Answer:
Percent composition tells you the relative amounts of each element in a molecule by mass. It can be used to determine the empirical formula of a compound, as well as to compare the composition of different molecules.
For example, the percent composition of water (H2O) is 11.19% hydrogen and 88.81% oxygen by mass. This tells us that there are two hydrogen atoms for every one oxygen atom in the molecule.
Explanation:
Brainliest Plsss
A 50.0g solution contains 10.0g of sucrose. Calculate the molarity of the solution
Answer:
solution is 0.584 M
Explanation:
8) After school, you stop into Speedway to get a fountain drink. When you push on the lever to
expel your soda pop, it just drips out. The manager tells you that his fountain machine is set at
12°C for 450 mL of pop at an unknown pressure. Being a curious chemistry student, you decide
to investigate: Fountain drinks should be an average temperature of 5°C for 355mL at a pressure
of 7psl. What pressure does the manager have his pop machine set at in both psi & atm?
The pressure (P) of the manager's pop machine is 0.38 psi or 0.026 atm.
Given the following values:
Temperature (T) = 12 °C
Volume (V) = 450 mL = 0.45 L
Pressure (P) = UnknownTemperature (T) = 5 °C
Volume (V) = 355 mL = 0.355 L
Pressure (P) = 7 psi = 0.48 atm
To find the pressure (P) of the manager's pop machine in both psi and atm, we can use the Ideal Gas Law, which is given by: PV = nRT
Where:
P = Pressure V = Volume T = Temperature n = Number of moles R = Universal gas constant
Let's first convert the volume and temperature to SI units.
Volume (V) = 0.45 L
Temperature (T) = 12 + 273 = 285 K
For the first condition, we have: P1V1/T1 = nR/P1V1/T1 = P2V2/T2 (At constant temperature and volume)
P2 = P1(V2/V1)
For the second condition, we have: P1V1/T1 = P2V2/T2P2 = (P1V1T2)/(V2T1)
Now, let's plug in the values.P1 = ?V1 = 0.45 LT1 = 285 KP2 = 7 psi = 0.48 atmV2 = 0.355 LT2 = 278 K (5°C + 273)
First, we'll find the pressure (P) in psi. P2 = P1(V2/V1)0.48 = P1(0.355/0.45)P1 = 0.38 psi
To convert psi to atm, we use the following conversion factor: 1 atm = 14.7 psi0.38 psi x (1 atm/14.7 psi) = 0.026 atm.
for such more questions on pressure
https://brainly.com/question/24719118
#SPJ8
A 6.0M solution of hydrochloric acid is used to neutralize an unknown
solution of sodium hydroxide. If 25.34 mL of the acid is needed to neutralize
56.73 mL of the base, what is the molarity of the base?
what is the equivalent resistance of this circuit
Answer: 100 ohms.
Explanation:
The circuit is composed of two parallel branches (upper and lower), with one resistor in the upper branch (150) and two resistors in the lower branch (250 and 50).
The lower branch resistors are in series, so the lower branch's resistance is:
250 + 50 = 300.
Now, the upper branch (150) and total lower branch (300) are in parallel, so:
[tex]\frac{1}{R} = \frac{1}{150} + \frac{1}{300}[/tex]
That is,
[tex]\frac{1}{R} = \frac{3}{300} = \frac{1}{100}[/tex],
Solving for R, we find R = 100.
The equivalent resistance of this circuit is 100 ohms.
What is the maximum mass of P2I4 that can be prepared from 7.95 g of P4O6 and 12.48 g of iodine according to the reaction 5P4O6 + 8I2 → 4P2I4 + 3P4O10
The maximum mass of P2I4 that can be prepared is 9.22 grams.
To determine the maximum mass of P2I4 that can be prepared, we need to find the limiting reactant in the given reaction. The limiting reactant is the one that is completely consumed, thus determining the maximum amount of product that can be formed.
