using the thermodynamic information in the aleks data tab, calculate the standard reaction entropy of the following chemical reaction: ch3oh (g) co (g) hch3co2 (l)

Answers

Answer 1

The standard reaction entropy of the chemical reaction CH₃OH (g) + CO (g) → HCH₃CO₂ (l) is -270.1 J/(mol×K).

The standard reaction entropy of a chemical reaction can be calculated using the standard molar entropies of the reactants and products. The standard molar entropies, denoted as S°, are given in the Aleks data tab;

S°(CH₃OH, g) = 239.9 J/(molK)

S°(CO, g) = 197.9 J/(molK)

S°(HCH₃CO₂, l) = 167.7 J/(mol×K)

Balanced chemical equation for the reaction is;

CH₃OH (g) + CO (g) → HCH₃CO₂ (l)

The stoichiometric coefficients indicate that 1 mole of CH₃OH and 1 mole of CO react to produce 1 mole of HCH₃CO₂. Therefore, the standard reaction entropy can be calculated as follows;

ΔS°rxn = ΣnS°(products) - ΣnS°(reactants)

ΔS°rxn = 1S°(HCH3CO2, l) - [1S°(CH₃OH, g) + 1S°(CO, g)]

ΔS°rxn = (1)(167.7 J/(molK)) - [(1)(239.9 J/(molK)) + (1)(197.9 J/(mol*K))]

ΔS°rxn = -270.1 J/(mol×K)

To know more about standard reaction entropy here

https://brainly.com/question/19672393

#SPJ4


Related Questions

How does the size of ice affect the rate of melting?

Answers

The larger ice cubes require more heat from the water to melt. To transfer more heat from the water requires more time. Therefore, it takes longer for the larger ice cubes to melt.

Why must the halogenated acetanilide 5 be transformed into the amine 6 before introducing iodine into the ring? Explain in terms of the activating power of amide vs amino groups, and the electrophilicity of the iodonium ion

Answers

The halogenated acetanilide 5 must be transformed into the amine 6 before introducing iodine into the ring because of the differences in activating power between amide and amino groups, as well as the electrophilicity of the iodonium ion.

Step 1: Understand activating power.
Activating power refers to the ability of a substituent to increase the reactivity of an aromatic ring towards electrophilic aromatic substitution (EAS). Amide groups (as in acetanilide) are weakly activating, while amino groups are strongly activating.

Step 2: Consider electrophilicity.
Electrophilicity refers to the ability of a molecule or ion to accept electrons from another molecule or ion. The iodonium ion is a highly electrophilic species, which means it readily accepts electrons from nucleophiles.

Step 3: Explain the transformation.
Since the iodonium ion is highly electrophilic, it requires a strongly activating group on the aromatic ring to facilitate the reaction. The amide group in halogenated acetanilide 5 is only weakly activating, which makes it difficult for the iodonium ion to react with the aromatic ring. By transforming the halogenated acetanilide 5 into the amine 6, you introduce a strongly activating amino group, which greatly increases the reactivity of the aromatic ring towards the electrophilic iodonium ion, allowing for the successful iodination of the ring.

To learn more about electrophilicity https://brainly.com/question/31051319

#SPJ11

calculate the equilibrium concentrations of all species when 15.0 ml of 0.100 m agno3 is mixed with 5.00 ml of 0.200 m nh3. the kf of [ag(nh3)2] is 1.7x107 .

Answers

The equilibrium concentrations of all species are; [Ag⁺] = 0.191 M, [NH₃] = 1.34 × 10⁻³ M, and [Ag(NH₃)₂]+ = 0.0800 M.

Write the balanced equation for the reaction between AgNO₃ and NH₃;

Ag⁺ + 2NH₃ ⇌ [Ag(NH₃)₂]⁺

Calculate the initial moles of Ag⁺ and NH₃;

moles of Ag⁺ = 0.100 M × 0.0150 L = 1.50 × 10⁻³ moles

moles of NH₃ = 0.200 M × 0.00500 L = 1.00 × 10⁻³ moles

Determine which reactant is limiting;

Ag⁺ is in excess because there are more moles of Ag⁺ (1.50 × 10⁻³ moles) than NH₃ (1.00 × 10⁻³ moles).

Calculate the moles of Ag⁺ that react with NH₃;

moles of Ag⁺ that react = 2 × 1.00 × 10⁻³ moles = 2.00 × 10⁻³ moles

Calculate the moles of Ag⁺ and [Ag(NH₃)₂]⁺ at equilibrium;

moles of Ag⁺ = 1.50 × 10⁻³ - 2.00 × 10⁻³ = -0.50 × 10⁻³ moles (excess)

moles of [Ag(NH₃)₂]⁺ = 2.00 × 10⁻³ moles

Calculate the concentration of [Ag(NH₃)₂]⁺ at equilibrium;

[Ag(NH₃)₂]⁺ = moles of [Ag(NH₃)₂]⁺ / total volume of solution

= 2.00 × 10⁻³ moles / (15.0 mL + 5.00 mL) = 0.0800 M

Calculate the concentration of NH₃ at equilibrium using the Kb expression for NH₃;

Kb = Kw / Ka(NH₄⁺) = 1.0 × 10⁻¹⁴ / 5.6 × 10⁻¹⁰ = 1.8 × 10⁻⁵

[NH₃] × [H⁺] / [NH₄⁺] = Kb

[0.2 - x] × x / [x] = 1.8 × 10⁻⁵

x² = 1.8 × 10⁻⁵ × 0.2

x = 1.34 × 10⁻³ M

Calculate the concentration of Ag⁺ at equilibrium;

Kf = [Ag(NH₃)₂]+ / [Ag⁺] × [NH₃]²

1.7 × 10⁷ = 0.0800 / [Ag⁺] × (0.00134 M)²

[Ag⁺] = 0.191 M

Check the assumptions; We assumed that Ag⁺ was in excess initially, and this was confirmed by our calculations. We also assumed that the reaction went to completion, and this is reasonable given the very large value of Kf.

Therefore, the equilibrium concentrations of all species are;

[Ag⁺] = 0.191 M

[NH₃] = 1.34 × 10⁻³ M

[Ag(NH₃)₂]+ = 0.0800 M

To know more about equilibrium concentrations here

https://brainly.com/question/16645766

#SPJ4

The equilibrium concentrations of all species are; [Ag⁺] = 0.191 M, [NH₃] = 1.34 × 10⁻³ M, and [Ag(NH₃)₂]+ = 0.0800 M.

