude, is measured eastward from the vernal equinox, which is the point at which the Sun crosses the celestial equator. Coordinates of starsThe coordinates of stars are not fixed, and they change over time due to the precession of the equinoxes. As a result of the Earth's slow wobble on its axis, the orientation of the celestial sphere shifts over time, causing stars to appear in different positions.

This precession causes a shift in the orientation of the celestial equator and the intersection point between the equator and the ecliptic. Thus, the coordinates of stars change over time. Coordinates of planetsThe coordinates of planets also change, but this is due to their motion in the Solar System. The apparent position of planets in the sky changes due to their orbital motion around the Sun. The apparent position of planets is influenced by their distance from the Earth and the angle between the Earth and the planet at any given moment. As a result, the coordinates of planets change over time.

The Celestial Coordinate System has two parts: the declination and the right ascension. Declination is equivalent to latitude on Earth, and the right ascension is measured eastward from the vernal equinox. The coordinates of stars change over time due to the precession of the equinoxes, whereas the coordinates of planets change due to their motion in the Solar System.

To know more about Celestial Coordinate System visit:

brainly.com/question/32885643

#SPJ11

Please calculate the % mass loss, upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 • Please report the answer to 3 decimal places Do not use exponential format, e.g. 4e-4 . Do not include spaces Please calculate the % mass loss, upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 • Please report the answer to 3 decimal places Do not use exponential format, e.g. 4e-4 . Do not include spaces

Answers

Answer: the % mass loss upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 is 0.1895%.

The given energy produced is E = 1358407071307334 kg m²/s². Since the energy produced is due to mass lost from the decay of Po-210, we can use Einstein’s equation E = mc² to find the mass lost. We can rearrange this equation to solve for m:m = E/c²Now we substitute the value of E and the speed of light, c = 3.00 x 10⁸ m/s:

m = (1358407071307334 kg m²/s²) / (3.00 x 10⁸ m/s)²

= 1.50934179 x 10⁻⁵ kg

or 0.0150934 g.

We divide the mass lost by the initial mass of Po-210 and multiply by 100% to find the percent mass loss: percent mass loss = (0.0150934 g / 798 g) x 100%≈

0.001895 = 0.1895%

Therefore, the % mass loss upon fizzing 798 g of Po-210, if the energy produced is 1358407071307334 kg m2152 is 0.1895%.

Learn more about mass: https://brainly.com/question/86444

#SPJ11

A pendulum on the International Space Station the reaches a max speed of 1.24 m/s when reaches a maximum height of 8.80 cm above its lowest point. The local N/kg. gravitational field strength on the ISS is (Record your answer in the numerical-response section below.)

Answers

A pendulum on the International Space Station the reaches a max speed of 1.24 m/s when reaches a maximum height of 8.80 cm above its lowest point .Therefore, the local gravitational field strength on the ISS is 0.982 N/Kg

It is given that a pendulum on the International Space Station reaches a max speed of 1.24 m/s

when it reaches a maximum height of 8.80 cm above its lowest point.

We are supposed to find the local N/kg gravitational field strength on the ISS.

we will use the formula for potential energy and kinetic energy of a pendulum as follows:

Potential energy = mgh , Kinetic energy = 1/2 mv²

where m is the mass of the pendulum, g is the gravitational field strength, h is the maximum height and v is the maximum speed.

We will equate these two energies to get the value of g.1/2 mv² = mghv² = 2ghv² = 2 x 9.81 x 0.088v² = 0.17352v = 0.4168 m/s

Now, we have the value of maximum speed of the pendulum.

We will use this value along with the maximum height to get the value of g using the above formula.

1/2 mv² = mgh1/2 x 1 x (0.4168)² = 1 x g x 0.0880.08656 = g x 0.088g = 0.982 N/kg

Therefore, the local N/kg gravitational field strength on the ISS is 0.982 N/kg.