Let's calculate the number of moles of each reactant:
P4O6: Given mass = 7.95 g, molar mass = 283.88 g/mol
Number of moles = mass / molar mass = 7.95 g / 283.88 g/mol = 0.028 g/mol
I2: Given mass = 12.48 g, molar mass = 253.8 g/mol
Number of moles = mass / molar mass = 12.48 g / 253.8 g/mol = 0.049 g/mol
Now, let's use the stoichiometry of the reaction to determine the mole ratio between P4O6 and P2I4. From the balanced equation, we can see that the ratio is 5:4.
Since the ratio of P4O6 to P2I4 is 5:4, we can calculate the theoretical yield of P2I4 based on the moles of P4O6.
The number of moles of P2I4 that can be formed from P4O6 = (0.028 mol P4O6) * (4 mol P2I4 / 5 mol P4O6) = 0.0224 mol P2I4
To convert the moles of P2I4 to grams, we can use the molar mass of P2I4:
Molar mass of P2I4 = (2 * atomic mass of P) + (4 * atomic mass of I) = (2 * 30.97 g/mol) + (4 * 126.9 g/mol) = 411.68 g/mol
The maximum mass of P2I4 that can be prepared from the given reactants is:
Mass of P2I4 = (0.0224 mol P2I4) * (411.68 g/mol) = 9.22 g.
For more such questions on mass visit;
https://brainly.com/question/24191825
#SPJ8
Which chemical equation represents a precipitation reaction ?
A precipitation reaction is a chemical reaction in which a solid forms when two aqueous solutions are mixed. The correct answer is option B: [tex]K_2CO_3 + PbCl_2 \rightarrow 2KCl + PbCO_3.[/tex]
This is because, in this reaction, two aqueous solutions ([tex]K_2CO_3[/tex] and PbCl₂) are mixed to form a solid precipitate ([tex]PbCO_3[/tex]) and two aqueous solutions (KCl and [tex]PbCO_3[/tex]).The reaction can be written in a chemical equation as [tex]K_2CO_3 + PbCl_2 \rightarrow 2KCl + PbCO_3.[/tex] The reactants in this equation are [tex]K_2CO_3[/tex] and PbCl₂ and the products are 2KCl and [tex]PbCO_3[/tex]. The subscript "aq" is used to denote that the substance is in an aqueous state, which means it is dissolved in water. Therefore, the correct answer is option BThe reaction can be understood by looking at the ionic equation: [tex]K_2CO_3 + PbCl_2 \rightarrow 2KCl + PbCO_3\downarrow[/tex]. The ionic equation shows that PbCO3 is a precipitate, indicated by the downward arrow, while [tex]K^+[/tex] and [tex]Cl^-[/tex] remains in solution.The other options given in the question do not represent precipitation reactions because there is no formation of a solid precipitate when the reactants are mixed together.For more questions on a precipitation reaction
https://brainly.com/question/30386923
#SPJ8
A spatula of sodium hydrogen carbonate was placed in a boiling tube.lemon juice was added dropwise while shaking until no other change was seen. Give the expected observation and explain it
Answer:
When sodium hydrogen carbonate (also known as baking soda) reacts with lemon juice (which is acidic), a chemical reaction occurs. The expected observations and the explanation for each observation are as follows:
1. Effervescence (bubbling): As the lemon juice (citric acid) reacts with sodium hydrogen carbonate, carbon dioxide gas is produced. This gas escapes as bubbles, leading to effervescence. The reaction can be represented as follows:
Sodium Hydrogen Carbonate + Citric Acid → Carbon Dioxide + Water + Sodium Citrate
2. Release of a citric-like odor: When citric acid from the lemon juice reacts with the sodium hydrogen carbonate, it forms sodium citrate, which has a fruity odor similar to citric acid.
3. Change in color or formation of foam: Depending on the specific lemon juice used, there might be a color change or the formation of foam due to the interaction between the citric acid and the baking soda. This observation can vary depending on the concentration of the lemon juice and the amount of baking soda used.