Write the balanced equation for the reaction between AgNO₃ and NH₃;

Ag⁺ + 2NH₃ ⇌ [Ag(NH₃)₂]⁺

Calculate the initial moles of Ag⁺ and NH₃;

moles of Ag⁺ = 0.100 M × 0.0150 L = 1.50 × 10⁻³ moles

moles of NH₃ = 0.200 M × 0.00500 L = 1.00 × 10⁻³ moles

Determine which reactant is limiting;

Ag⁺ is in excess because there are more moles of Ag⁺ (1.50 × 10⁻³ moles) than NH₃ (1.00 × 10⁻³ moles).

Calculate the moles of Ag⁺ that react with NH₃;

moles of Ag⁺ that react = 2 × 1.00 × 10⁻³ moles = 2.00 × 10⁻³ moles

Calculate the moles of Ag⁺ and [Ag(NH₃)₂]⁺ at equilibrium;

moles of Ag⁺ = 1.50 × 10⁻³ - 2.00 × 10⁻³ = -0.50 × 10⁻³ moles (excess)

moles of [Ag(NH₃)₂]⁺ = 2.00 × 10⁻³ moles

Calculate the concentration of [Ag(NH₃)₂]⁺ at equilibrium;

[Ag(NH₃)₂]⁺ = moles of [Ag(NH₃)₂]⁺ / total volume of solution

= 2.00 × 10⁻³ moles / (15.0 mL + 5.00 mL) = 0.0800 M

Calculate the concentration of NH₃ at equilibrium using the Kb expression for NH₃;

Kb = Kw / Ka(NH₄⁺) = 1.0 × 10⁻¹⁴ / 5.6 × 10⁻¹⁰ = 1.8 × 10⁻⁵

[NH₃] × [H⁺] / [NH₄⁺] = Kb

[0.2 - x] × x / [x] = 1.8 × 10⁻⁵

x² = 1.8 × 10⁻⁵ × 0.2

x = 1.34 × 10⁻³ M

Calculate the concentration of Ag⁺ at equilibrium;

Kf = [Ag(NH₃)₂]+ / [Ag⁺] × [NH₃]²

1.7 × 10⁷ = 0.0800 / [Ag⁺] × (0.00134 M)²

[Ag⁺] = 0.191 M

Check the assumptions; We assumed that Ag⁺ was in excess initially, and this was confirmed by our calculations. We also assumed that the reaction went to completion, and this is reasonable given the very large value of Kf.

Therefore, the equilibrium concentrations of all species are;

[Ag⁺] = 0.191 M

[NH₃] = 1.34 × 10⁻³ M

[Ag(NH₃)₂]+ = 0.0800 M

To know more about equilibrium concentrations here

https://brainly.com/question/16645766

#SPJ4

. when excess solid mg(oh)2 is shaken with 1.00 l of 1.0 m nh4cl solution, the resulting saturated solution has ph = 9.00. calculate the ksp of mg(oh)2.

Answers

The resulting saturated solution has ph = 9.00. Then the Ksp of Mg(OH)2 is 1.0 * 10^{-20}.

To solve this problem, we need to use the equilibrium expression for the dissolution of Mg(OH)2 in water:
Mg(OH)2(s) ⇌ Mg2+(aq) + 2OH-(aq)
The Ksp expression for this reaction is:
Ksp = [Mg2+][OH-]^{2}
We are given that excess solid Mg(OH)2 is shaken with 1.00 L of 1.0 M NH4Cl solution. This means that NH4Cl is a spectator ion and does not affect the equilibrium. Therefore, we can assume that the concentration of Mg2+ and OH- ions in the saturated solution is equal to the solubility of Mg(OH)2.
To calculate the solubility, we need to use the pH of the solution. We know that pH = 9.00, which means [H+] = 1.0 x 10^-9 M. Since Mg(OH)2 is a strong base, it will react with water to produce OH- ions:
Mg(OH)2(s) + 2H2O(l) ⇌ Mg2+(aq) + 2OH-(aq) + 2H2O(l)
The concentration of OH- ions can be calculated using the pH:
pH = -log[H+]
9.00 = -log[H+]
[H+] = 1.0 * 10^{-9} M
[OH-] = \frac{Kw}{[H+]} =\frac{ 1.0 * 10^{-14} M}{ 1.0 * 10^{-9} M} = 1.0 * 10^{-5} M
Since Mg(OH)2 dissociates to produce two OH- ions, the concentration of Mg(OH)2 in the saturated solution is:
[Mg(OH)2] = [OH-]^{2 }= (1.0 * 10^{-5} M)^{2} = 1.0 * 10^{-10} M
Finally, we can calculate the Ksp of Mg(OH)2 using the solubility:
Ksp = [Mg2+][OH-]^2
Ksp = (1.0 * 10^{-10} M)(1.0 *10^{-5} M)^{2}
Ksp = 1.0 * 10^{-20}
Therefore, the Ksp of Mg(OH)2 is 1.0 * 10^{-20}.

learn more about equilibrium Refer: https://brainly.com/question/30694482

#SPJ11

17. calculate the number of molecules of o2 required to make 1.44 g of khco3 (ans. 1.30 x 1022 molecules o2)

Answers

To calculate the number of molecules of O₂ required to make 1.44 g of KHCO₃, follow these steps:

1. Determine the molar mass of KHCO₃: K (39.10 g/mol) + H (1.01 g/mol) + C (12.01 g/mol) + 3 * O (3 * 16.00 g/mol) = 100.12 g/mol.

2. Calculate the moles of KHCO₃: (1.44 g KHCO₃) / (100.12 g/mol) = 0.0144 moles KHCO₃.

3. Write the balanced chemical equation for the reaction: 2 K + H₂O + CO₂ + 1/2 O₂ → KHCO₃ + KOH.

4. From the balanced equation, we can see that 1/2 mole of O₂ is required to produce 1 mole of KHCO₃. To find the moles of O₂ needed, multiply the moles of KHCO₃ by 1/2: (0.0144 moles KHCO₃) * (1/2) = 0.0072 moles O₂.

5. Convert the moles of O₂ to molecules using Avogadro's number (6.022 x 10²³ molecules/mol): (0.0072 moles O₂) * (6.022 x 10²³ molecules/mol) = 1.30 x 10²² molecules O₂.