Learn more about gravitational field  here:

https://brainly.com/question/31829401

#SPJ11

Other Questions
Using the RASCI model, those accountable for projects are Yantnz: The people who do not do the work but will get blamed if the project goes wrong Those people who help support the team The people who do the work Those people who act in a consulting manner Yant temizle Geri Sonraki Testi duraklat 154g x 1L/4.39 x 1s/.25L Please awnser asap I will brainlist for homogeneous earth dam shown in fig. Cohesion (C) = 2.4 ton/mAngle of internal friction (0)=250yd= 1.8 ton/m' Submerged weight of soil ys=1.2 ton/m', Area above the phreatic line=380 m Area below the phreatic line = 929 m. Now, check the overall stability of the dam. Which quotation from the excerpt most helps readers understand why innocent people are given prison sentences?The collateral consequences of mass incarceration have been equally profound.Scores of innocent people have been exonerated after being sentenced to death and nearly executed.Some states permanently strip people with criminal convictions of the right to vote; as a result, in several Southern states disenfranchisement among African American men has reached levels unseen since before the Voting Rights Act of 1965.Presumptions of guilt, poverty, racial bias, and a host of other social, structural, and political dynamics have created a system that is defined by error, a system in which thousands of innocent people now suffer in prison. Determine the volume (in L) of O_2(at STP) formed when 52.5 g of KClO_3 decomposes according to the following reaction. KClO_3( s)KCl(s)+ Volume of O_2: You are tasked with designing the arithmetic unit of the following ALU. The ALU operations are: A-B A+B A +1 A-1 A) If you had access to a Full added, what is the most simplified expression for the B-logic (The block that changes B before connecting to the full adder)? This block should have 3 Inputs 51 SO B. and Y is the output that gets connected to the full adder. B) What is the simplified expression for the block connecting S1 SO B to Cin of the Full Adder. OA) Y S1' 50' B' + SO B+ S1 SO B) Cin = 50 OA) Y = S1' SO B' + SO B + S1 SO B) Cin= SO' OA) Y S1 S0' B+ SO B + S1 SO B) Cin = SO OA) Y = 51' 50' B' + 50 B +51 SO B) Cin = 50' All or dont answerAfter an electron is accelerated from rest through a potential difference, it has a de Broglie wavelength of 645 nm. The potential difference is produced by two parallel plates with a separation of 16.5 mm. ( gravity and relativistic effects can be ignored)1. What is the final velocity of the electron?2.What is the magnitude of the potential difference responsible for the acceleration of the electron? in V3. What is the magnitude of the electric field between the plates? in mV/m. Which of the following functions f: RR are permutations of R?(a) f is defined by f(x)=x+1.(b) f is defined by f(x)=(x-1).JUSTIFY your answer. If the manager of a bottled water distributor wants to estimate, 95% confidence, the mean amount of water in a 1-gallon bottle to within 0.006 gallons and also assumes that the standard deviation is 0.003 gallons, what sample size is needed? If a light bulb manufacturing company wants to estimate, with 95% confidence, the mean life of compact fluorescent light bulbs to within 250 hours and also assumes that the population standard deviation is 900 hours, how many compact fluorescent light bulbs need to be selected? If the inspection division of a county weighs and measures department wants to estimate the mean amount of soft drink fill in 2-liter bottles to within 0.01 liter with 95% confidence and also assumes that the standard deviation is 0.08 liters, what sample size is needed? An advertising executive wants to estimate the mean amount of time that consumers spend with digital media daily. From past studies, the standard deviation is estimated as 52 minutes. What sample size is needed if the executive wants to be 95% confident of being correct to within 5 minutes? If pigs are morally comparable to dogs, then it is okay to eat pigs only if it is okay to eat dogs. [2]lt is okay to eat pigs, but [3] it is not okay to eat dogs. So [4] it cannot be the case that it is okay to eat pigs only if it is okay to eat dogs. Therefore, [5] pigs are not morally comparable to dogs. In the argument above, statement [5] is: A final conclusion A subconclusion Neither a subconclusion nor a final conclusion There are many factors that we can consider in our definition and discussion on Lean, what do you think the are? How might different types of stakeholders use a Statement of Profit or Loss to make decisions or hold the organisation accountable?a) An Employee (who is not in a managerial or executive position)b) IRSc) Customersd) A local community group What is one difference between Black Lives Matter (BLM), an example of a modern social movement, and more traditional interest groups? BLM is more involved in lobbying in Washington, DC. BLM has a more rigid organizational structure. BLM is more decentralized and less hierarchical. BLM charges monthly rather than annual membership dues. * Introduction on the Behavioral perspective ( 200 words please)* What is the Behavioral perspective (main postulates / what does this Behavioral perspective say? 200 words please)* Contributions of the Behavioral perspective for the study of psychological disorders (what did this theoretical perspective contribute to psychology? 