4. No further visible change: Once the reaction is complete, there will be no other visible changes. The carbon dioxide gas produced during the reaction will dissipate into the air, and the solution will reach a new equilibrium.
Overall, the reaction between sodium hydrogen carbonate and lemon juice is an acid-base reaction, resulting in the production of carbon dioxide gas. This reaction is commonly used in baking to create a leavening effect and make baked goods rise.
Rank these least polar=1 to most polar=11 and why the most polar is the most polar
To rank these least polar=1 to most polar=11, we need to understand what polarity is. The term "polarity" refers to the distribution of electrical charge in a molecule.
A molecule is polar if its electron cloud is distributed unevenly and has poles, resulting in the molecule having a positive and a negative end. A molecule is nonpolar if its electron cloud is distributed uniformly, resulting in the molecule having no charge poles.
The ranking of the given compounds from least polar to most polar is as follows:
Least polar: 7 (nonpolar)
4 (nonpolar)
9 (nonpolar)
1 (nonpolar)
8 (polar)
2 (polar)
6 (polar)
5 (polar)
10 (polar)
3 (most polar)
Most polar: 3 (most polar)
The reasoning behind this ranking is that the difference in electronegativity between the two atoms that make up the molecule determines polarity.
The greater the difference in electronegativity between two atoms, the more polar the bond between them is. As a result, we can classify the compounds as nonpolar and polar. We rank these compounds based on their polarity, with the least polar being nonpolar and the most polar being polar.
For more questions on polarity, click on:
https://brainly.com/question/17118815
#SPJ8
What is the molar mass of N2CO3
Answer:105.99 g/mol
Explanation:
Sodium carbonate is the inorganic compound with the formula Na₂CO₃ and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water.
An aqueous solution of 4mol/L nitric acid is eletrolysed in an electrolytic cell using graphite electrodes. Write the chemical symbols for all the ions present in the electrolytic cell.
Electrolysis of nitric acid produces hydrogen gas at the cathode and nitrogen dioxide, oxygen gas, and hydrogen ions at the anode.
When an aqueous solution of 4mol/L nitric acid is electrolyzed in an electrolytic cell using graphite electrodes, the following chemical symbols for all the ions present in the electrolytic cell are obtained:A) The anode equation: 2HNO₃ → 2NO₂ + O₂ + 2H⁺ + 2e⁻The anions present in the electrolytic cell include nitrate ions (NO₃⁻) and chloride ions (Cl⁻). The nitrate ions, which are the conjugate base of nitric acid (HNO₃), are attracted to the anode where they lose electrons to produce nitrogen dioxide (NO₂), oxygen gas (O₂), and hydrogen ions (H⁺). Nitric oxide (NO) and nitrogen gas (N₂) can also be formed as by-products.B) The cathode equation: H⁺ + e⁻ → 1/2H₂The cations present in the electrolytic cell include hydrogen ions (H⁺) and nitrate ions (NO₃⁻). Hydrogen ions (H⁺) in the electrolytic cell are reduced by gaining electrons at the cathode to produce hydrogen gas (H₂). Nitrate ions (NO₃⁻) from nitric acid are not reduced at the cathode but migrate toward the anode. In summary, nitric acid, when electrolyzed in an electrolytic cell using graphite electrodes, produces hydrogen gas at the cathode and nitrogen dioxide, oxygen gas, and hydrogen ions at the anode. The conjugate base of nitric acid, nitrate ions, is present as anions in the electrolytic cell. The cations present in the electrolytic cell are hydrogen ions and nitrate ions.For more questions on Electrolysis
https://brainly.com/question/12994141
#SPJ8
Balance letter D please.
Answer:
2, 13, 8, 10
Explanation:
8 carbon, 26 oxygen, 20 hydrogen total on each side.