So, 1.30 x 10²² molecules of O₂ are required to make 1.44 g of KHCO₃.

Learn more about Molecules at https://brainly.com/question/475709

#SPJ11

the independent variable in this experiment is a. intensity of light. b. amount of co2 produced. c. yeast concentration d. sugar source

Answers

The independent variable in an experiment is the factor that is being manipulated or changed by the researcher.

In the context of the given question, the independent variable would be one of the four options: intensity of light, amount of CO2 produced, yeast concentration, or sugar source.

Based on the information provided, it is impossible to determine which of these options is the independent variable.

However, it is important to note that the dependent variable, or the factor being measured or observed, would be influenced by the independent variable.

Therefore, the researcher would need to carefully design the experiment and control all other variables to accurately determine the relationship between the independent and dependent variables.

learn more about researcher here:brainly.com/question/29783805

#SPJ11

how many moles of glucose are required to provide the carbon for the synthesis of one mole of palmitate? express your answer as an integer.

Answers

Three moles of glucose are required to provide the carbon for the synthesis of one mole of palmitate.

To determine the number of moles of glucose required to synthesize one mole of palmitate, follow these steps:
1. Identify the molecular formulas of glucose and palmitate. Glucose has the molecular formula C6H12O6, and palmitate (palmitic acid) has the molecular formula [tex]C_{16}H_{32}O_{2}[/tex].
2. Determine the number of carbon atoms in each molecule. Glucose has 6 carbon atoms, and palmitate has 16 carbon atoms.
3. Calculate the number of moles of glucose needed to provide the carbon atoms for one mole of palmitate. Since palmitate has 16 carbon atoms and glucose has 6 carbon atoms, divide the number of carbon atoms in palmitate by the number of carbon atoms in glucose:
16 carbon atoms (palmitate) ÷ 6 carbon atoms (glucose) = 2.67 moles of glucose
4. Round the answer to the nearest whole number. In this case, the number of moles of glucose needed is approximately 3 moles.

To learn more about palmitate click here https://brainly.com/question/30890676

#SPJ11

draw a formula for the lowest molecular weight compound that contains c, h, and possibly o, n or s, is a chiral compound, contains ONLY one functional group, and is a nitrile.
Use the wedge/hash bond tools to indicate stereochemistry.
Include H atoms at chiral centers only.
If a group is achiral, do not use wedged or hashed bonds on it.
Alkene or alkyne groups are considered to be functional groups.

Answers

The formula for the lowest molecular weight chiral compound containing C, H, and possibly O, N, or S, with only one functional group as a nitrile is: C₂H₃N.

To form a chiral compound, we need at least one carbon atom with four different substituents. In this case, we have two carbon atoms: one as part of the nitrile functional group (-CN) and another as the chiral center.

The chiral carbon is bonded to the nitrile group, a hydrogen atom, and an implied third group, which in this case is another hydrogen atom.

The nitrile functional group consists of a carbon atom triple-bonded to a nitrogen atom. The chiral carbon atom is indicated with a wedged bond for the hydrogen atom to represent the stereochemistry of the molecule.

To know more about triple-bonded click on below link:

https://brainly.com/question/16888881#

#SPJ11

Given the unbalanced equation: Al2(SO4)3 + Ca(OH)2 + Al(OH)3 + CaSO4 What is the coefficient in front of the CaSO4 when the equation is completely balanced with the smallest whole-number coefficients? A. 1 B. 2 C. 3 D. 4

Answers

The balanced equation with the smallest whole-number coefficients is Al2(SO4)3 + 3Ca(OH)2 → 2Al(OH)3 + 3CaSO4. Therefore, the coefficient in front of the CaSO4 when the equation is completely balanced with the smallest whole-number coefficients is 3 (option C).

To determine the coefficient in front of the CaSO4 when the given unbalanced equation Al2(SO4)3 + Ca(OH)2 → Al(OH)3 + CaSO4 is completely balanced with the smallest whole-number coefficients, follow these steps:

Balance the aluminum (Al) atoms: Place a coefficient of 2 in front of Al(OH)3. Now the equation is:
  Al2(SO4)3 + Ca(OH)2 → 2Al(OH)3 + CaSO4Balance the sulfur (S) atoms: The equation is already balanced for sulfur atoms.Balance the oxygen (O) atoms: The equation is balanced for oxygen atoms as well.Balance the calcium (Ca) atoms: Place a coefficient of 3 in front of Ca(OH)2 and a coefficient of 3 in front of CaSO4. Now the equation is:
  Al2(SO4)3 + 3Ca(OH)2 → 2Al(OH)3 + 3CaSO4

See more about equation in:

https://brainly.com/question/2972832

#SPJ11

4. Which of these factors would change the value of Vmax?
a. Substrate concentration
b. Enzyme concentration
c. pH
d. Temperature

Answers

Enzyme concentration, pH, Temperature would change the value of Vmax. Correct alternatives are b,c,d.

The maximum velocity (Vmax) of an enzyme-catalyzed reaction is the theoretical maximum rate at which the reaction can proceed, under conditions of saturating substrate concentration. Several factors can affect Vmax:

b. Enzyme concentration: Increasing the amount of enzyme will increase the Vmax of the reaction, as there will be more enzyme molecules available to catalyze the reaction.

c. pH: Changes in pH can affect the Vmax of enzymes by altering the ionization state of amino acid residues that participate in the catalytic reaction, and by changing the shape of the enzyme's active site.

d. Temperature: Changes in temperature can affect the Vmax of enzymes by altering the rate of the catalytic reaction, as well as by changing the shape and stability of the enzyme's active site.

a. Substrate concentration: Changes in substrate concentration affect the rate of the reaction, but they do not directly affect Vmax.

To know more about maximum velocity (Vmax) here:

https://brainly.com/question/30874421#

#SPJ11

What is the de Broglie wavelength (in m) of a 25 g object moving at a speed of 5.0 m/s? O 5.3 x 10-33 m O 1.3 x 10-34m O 5.3 x 10-36 m O 1.3 x 10-37 m O 6.0x 107 m

Answers

The de Broglie wavelength of the 25 g object moving at a speed of 5.0 m/s is 5.3 x 10^-34 m.

How to calculate the wavelength of an object?

The de Broglie wavelength (in m) of an object is given by the equation λ = h/mv, where h is Planck's constant (6.626 x 10^-34 J*s), m is the mass of the object, v is the velocity of the object.