200 words please)* Conclusion (what did you learn and why is this Behavioral perspective important within psychology? 200 words please) The points A(5, 5) and B(5, 7) are plotted on the coordinate plane. Line segment A B plotted on a coordinate plane with point A at negative 5 comma 5 and point B at negative 5 comma negative 7. On paper, make a rectangle that has points A and B as two of its vertices and has a perimeter of 40 units. Draw and label the two other vertices as points C and D on the coordinate plane. Draw line segments to show the rectangle. Select the coordinates for points C and D. (5, 5) (3, 5) (11, 5) (3, 7) (11, 7) (11, 7) CH 6 Revision PROBLEM 6-19: Feather Friends, Inc., distributes a high-quality wooden birdhouse that sells for $20 per unit. Variable costs are $8 per unit, and fixed costs total $180,000 per year. Required: Answer the following independent questions: 1. What is the product's CM ratio? 2. Use the CM ratio to determine the break-even point in sales dollars. man to war meresse in demand, the company estimates that a will increase by 575,000 during the next year. By how much should net operating income increase for net loss decrease) assuming that fixed costs do not change? 4. Assume that the operating results for last year were S outon a. Compute the degree of operating leverage at the current level of sales. b. The president expects sales to increase by 20% next year. By what percentage should net operating income increase? 5. Refer to the original data. Assume that the company sold 18,000 units last year. The sales manager is convinced that a 10% reduction in the selling price, combined with a $30,000 increase in advertising, would cause annual sales in units to increase by one-third. Prepare two contribution format income statements, one showing the results of last year's operations and one showing the results of operations if these changes are made. Would you recommend that the company do as the sales manager suggests? 6. Refer to the original data. Assume again that the company sold 18,000 units last year. The president does not want to change the selling price. Instead, he wants to increase the sales commission by $1 per unit. He thinks that this move, combined with some increase in advertising, would increase annual sales by 25%. By how much could advertising be increased with profits remaining unchanged? How many students were assigned to the largest cluster?3612371819432. In which cluster is Student ID 938 found?cluster_0cluster_1cluster_2cluster 33. Assuming that arrest rate is the strongest indicator of student risk, which cluster would you label "Critical Risk"?cluster_0cluster_1cluster_2cluster_34. Are there more female (0) or male (1) students in Cluster 0?FemaleMaleThere is the same number of each.There is no way to tell in this model.5. About how many students in cluster_3 have ever been suspended from school?About half of themAbout 5%About 75%Almost all of them6. Have any students in cluster_0 have ever been expelled?Yes, 8% have.Yes, 3 have.No, none have.Yes, 361 have.7. On average, how many times have the students in cluster_2 been arrested?None of the students in cluster_2 have been arrestedAbout 91%Less than one time eachMore than two times each8. Examining the centroids for Tardies, Absences, Suspension, Expulsion, and Arrest, how many total students are there in the two "middle-risk" clusters that would be classified as neither Low Risk nor Critical Risk?300943481181 Calculate the pH of 100.00mL of 0.20 M HNO_3 solution after 67.00 mL of NaOH 0.20 M have been added. For each question, complete the second sentence so that it means the same as the first. USE NO MORE THAN THREE WORDS. 1. The bus station is near the new shopping centre. The bus station isn't............ the new shopping centre. 2. I've never been to this shop before. This is. ..I've been in this shop. 3. The choice of food here is not as good as in the market. The choice of food in the market....... here. 4. There is late-night shopping on Thursday. The shops.......... .. on Thursday. 5. Shall we go into town this afternoon? Would. go into town this afternoon. 6. I've never been to America. He said he.. ..to America. 7. The tickets were more expensive than I had expected. The tickets weren't... 8. Getting a visa isn't very difficult. It isn't difficult........ a visa. 9. The hotel gave us a room with a beautiful view. We. 10. My friend suggested travelling by train. My friend said 'If I were you. 11. It is difficult to get a job where I live. It is not very 13. The company said I was too old to become a trainee. The company said I wasn't. 14. I will take the job if the pay is OK. I won't take the job... 15. The company has a great fitness centre. a great fitness centre in the company. 16. I might get a job while I'm on holiday this summer. I might get a job the summer holiday. ...as I had expected. a room with beautiful view by the hotel. travel by train. to get a job where I live. ......to become a trainee. the pay is OK.