5. Which of the functional groups contain(s) nitrogen?
Explanation:
Functional groups containing nitrogen are amines and amides.
The general formula for amines is:
RNH₂, where R = longer hydrocarbon chain.
The general formula for amides is:
RCONH₂, where R = longer hydrocarbon chain.
See attached diagram for general structural formula.
To learn more about amines and amides:
https://brainly.com/question/30401860
Two reactants combine to form a product in the reaction A + BC. The rate of the
reaction depends on the concentrations of both reactants squared (rate = K[A]²[B]²).
What's the total reaction order of this reaction?
OA) 3
OB) 4
OC) 2
OD) 1
Convert 6.13 mg per kg determine the correct dose in g for 175lb patient
The correct dose for a 175 lb patient would be approximately 0.48602 grams.
To convert 6.13 mg/kg to grams, we need to consider the weight of the patient and perform a unit conversion. Here's the step-by-step process:
1. Convert the weight of the patient from pounds to kilograms.
175 lb * (1 kg / 2.205 lb) = 79.37 kg (rounded to two decimal places)
2. Calculate the correct dose in grams by multiplying the patient's weight by the given dosage.
79.37 kg * 6.13 mg/kg = 486.02 mg
3. Convert the dose from milligrams (mg) to grams (g) by dividing by 1000.
486.02 mg / 1000 = 0.48602 g (rounded to five decimal places)
Therefore, the correct dose for a 175 lb patient would be approximately 0.48602 grams.
It's important to note that this calculation assumes the dosage is based on body weight and that the given dosage is appropriate for the patient's condition. Always consult a healthcare professional or follow the instructions of a medical prescription for accurate dosing information.
For more questions on unit, click on:
https://brainly.com/question/18522397
#SPJ8
7. [day Dr. Linus Pauling says that if you take 1500. mg of vitamin C each day you will have milder and fewer colds. How many pounds per year is this? (assume 365 days per year)
Taking 1500 mg of vitamin C daily amounts to approximately 1.2045 pounds per year.
Dr. Linus Pauling suggested that taking 1500 mg of vitamin C daily could result in milder and fewer colds. To determine the weight in pounds per year, we'll first convert milligrams to pounds and then multiply by the number of days in a year.
To convert milligrams to pounds, we need to know that there are 453,592.37 milligrams in a pound. Therefore, 1500 mg is equal to 0.0033 pounds (1500 mg / 453,592.37 mg/lb).
Now, to calculate the weight in pounds per year, we'll multiply 0.0033 pounds by the number of days in a year (365).
Weight in pounds per year = 0.0033 pounds/day * 365 days/year = 1.2045 pounds/year.
Therefore, taking 1500 mg of vitamin C daily amounts to approximately 1.2045 pounds per year.
It's important to note that while this calculation provides the weight equivalent, the effectiveness and recommended dosage of vitamin C for preventing colds should be discussed with a healthcare professional, as individual needs may vary.
For more questions on vitamin C, click on:
https://brainly.com/question/24268138
#SPJ8
A titer is a measured relationship between the volume of the titrant used and the mass of an analyte in the sample. It is used when trials will have different starting quantities of analyte. It is used to predict the endpoint of subsequent trials and will make your data more precise. Titers also serve as internal monitors of your technique.
Consider the following theoretical data.
mass of analyte 1.392
Vi (mL) 0.10
Vf (mL) 22.44
Volume delivered 22.34
Titer: (mL Titrant /g analyte) ___________
Considering the theoretical data, The Titer is 15.98 (mL Titrant /g analyte)
To calculate the titer, we need to determine the ratio of the volume of titrant used (in mL) to the mass of the analyte (in grams).
In the given theoretical data, the mass of the analyte is 1.392 grams, the initial volume of the titrant (Vi) is 0.10 mL, the final volume of the titrant (Vf) is 22.44 mL, and the volume delivered is 22.34 mL.