First, convert the mass from grams to kilograms:
25 g = 0.025 kg

Next, plug the values into the formula:
λ = (6.626 x 10^-34 Js) / (0.025 kg * 5.0 m/s)

Calculate the wavelength:
λ = (6.626 x 10^-34 Js) / (0.125 kg*m/s)
λ = 5.3 x 10^-34 m

To know more about de-broglie wavelength:

https://brainly.com/question/16629783

#SPJ11

The de Broglie wavelength of the 25 g object moving at a speed of 5.0 m/s is 5.3 x 10^-34 m.

How to calculate the wavelength of an object?

The de Broglie wavelength (in m) of an object is given by the equation λ = h/mv, where h is Planck's constant (6.626 x 10^-34 J*s), m is the mass of the object, v is the velocity of the object.

First, convert the mass from grams to kilograms:
25 g = 0.025 kg

Next, plug the values into the formula:
λ = (6.626 x 10^-34 Js) / (0.025 kg * 5.0 m/s)

Calculate the wavelength:
λ = (6.626 x 10^-34 Js) / (0.125 kg*m/s)
λ = 5.3 x 10^-34 m

To know more about de-broglie wavelength:

https://brainly.com/question/16629783

#SPJ11

what is the ph of a 0.50 m h2se solution that has the stepwise dissociation constants ka1 = 1.3 × 10-4 and ka2 = 1.0 × 10-11?

Answers

To calculate the pH of a 0.50 M [tex]H_{2} Se[/tex] solution, we need to consider the dissociation of [tex]H_{2} Se[/tex] in water. [tex]H_{2} Se[/tex] can undergo two stepwise dissociations as follows: the pH of a 0.50 M [tex]H_{2} Se[/tex] solution with dissociation constants [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex] and [tex]Ka_{2}[/tex] = 1.0 ×[tex]10^{-11}[/tex] is approximately 2.51.

[tex]H_{2} Se[/tex]⇌ [tex]H^{+}[/tex] + [tex]HSe^{-}[/tex] ; [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex]

[tex]HSe^{-}[/tex] ⇌ [tex]H^{+}[/tex] + [tex]Se2^{-}[/tex] ; [tex]Ka_{2}[/tex] = 1.0 × [tex]10^{-11}[/tex]

The dissociation constant [tex]Ka_{1}[/tex] represents the equilibrium constant for the reaction [tex]H_{2} Se[/tex] ⇌ [tex]H^{+}[/tex] + [tex]HSe^{-}[/tex]. [tex]Ka_{1}[/tex] can be used to calculate the concentration of [tex]H^{+}[/tex] and [tex]HSe^{-}[/tex] at equilibrium using the following equations:

[tex]Ka_{1}[/tex] = [[tex]H^{+}[/tex]][[tex]HSe^{-}[/tex]]/[[tex]H_{2} Se[/tex]]

[[tex]H^{+}[/tex]] = sqrt(Ka1*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]))

[[tex]HSe^{-}[/tex]] = [tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]])

Now, we need to consider the dissociation of [tex]HSe^{-}[/tex] to calculate the concentration of [tex]Se2^{-}[/tex]and [tex]H^{+}[/tex] in solution. We can use the equilibrium constant [tex]Ka_{2}[/tex] for this reaction, as follows:

[tex]Ka_{2}[/tex] = [[tex]H^{+}[/tex]][[tex]Se2^{-}[/tex]]/[[tex]HSe^{-}[/tex]]

[[tex]Se_{2} ^{-}[/tex]] = [tex]Ka_{2}[/tex]*[[tex]HSe^{-}[/tex]]/[[tex]H^{+}[/tex]]

Putting these equations together, we can calculate the concentrations of all species in solution, and use the equation pH = -log[[tex]H^{+}[/tex]] to determine the pH:

[[tex]H_{2} Se[/tex]] = 0.50 M

[tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex]

[tex]Ka_{2}[/tex] = 1.0 × [tex]10^{-11}[/tex]

[[tex]H^{+}[/tex]] = sqrt([tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]])) = 3.06 × [tex]10^{-3}[/tex] M

[[tex]HSe^{-}[/tex]] = [tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]) = 4.97 × [tex]10^{-2}[/tex] M

[[tex]Se2^{-}[/tex]] = [tex]Ka_{2}[/tex]*[[tex]HSe^{-}[/tex]]/[[tex]H^{+}[/tex]] = 4.01 × [tex]10^{-17}[/tex] M

pH = -log[[tex]H^{+}[/tex]] = 2.51

Therefore, the pH of a 0.50 M [tex]H_{2} Se[/tex] solution with dissociation constants [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex] and [tex]Ka_{2}[/tex] = 1.0 ×[tex]10^{-11}[/tex] is approximately 2.51.

Learn more about pH

https://brainly.com/question/27945512

#SPJ4

Which of the following does NOT contribute to the high phosphoryl-transfer potential of ATP? A. ability of water to interact more favorably with the products of ATP hydrolysis than with ATP itself
B. adenine ring structure C. resonance stabilization
D. charge repulsion

Answers

In the high phosphoryl-transfer potential of ATP, the adenine ring structure does not have any contribution. Therefore, the correct answer is option B.

Phosphoryl-transfer potential is the ability of an organic molecule, this ability helps the molecule to transfer a phosphoryl group to another molecule known as the acceptor molecule. ATP has a high phosphoryl-transfer potential. The main factors that contribute to the high phosphoryl-transfer potential of ATP are:

-resonance stabilization                                                                                   -charge repulsion                                                                                               -stabilization due to hydration                                                                        --increase in entropy                                                                                          

Therefore, adenine ring structure (option B) is the only factor that plays no role in the high phosphoryl-transfer potential of ATP.

To learn more about ATP's high phosphoryl-transfer potential, visit: https://brainly.com/question/28286963

#SPJ11

note that in a successful separation scheme, solutions are always sepeerated from a solid before adding the next reagant why

Answers

In a successful separation scheme, it is essential to separate solutions from solids before adding the next reagent, this is because each reagent serves a specific purpose in the process, targeting particular components within the mixture.