To calculate the titer, we use the formula:
Titer = (Volume delivered - Vi) / mass of analyte
Titer = (22.34 mL - 0.10 mL) / 1.392 g
Titer ≈ 22.24 mL / 1.392 g
Titer ≈ 15.98 mL/g
Therefore, the titer is approximately 15.98 mL/g. This ratio represents the volume of titrant used per gram of the analyte. It helps in predicting the endpoint of subsequent trials and serves as an internal monitor of the technique used in the titration process. Having a precise titer value enhances the accuracy and precision of the data obtained from the titration experiments.
Know more about titration process here:
https://brainly.com/question/186765
#SPJ8
The diagram represents a voltaic cell.
Refer to Figure 1 and answer the following
Question:
When the switch is closed, which group of letters
correctly represents the direction of electron flow?
The direction in which the electron flows in the voltaic cell can be shown by A, B, C, D. Option A
What is the voltaic cell?
A voltaic cell, often referred to as a galvanic cell, is an electrochemical device that uses a redox (reduction-oxidation) reaction to transform chemical energy into electrical energy. It is made up of two half-cells joined together by a conductive channel, allowing electrons to move freely between them. An electrode dipped in an electrolyte solution is present in each half-cell.
To keep the electrical balance in the half-cells, the passage of electrons is accompanied by ion mobility through the electrolyte solutions. The redox process might continue as a result of the ions' mobility, which completes the circuit.
Learn more about voltaic cell:https://brainly.com/question/29186551
#SPJ1
4) An average adult can hold up to 6 Liters of air in their lungs. The internal temperature of a
healthy person is around 32°C at a pressure of 1 atm. It has been found that people who had
Covid 19 may have a reduced lung capacity of 25% or a reduction to 4.5L. If the temperature
increases due to infection/fever to 44°C, what pressure is being exerted on the damaged lungs
Answer:
if the temperature increases to 44°C, the pressure exerted on the damaged lungs would be approximately 1.334 atm.
Explanation:
To determine the pressure being exerted on the damaged lungs, we can use the combined gas law, which states that the pressure of a gas is inversely proportional to its volume when temperature and amount of gas remain constant.
The combined gas law equation is: P₁V₁/T₁ = P₂V₂/T₂
Where:
P₁ = Initial pressure (1 atm)
V₁ = Initial volume (6 L)
T₁ = Initial temperature (32°C + 273.15 = 305.15 K)
P₂ = Final pressure (unknown)
V₂ = Final volume (4.5 L)
T₂ = Final temperature (44°C + 273.15 = 317.15 K)
Rearranging the equation to solve for P₂, we have:
P₂ = (P₁V₁T₂) / (V₂T₁)
Substituting the values:
P₂ = (1 atm * 6 L * 317.15 K) / (4.5 L * 305.15 K)
Calculating this expression gives us:
P₂ ≈ 1.334 atm
4. Styrene (A) and Butadiene (B) are to be polymerized in a
series of mixed-flow reactors, each of volume 25 m3. The rate
equation is first order with respect to A and B:
−rA = kACACB
where kA = 10−5 m3·kmol−1·s−1
The initial concentration of styrene is 0.8 kmol·m−3 and
of butadiene is 3.6 kmol·m−3. The feed rate of reactants
is 20 t·h−1. Estimate the total number of reactors required
for polymerization of 85% of the limiting reactant. Assume
the density of reaction mixture to be 870 kg·m−3 and the
molar mass of styrene is 104 kg·kmol−1 and that of butadiene
54 kg·kmol−1
The total number of reactors required for polymerization of 85% of the limiting reactant is 4.
The calculation of the total number of reactors required for polymerization of 85% of the limiting reactant for Styrene (A) and Butadiene (B) is explained below.
Given data: Volume of each reactor, V = 25 m³.