By separating the solution from the solid first, you ensure that the desired reaction occurs only with the components in the solution, allowing for an accurate and efficient separation process. Additionally, the presence of a solid in the solution can interfere with the intended reaction, potentially causing unwanted side reactions or hindering the efficiency of the process. In some cases, the solid may even react with the reagent, which could lead to false results or the formation of unwanted by-products

Moreover, keeping the solution clear of solids also simplifies the analysis and identification of separated components, this allows for a more precise determination of the separated components and a more effective overall separation process. In summary, separating solutions from solids before adding the next reagent is crucial for maintaining the accuracy, efficiency, and reliability of a separation scheme. This practice ensures that the desired reactions occur without interference, minimizes the potential for unwanted side reactions, and facilitates the analysis of the separated components.

Learn more about solution at:

https://brainly.com/question/29195815

#SPJ11

what is the pH of a 0.3 M HF solution (Ka = 7.2 x 10-4)

Answers

The pH of a 0.3 M HF solution with a Ka value of 7.2 x 10⁻⁴ is approximately 1.84.

To determine the pH of a 0.3 M HF solution with a Ka value of 7.2 x 10⁻⁴, you'll need to use the Ka expression and the equilibrium concentration calculations.

For the dissociation of HF:
HF ⇌ H⁺ + F⁻

Ka expression: Ka = [H⁺][F⁻] / [HF]

Let x represent the concentration of H⁺ ions formed:
[H⁺] = x, [F⁻] = x, and [HF] = 0.3 - x

Plug in the values into the Ka expression:
7.2 x 10⁻⁴ = x² / (0.3 - x)

Assuming x is small compared to 0.3, we can approximate:
7.2 x 10⁻⁴ ≈ x² / 0.3

Solve for x, which represents [H⁺]:
x = √(7.2 x 10⁻⁴ * 0.3) ≈ 0.0145

Now, to find the pH, use the formula:
pH = -log[H⁺]

pH ≈ -log(0.0145) ≈ 1.84

Therefore, the pH of the 0.3 M HF solution is approximately 1.84.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

Calculate the ph when 56.0 ml of 0.250 m HCl is mixed with 40.0 ml of 0.150 m Ca(OH)₂

Answers

Therefore, the pH of the resulting solution is approximately 11.32.

The pH of the resulting solution, we need to find the moles of HCl and Ca(OH)₂ in the solution.

Moles HCl = (0.250 mol/L) x (0.0560 L) = 0.0140 mol

Moles Ca(OH)₂ = (0.150 mol/L) x (0.0400 L) = 0.00600 mol

Since HCl is a strong acid and Ca(OH)₂ is a strong base, they will react completely in a 1:2 ratio to form CaCl₂ and water:

2HCl + Ca(OH)₂ → CaCl₂ + 2H₂O

So, all of the HCl will react with twice as much Ca(OH)₂ to form CaCl₂, leaving behind 0.00200 mol of Ca(OH)₂ in solution.

Next, we can find the concentration of hydroxide ions in the solution:

[OH⁻] = (0.00200 mol) / (0.0960 L) = 0.0208 M

Finally, we can use the Kw expression to find the concentration of hydrogen ions:

Kw = [H⁺][OH⁻] = 1.0 x 10⁻¹⁴

[H⁺] = Kw / [OH⁻] = (1.0 x 10⁻¹⁴) / (0.0208 M) = 4.81 x 10⁻¹²

Learn more about ph Visit: brainly.com/question/26424076

#SPJ4

Choose the most suitable negative or positive control for the test of each macromolecule. You may use one answer to more than one question; but, not to all questions with one answer.
Negative control for detection of protein Positive control for detection of starch Negative control for detection of starch
Positive control for detection of protein in food sample Positive control for detection of lipid in food sample Negative control for detection of lipid Negative control for detection of glucose Positive control for detection of glucose in food sample
1.water 2. glucose 3. Egg albumin 4. corn oil 5. corn starch
6. sucrose 7. cellulose
8. amino acid

Answers

The most suitable negative or positive controls for the test of each macromolecule are:
1.  Negative control for detection of protein: Water
2. Positive control for detection of starch: Corn starch
3. Negative control for detection of starch: Water
4. Positive control for detection of protein in food sample: Egg albumin
5. Positive control for detection of lipid in food sample: Corn oil
6. Negative control for detection of lipid: Water
7. Negative control for detection of glucose: Water
8. Positive control for detection of glucose in food sample: Glucose


Food Testing

The macromolecules include carbohydrate, protein, lipid and nucleic acid. To check the presence of this macromolecule within the food, can be examined by doing the food test. It involves adding the reagent into a food sample which changes the color.

Protein : using Biuret reagent, positive indicator is shown with purple color (For example, tofu, egg albumin, etc)Starch : using iodine reagent,  positive indicator is shown with blue black color (For example, corn starch, rice, etc)Lipid : using ethanol, positive indicator is shown with white emulsion (For example, oil, etc)Glucose : using Benedict reagent,  positive indicator is shown brick red precipitate (For example, glucose).

Water is commonly used as a negative control in chemical tests.


Learn more about food testing by clicking this link :

https://brainly.com/question/29751259
#SPJ11

Methyl alcohol. CH_3OH_3 reacts with benzoic acid C_6H_5CO_2H. to form an ester Using structural formulas, write the aquation for the reaction What is the name of this ester?

Answers

The reaction between methyl alcohol (CH3OH) and benzoic acid (C6H5CO2H) is CH3OH + C6H5CO2H → C6H5CO2CH3 + H2O and The ester formed in this reaction is called methyl benzoate.

The reaction between these two compounds ethyl alcohol and benzoic acid is known as esterification. In this reaction, the hydroxyl group (OH) of the methyl alcohol reacts with the carboxyl group (CO2H) of benzoic acid, resulting in the formation of an ester and water as a byproduct. The structural formula for the reaction is as follows:

CH3OH + C6H5CO2H → C6H5CO2CH3 + H2O

The ester formed in this reaction is called methyl benzoate, and its structural formula is C6H5CO2CH3. Methyl benzoate is a common ester that is often used as a flavoring agent or in the manufacture of perfumes due to its pleasant, fruity odor. Esterification reactions are essential in organic chemistry, as they allow for the formation of a wide variety of ester compounds with diverse properties and applications.

Learn more about esterification at:

https://brainly.com/question/31041190

#SPJ11

Which is the pH-relevant equation when NH4Br dissolves in water? Kb of NH3 is 1.76x 10-5. O NH,(aq) + H2O() ㄹ NH4+(aq) + OH-(aq) O Br-(aq) + H2O() HBr(aq) + OH-(aq) O NH4 (aq)H20NHa(aa)+H3O (aq)

Answers

The pH-relevant equation is NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH-(aq).