The rate equation is, -rA = kACACB ,where kA = 10⁻⁵ m³·kmol⁻¹·s⁻¹
Initial concentration of Styrene = CA0 = 0.8 kmol·m⁻³ .Initial concentration of Butadiene = CB0 = 3.6 kmol·m⁻³
Feed rate of reactants = 20 t·h⁻¹Density of reaction mixture = ρ = 870 kg·m⁻³
Molar mass of Styrene = MStyrene = 104 kg·kmol⁻¹Molar mass of Butadiene = MButadiene = 54 kg·kmol⁻¹
The limiting reactant in the polymerization is the reactant that gets consumed first. Let's assume that Butadiene is the limiting reactant since it has the lowest initial concentration.
Mass balance equation for Butadiene,
FA0 = CA0.V.QFA = ρ.V.Q.CB
Where FA0 is the initial flow rate of Styrene, Q is the total volumetric flow rate of reactants.
Since the reaction is first-order with respect to both Styrene and Butadiene,-rA = -rB = kACACBVolume of reactant fed in 1 h = Q × 3600s = 20,000 kg
For a batch of 85% limiting reactant conversion,
Total moles of Butadiene fed in 1 h, nB = CB0.V.Q × 3600 × 0.85
Moles of Styrene required to react with 85% of Butadiene, n
Styrene = nB (MButadiene/MStyrene) = 15.08 V.Qkg
Number of moles of Styrene per reactor required to reach the above requirement in 1 h,
nStyrene/reactor = nStyrene/Total Number of Reactors Total Volume of all Reactors= nStyrene/ (Total Volume of Reactors/V)
Number of Reactors required = Total Volume of Reactors / V = nStyrene / (nStyrene/reactor) = 15.08 V.Qkg / (CA0 × V × kA × CB0) ≈ 3.36 → 4Reactors Hence, the total number of reactors required for polymerization of 85% of the limiting reactant is 4.
Know more about polymerization here:
https://brainly.com/question/1602388
#SPJ8
How many hydrogen atoms could bong with oxygen in this illustration of an oxygen atom?
C. 2, hydrogen atoms could bong with oxygen in this illustration of an oxygen atom.
In the given illustration of an oxygen atom, there are two unpaired electrons in the outermost electron shell. Each oxygen atom can form a covalent bond by sharing one electron with another atom. In the case of oxygen, it has a valence of 2, which means it can form up to two covalent bonds. Each hydrogen atom has one electron, and it requires one additional electron to complete its outermost electron shell.
Therefore, in the given illustration, the oxygen atom can form two covalent bonds with hydrogen atoms. This is represented by the formula H2O, where one oxygen atom is bonded to two hydrogen atoms.
Hence, the correct answer is C. 2. Two hydrogen atoms can bond with one oxygen atom to form a stable molecule of water. The sharing of electrons in covalent bonds allows atoms to achieve a more stable electron configuration and form compounds with different properties.
The question was incomplete. find the full content below:
How many hydrogen atoms could bong with oxygen in this illustration of an oxygen atom?
A. 0
B. 1
C. 2
D. 6.
Know more about covalent bonds here:
https://brainly.com/question/3447218
#SPJ8
John Dalton believed which of the following about atoms?
Atoms are real even though they're invisible.
The atom could be divided into smaller parts.
All atoms of a single substance are identical.
Atoms of different substances differ by weight.
Atoms of different substances differ by weight. Option D
A) Atoms are real even though they're invisible: Dalton proposed that atoms are fundamental, indivisible particles that make up all matter. While atoms themselves cannot be observed directly, their existence and behavior can be inferred through their effects on matter.
B) The atom could be divided into smaller parts: Initially, Dalton believed that atoms were indivisible and the ultimate building blocks of matter. However, subsequent scientific discoveries, such as the discovery of subatomic particles like protons, neutrons, and electrons, revealed that atoms could be further divided into smaller components.
C) All atoms of a single substance are identical: Dalton postulated that atoms of the same element are identical in size, mass, and chemical properties. According to his atomic theory, different elements are composed of unique atoms, and atoms of the same element are identical to one another.