What is the pH-relevant equation when NH4Br dissolves in water?

The pH-relevant equation when NH4Br dissolves in water, given that the Kb of NH3 is 1.76 x 10^-5, is:

NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH-(aq)

Learn more about pH equation

brainly.com/question/16480786

#SPJ11

hypochlorous acid, hclo, has a pka of 7.54. what are [h3o ], ph, [clo-], and [hclo] in 0.125 m hclo? [h3o ]

Answers

The solution is acidic (pH < 7), and the majority of the hypochlorous acid molecules have dissociated into H3O+ and ClO- ions.

What is the dissociation of hypochlorous acid (HClO) in water?

The dissociation of hypochlorous acid (HClO) in water can be represented as:

HClO + H2O ⇌ H3O+ + ClO-

The equilibrium constant expression for this reaction is:

Ka = [H3O+][ClO-]/[HClO]

We can use the following expressions to calculate the concentrations of the species in solution:

[H3O+] = Ka * [HClO] / [ClO-]

[ClO-] = [HClO] / (Ka/[H3O+])

[HClO] = 0.125 M (the initial concentration)

Substituting the given values, we get:

[ClO-] = [HClO] / (Ka/[H3O+]) = (0.125 M) / (10^(pKa - pH)) = (0.125 M) / (10^(7.54 - pH))

[H3O+] = Ka * [HClO] / [ClO-] = 10^(-pKa) * [HClO] / [ClO-] = 10^(-7.54) * [HClO] / [ClO-]

We can solve for pH by using the equation:

pH = -log[H3O+]

Substituting the expression for [H3O+], we get:

pH = -log(10^(-7.54) * [HClO] / [ClO-]) = -log(10^(-7.54)) + log([ClO-]/[HClO])

Simplifying the expression, we get:

pH = 7.54 + log([ClO-]/[HClO])

Substituting the given values, we get:

[ClO-] = (0.125 M) / (10^(7.54 - pH))

[H3O+] = 10^(-7.54) * (0.125 M) * (10^(pH - 7.54)) / (0.125 M / (10^(7.54 - pH)))

Simplifying, we get:

[ClO-] = 10^(-pH)

[H3O+] = 10^(-pH)

Finally, we can calculate the concentration of HClO using the expression:

[HClO] = [ClO-] * (Ka / [H3O+])

Substituting the calculated values, we get:

[HClO] = 10^(-pH) * (10^(7.54) / 10^(-pH)) = 10^(7.54 - 2pH)

Therefore, in 0.125 M HClO solution:

[H3O+] = [ClO-] = 10^(-pH)

[ClO-] = 10^(-pH)

[HClO] = 10^(7.54 - 2pH)

pH = 1/2(7.54 - log(0.125)) = 3.05

Substituting the pH into the expressions for [H3O+], [ClO-], and [HClO], we get:

[H3O+] = [ClO-] = 10^(-pH) = 9.13 × 10^(-4) M

[HClO] = 10^(7.54 - 2pH) = 1.98 × 10^(-4) M

This means that the solution is acidic (pH < 7), and the majority of the hypochlorous acid molecules have dissociated into H3O+ and ClO- ions.

Learn more about hypochlorous acid

brainly.com/question/16984896

#SPJ11

Note that no organic solvent was added as an organic layer during extraction.a. What is the advantage? Why would this procedure be undesirable if the reaction was conducted at 1/50 of thescale of this procedure?b. What is the disadvantage of not using a solvent to rinse your reaction flask in the transfer to the separatoryfunnel?

Answers

a. The advantage of not adding an organic solvent during extraction is that it simplifies the procedure and reduces potential contamination or side reactions. b. The disadvantage of not using a solvent to rinse the reaction flask during the transfer to the separatory funnel is that some product may be left behind in the flask, leading to incomplete transfer and a lower yield.

a. The advantage of not adding an organic solvent as an organic layer during extraction is that it reduces the use of harmful solvents and makes the process more environmentally friendly. If the reaction was conducted at 1/50 of the scale of this procedure, it would still be advantageous to not use an organic solvent as it would still reduce the amount of waste generated and lower the environmental impact of the process. However, if the scale of the procedure is decreased, the yield of the extraction may decrease as well, making it less efficient.

b. The disadvantage of not using a solvent to rinse your reaction flask in the transfer to the separatory funnel is that it may leave residual product in the flask, leading to a lower yield of the desired compound. It may also contaminate the final product with impurities, affecting its purity and quality. Therefore, it is important to rinse the reaction flask thoroughly with a suitable solvent to ensure that all of the desired product is transferred to the separatory funnel for extraction.

Learn more about organic solvent here: brainly.com/question/31325351

#SPJ11

Be sure to answer all parts. Give the n and 1 values and the number of orbitals for sublevel Gg. n value l value number of orbitals

Answers

The sublevel Gg refers to the 4g sublevel. The n value for this sublevel is 4, as it is the fourth energy level. The l value for the g sublevel is 4, as it corresponds to the fourth orbital shape (g is the fourth letter of the alphabet). T

he number of orbitals in the 4g sublevel is 9, as there are 2l+1 orbitals in each sublevel. Therefore, 2(4) + 1 = 9 orbitals in the 4g sublevel.
The sublevel "G" does not exist in the current electron orbital model. Electron sublevels are represented by lowercase letters (s, p, d, and f), which correspond to l values of 0, 1, 2, and 3, respectively. Since the "G" sublevel is not a part of this model, it's not possible to provide the n and l values or the number of orbitals for it.

The number of sublevels in an energy level is equal to the principal quantum number, n. Therefore, the first energy level (n=1) has one sublevel (s), the second energy level (n=2) has two sublevels (s and p), the third energy level (n=3) has three sublevels (s, p, and d), and so on.

Visit here to learn more about Electron sublevels brainly.com/question/30065989

#SPJ11

A quantity of N2O4 is introduced into a flask at an initial pressure of 2 atm at temp T. After the N2O4 has decomposed to NO2 and has come to equilibrium, the pressure of N2O4 is 1.8 atm. Calculate the value of Kp for the process.

Answers

When a quantity of N₂O₄ is introduced into a flask at an initial pressure of 2 atm at temp T and after that the N₂O₄ has decomposed to NO₂ and has come to equilibrium, the pressure of N₂O₄ is 1.8 atm. The value of Kp for the process is 0.0889.

For the given reaction equation can be written as

                                    N₂O₄(g)  2NO₂(g)

 Initial(atm)                    2                             0

 Change(atm)                -x                            +2x

 Equilibrium(atm)          2-x                           2x

 

    Given that

      2-x = 1.8 atm

          x= 0.2 atm

  ∴ Pressure of NO₂(g) at equilibrium = 2x

                                                              = 0.4  atm

                          Kp = P(NO₂(g))² /P( N₂O₄(g))

                                 =(0.4)²/1.8 = 0.0889

Hence, the value of Kp is 0.0889.

Learn more about Kp from the link given below.

https://brainly.com/question/31254566

#SPJ1

write the second step of the aldol reaction using curved arrows to show electron reorganization. ethanal -->dilute aq NaOH --> aldol

Answers

The second step of the aldol reaction using ethanal and dilute aq NaOH involves the nucleophilic attack of the enolate ion on the carbonyl carbon of another ethanal molecule, forming a new C-C bond and an alkoxide ion.

In the aldol reaction, the first step is the formation of the enolate ion by the deprotonation of the alpha hydrogen of ethanal by NaOH. In the second step, the enolate ion acts as a nucleophile and attacks the electrophilic carbonyl carbon of another ethanal molecule.

The curved arrow originates from the negatively charged oxygen of the enolate ion and points towards the carbonyl carbon, indicating the movement of the electron pair.

As a result, the double bond between the carbonyl carbon and oxygen shifts to form a bond with the oxygen, creating an alkoxide ion. The new C-C bond and alkoxide ion ultimately lead to the formation of the aldol product.

To know more about nucleophilic attack click on below link:

https://brainly.com/question/31279781#

#SPJ11

when 56.6 g of calcium and 30.5g of nitrogen gas under go a reaction that has 90% yield, what mass of calcium nitride is formed?

Answers

90% of 100.2 g, or 90.18 g, of calcium nitride was produced.

What is chemical reaction?

A chemical reaction is a process that changes one group of chemical constituents into another. As reactants are transformed into products, chemical bonds between atoms are formed and broken. Typically, this is an exothermic process that releases energy as heat or light.

Calcium nitride, also known as [tex]Ca_3N_2[/tex], is created by the interaction of calcium and nitrogen gas. The mass of calcium nitride that is produced when 56.6 g of calcium and 30.5 g of nitrogen gas are combined can be calculated using stoichiometry.

The reaction's balanced equation is as follows: [tex]3C_a+N_2- > Ca_3N_2[/tex]

Therefore, 3 moles of nitrogen are needed for every 1 mole of calcium. The following equation can be used to determine the moles of calcium

and nitrogen:

Moles of [tex]C_a[/tex] = 56.6 g / 40 g/mol = 1.415 mol

Moles of [tex]N_2[/tex] = 30.5 g / 28 g/mol = 1.089 mol

Since nitrogen is the limiting reagent and calcium and nitrogen have a mole ratio of 1.089:1.415, the following formula can be used to get the potential calcium nitride yield:

Theoretical yield = 1.089 mol × 92 g/mol = 100.2 g

The actual yield of calcium nitride is 90% of the theoretical yield because the reaction has a 90% yield. Therefore, 90% of 100.2 g, or 90.18 g, of calcium nitride was produced.

To know more about chemical reaction, click-

brainly.com/question/25769000

#SPJ1

what concentration of kmno4 is required to establish a concentration of 2.0×10−8 m for the ba2 ion in solution?

Answers

The concentration of KMnO₄ required to establish a concentration of 2.0 × 10⁻⁸ M for Ba²⁺ ion in solution is 4.0 × 10⁻⁸ M.

To determine the concentration of KMnO₄ required to establish a concentration of Ba²⁺ ion in solution, we need to use the balanced chemical equation between KMnO₄ and Ba²⁺.

2 KMnO₄ + BaCl₂ → 2 KCl + 2 MnO₂ + Ba(OH)₂

From this equation, we can see that 2 moles of KMnO₄ reacts with 1 mole of Ba²⁺. Therefore, we can set up the following equation to find the concentration of KMnO₄ required;

2 moles of KMnO₄ / 1 mole of Ba²⁺ = concentration of KMnO₄ / 2.0 × 10⁻⁸ M

Simplifying this equation, we get;

concentration of KMnO₄ = 2 × 2.0 × 10⁻⁸ M

= 4.0 × 10⁻⁸ M

Therefore, the concentration of kmno4 is 4.0 × 10⁻⁸ M

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

what is the density of nitrogen gas at 1.98 atm and 74.5 ∘ c 1.98 atm and 74.5∘c ?

Answers

The density of nitrogen gas at 1.98 atm and 74.5°C is approximately 1.946 g/L.

To find the density of nitrogen gas at 1.98 atm and 74.5°C, we can use the Ideal Gas Law equation, which is PV = nRT. We will modify this equation to find the density (ρ) by using the formula: ρ = (PM)/(RT), where P is pressure, M is molar mass, R is the gas constant, and T is temperature.

1. Convert temperature to Kelvin:
T (K) = 74.5°C + 273.15 = 347.65 K

2. Use the values given in the problem and the constants:
P = 1.98 atm
M (molar mass of nitrogen, N₂) = 28.02 g/mol
R (gas constant) = 0.0821 L atm / (K mol)

3. Plug the values into the density formula:
ρ = (PM)/(RT) = (1.98 atm * 28.02 g/mol) / (0.0821 L atm / (K mol) * 347.65 K)

4. Calculate the density:
ρ = (55.476 g/mol) / (28.5093 L/mol) = 1.946 g/L

The density of nitrogen gas at 1.98 atm and 74.5°C is approximately 1.946 g/L.

Know more about Density here:

https://brainly.com/question/28929608

#SPJ11

select all central atoms that can form compounds with an expanded octet.
a. C
b. N
c. Se
d. I
e. P

Answers

The central atoms that can form compounds with an expanded octet are:
c. Se
d. I
e. P

Your answer: c, d, e.


Central atoms that can form compounds with an expanded octet are typically those found in period 3 or higher on the periodic table, as they have d-orbitals available for bonding. Based on the options given:


a. C (Carbon) - Cannot form an expanded octet, as it is in period 2.
b. N (Nitrogen) - Cannot form an expanded octet, as it is in period 2.
c. Se (Selenium) - Can form an expanded octet, as it is in period 4.
d. I (Iodine) - Can form an expanded octet, as it is in period 5.
e. P (Phosphorus) - Can form an expanded octet, as it is in period 3.