D) Atoms of different substances differ by weight: Dalton recognized that atoms have different masses and proposed that the differences in atomic weight account for the distinct properties of different elements. He formulated the law of multiple proportions, which states that elements combine in fixed ratios of masses to form compounds.
Option D
For more such questions on Atoms visit:
https://brainly.com/question/6258301
#SPJ8
Which chemical equation represents a precipitation reaction ?
The correct option that represents a precipitation reaction is:
B. K2CO3 + PbCl2 -> 2KCl + PbCO3
In a precipitation reaction, two aqueous solutions are mixed, resulting in the formation of an insoluble solid called a precipitate. This solid is formed due to the combination of certain ions that are no longer soluble in the solution.
In option B, when potassium carbonate (K2CO3) reacts with lead chloride (PbCl2), it produces potassium chloride (2KCl) and lead carbonate (PbCO3) as the products. Lead carbonate is an insoluble compound and forms a precipitate, which indicates a precipitation reaction.
Options A, C, and D do not represent precipitation reactions:
- Option A represents a double displacement reaction between magnesium bromide (MgBr2) and hydrochloric acid (HCl), resulting in the formation of magnesium chloride (MgCl2) and hydrogen bromide (HBr).
- Option C represents a substitution reaction between lithium acetate (LiC2H3O2) and tetrabromotitanium (IV) (TiBr4), forming lithium bromide (LiBr) and tetrakis(acetato) titanium (IV) (Ti(C2H3O2)4).
- Option D represents a double displacement reaction between ammonium nitrate (NH4NO3) and copper chloride (CuCl2), resulting in the formation of ammonium chloride (NH4Cl) and copper nitrate (Cu(NO3)2).
Therefore, option B is the correct representation of a precipitation reaction.
F0r more questions on precipitation, click on:
https://brainly.com/question/14330965
#SPJ8
The equation below shows the products formed when a solution of silver nitrate (AgNO3) reacts with a solution of sodium chloride (NaCl).
The equation for the reaction between silver nitrate (AgNO3) and sodium chloride (NaCl) is: AgNO3 + NaCl → AgCl + NaNO3.
In this reaction, silver nitrate (AgNO3) reacts with sodium chloride (NaCl) to produce silver chloride (AgCl) and sodium nitrate (NaNO3).
When the two solutions are mixed, the silver ions (Ag+) from silver nitrate combine with chloride ions (Cl-) from sodium chloride to form silver chloride, which is a white, insoluble precipitate. The sodium ions (Na+) from sodium chloride combine with nitrate ions (NO3-) from silver nitrate to form sodium nitrate, which remains in solution.
The reaction is a double displacement reaction, also known as a precipitation reaction, as a solid precipitate (silver chloride) is formed. This reaction occurs due to the exchange of ions between the two reactants.
Silver chloride is sparingly soluble in water and precipitates out of the solution as a solid due to its low solubility. Sodium nitrate, being a soluble ionic compound, remains dissolved in the solution as individual ions.
This reaction is commonly used in the laboratory to test for the presence of chloride ions. The formation of the white precipitate of silver chloride confirms the presence of chloride ions in the solution.
For more such quqestions on silver nitrate visit:
https://brainly.com/question/29145679
#SPJ8
If the pressure, volume, and the number of moles of a gas are known, which is needed to calculate the universal gas constant from the ideal gas law?the temperature of the gas the molar volume of the gasthe molar mass of the gasthe partial pressure of the gas
If the pressure, volume, and the number of moles of a gas are known, the temperature of the gas is needed to calculate the universal gas constant from the ideal gas law.
The synthesis of the following four rules led to the ideal gas law:
1) Boyle's Law: According to this rule, pressure is inversely related to a gas's volume and molecular weight at constant temperature.