Learn more about Expanded octet here:

https://brainly.com/question/10535983

#SPJ11

Calculate the number of moles of N2 produced from 0.080 moles of NH3 by the following reaction. 4 NH3 + 6 NO — 5 N2 + 6 H20

Answers

Answer: 0.10 moles of N2 are produced.

Explanation: You can find the number of moles of N2 produced from 0.080 moles of NH3 by doing mole ratios.

Since 5 moles of N2 is being produced for 4 moles of NH3, you can do

(0.080 moles of NH3 x 5 moles of N2) and then divide the number you get by 4 moles of NH3.

(0.080 x 5 moles)/4 = 0.10

Since 0.080 has 2 significant figures, your final answer also needs to have 2 sig figs.

Which of the following does NOT move thermal energy
through convection currents on Earth?
a the ocean
b the atmosphere
€ molten rock

Answers

The correct answer is molten rock .
Other Questions
30% of 26.5 is what number? Teaching Assistants' Stipends A random sample of stipends of teaching assistants in economics is listed. Is there sufficient evidence at the =0.01 level to conclude that the average stipend differs from $16,000? The stipends listed (in dollars) are for the academic year. Assume that the population is approximately normally distributed.13,41912,28314,00017,60414,00011,98114,35615,00012,000continue to state hypothesis and give conclusion to reject or accept Read string integer value pairs from input until "End" is read. For each string read, if the following integer read is less than 45, output the string followed by ": reorder soon". End each output with a newline.Ex: If the input is Chest 49 Organizer 2 Couch 3 End, then the output is:Organizer: reorder soonCouch: reorder soon I NEED HELP ON THIS ASAP! PLEASE, IT'S DUE TONIGHT!!!! United Bank offers a 15-year mortgage at an APR of 6.2%. Capitol Bank offers a 25-year mortgage at an APR of 6.5%. Marcy wants to borrow $120,000.a. What would the monthly payment be from United Bank?b. What would the total interest be from United Bank? Round to the nearest ten dollars.c. What would the monthly payment be from Capitol Bank?d. What would the total interest be from Capitol Bank? Round to the nearest ten dollars.e. Which bank has the lower total interest, and by how much?f. What is the difference in the monthly payments?g. How many years of payments do you avoid if you decide to take out the shorter mortgage? URGENT!! Will give brainliest :) Describe the shape of the distribution.A. It is uniform.B. It is skewed.C. It is symmetric.D. It is bimodal. advantage of single well titration compared to serial' titration The fact that the base of the basilar membrane responds best to high frequencies supports the ________ theory of hearing.A. opponent-processB. temporalC. placeD. conductive Ifh(2) = 9 andh'(2) = 2, findd/dx(h(x)/x)) at x=2 because homer was grecian, what does this say about the likely location of the places he wrote about? Using your current knowledge of polarity, explain w miscibility or ethanol and 1-hexanol. A formula that uses one or more previous terms to find the next term is an calculate the solubility (in g/l) of pb(io3)2 in 0.10 m kio3(aq). ksp(pb(io3)2) = 3.70 1013 m3 Bradley plans to borrow $14,000 to pay for his education. The federal government will provide him with the money, but in return he must pay it all back over several years, plus an extra fee that amounts to 3 percent of the money each year. What is that original sum of $14,000 called? A. penalty B. accounting C. principal D. interest the u.s. stock of physical capital was: lower in 1930 than in 1940. lower in 1940 than in 1930. lower in 1950 than in 1940. lower in 1930 than in 1920 solve this 1. entropy increases 2. entropy deacreses 3. entropy stays the same. Predict how the enthopy of the substance is affected in the following processes: a) O2(g 200 kPa 300 K) --> O2(g, 100 kPa, 300 K) entropy _________ b) I2(g, 1 bar, 125 degree C) --> I29g, 1 bar, 200 degree C) c) Fe(s, 1 bar, 250 degree C) --> Fe(s, 1 bar, 25 degree C) A drop of oil is suspended between two horizontal charged plates by an electric field E. The top plate is at a lower potential than the bottom plate. The net force on the drop of oil points to the left. is zero. points in an unknown direction. points up. None of these answers is correct. points down. points to the right How would you describe Sam Forman toward his topic on food production You are the president of Silver Fiddle Construction, which specializes in building high quality, customized homes in the Grand Junction, Colorado area. You have just been hired by the Czopeks to build their dream home. You operate as general contractor and employ only a part time bookkeeper. You subcontract work to local trade professionals. Housing construction in Grand Junction is booming. You are tentatively scheduled to complete 11 houses this year. You have promised the Czopeks that the final costs will range from $450, 000 to $500, 000 and that it will take five months to complete the house once ground-breaking has begun. The Czopeks are willing to have the project delayed in order to save costs. You have just finished a preliminary scope statement for the project. You are now brainstorming potential risks associated with the project. Identity potential risks associated with this project. Tty to come up with at least five different risks. Use a risk assessment form similar to Figure 7.6 to analyze identified risks. Develop a risk response matrix similar to Figure 7.8 to outline how you would deal with each of the risks. To construct a high quality, custom home within five months at a cost not to exceed $500, 000 A 2,500 square foot, 2 1/2 baths, 3 bedrooms, finished home. A finished garage, insulate and sheet-rocked. Kitchen appliances to include range, oven, microwave, and dishwasher. High-efficiency gas furnace with programmable thermostat. Permits approved July 5. Foundation poured July 12. "Dry in"- framing, sheathing, plumbing, electrical and mechanical inspections - passed Sept. 25. Final inspection November 7. Home must meet local building codes All windows and doors must pass NFRC class 40 energy ratings Exterior wall insulation must meet and "R" factor of 21 Ceiling insulation must meet and "R" factor of 38 Floor insulation must meet and "R" factor of 25 Garage will accommodate two cars and one 28-foot-long Winnebago Structure must pass seismic stability codes The home will be built to the specifications and design of the original blue prints provided by the customer. Owner is responsible for landscaping. Refrigerator is not included among kitchen appliances. Air conditioning is not included, but house is prewired for it. SFC reserves the right to contract out services. "Bolo" and Izabella Czopek if 2.67 moles of fluorine and 1.11 moles of ammonia react according to the following equation, how many grams of hf will form? 5f2 2nh3n2f4 6hf