P ∝ [tex]\frac{1}{V}[/tex] (At a certain temperature and molecular count)
2) Charles' Law: According to this rule, the volume of a gas with constant pressure and moles is precisely proportionate to its temperature.
V ∝ T (With the same pressure and mole count)
3) According to Gay-Lussac's third law, pressure is directly proportional to the gas's temperature for a gas with a fixed volume and number of moles.
P ∝ T (At constant volume and mole-count)
4) According to Avogadro's Law, at constant pressure and temperature, the volume of a gas is directly proportionate to its molecular weigh
V ∝ n (With respect to constant pressure and temperature)
Ideal gas Equation :
PV = nRT
where,
P stands for gas pressure.
Gas temperature is denoted by T.
The amount of gas molecules is N.
N is the number of gas moles.
R is the gas constant
So, in order to compute the gas constant, we must first know the gas's temperature.
To learn more about Ideal gas law,
https://brainly.com/question/30458409
Select the correct answer from each drop-down menu.
Increasing Energy
Complete the sentences to explain what's happening at different portions of the heating curve.
Particles of the substance have the most kinetic energy when the substance is
substance has the least amount of potential energy is labeled
All rights reserved.
The part of the graph that represents where the
Particles of the substance have the most kinetic energy when the substance is in the gas phase.
The substance has the least amount of potential energy in the solid phase.
The part of the graph that represents where the substance is undergoing a phase change is called the plateau or flat part of the curve.
Explain the effect of Global Warming on land and sea breeze.
In NH3+H2O > NH4OH which is being oxidized and which is being reduced?
Answer:
It doesn't look like there is any oxidation going on to me.
Explanation:
Oxidation: loss of electrons, Reduction: gain of electrons
in NH3, the charges are (-3 +3)=0. in NH4OH, the charge is (-3 +4 -2 +1)=0
Unless I'm wrong (which is def possible), N keeps a -3 charge, H is always +1, O is always -2, and both sides of the equation are neutral over all.
QUESTION 4 Draw dots-and-crosses diagrams (showing outer electrons only) for the following covalent compounds: Ammonia, NH34.2 Hydrogen sulphide, H2S Hydrogen iodide, HI Nitrogen trichloride, NC13 Boron trifluoride, BF3
The Lewis structure of the compounds that we gave are shown in the image attached.
What is the electron dot diagram?The valence electrons of an atom in a molecule are shown in an electron dot diagram, sometimes referred to as a Lewis dot diagram or Lewis structure. It depicts the outermost electrons surrounding an atomic symbol using dots or other symbols to show their interconnectedness and distribution within a chemical species.
The idea behind the electron dot diagram is that in order to establish a stable electron configuration resembling that of a noble gas, atoms tend to gain, lose, or share electrons. The chemical behavior and reactivity of an atom are determined by the quantity of valence electrons.
Learn more about electron dot diagram:https://brainly.com/question/30299328
#SPJ1
How many moles of hydrogen will form if 3.0 mole of potassium metal reacts completely with hydrochloric acid?
Answer:
1.5 moles of hydrogen will form if 3.0 mole of potassium metal reacts completely with hydrochloric acid.
Explanation:
The balanced chemical equation for the reaction of potassium metal with hydrochloric acid is:
2K(s) + 2HCl(aq) → 2KCl(aq) + H2(g)
As per the above equation, 2 moles of potassium reacts with 2 moles of hydrochloric acid to produce 1 mole of hydrogen gas.
So, for 3.0 moles of potassium metal react with hydrochloric acid, we can say that it will produce 3.0/2 = 1.5 moles of hydrogen gas.
Therefore, 1.5 moles of hydrogen will form if 3.0 mole of potassium metal reacts completely with hydrochloric acid.
Trend of atomic number and atomic size of the elements when we move from left to right in different periods of periodic table
Answer:
The atomic size decreases with an increase in atomic number when we move from left to right.
Explanation: Hope it helps you:))))))
Have a great day.