Two cubes each of volume 27^3cm are joined end to end to form a solid. Find the surface area. of resulting solid.​

Answers

Answer 1

Given :-

Two cubes each of volume 27cm³ are joined to make a cuboid .

To Find :-

The surface area of the resulting solid .

Solution :-

Given that the volume of cube is 27cm³ . We know that the volume of cube is given by (side)³ .

So , if we assume each side to be a , then ,

[tex]\longrightarrow[/tex] a³ = 27cm³

[tex]\longrightarrow[/tex] a = ³√{27cm³}

[tex]\longrightarrow[/tex] a = ³√3³cm³

[tex]\longrightarrow[/tex] a = 3 cm .

Hence , if we join two cubes we will get a cuboid of length 3cm + 3cm = 6cm . (l)The breadth would be 3cm .( b)The height would be 3cm .(h)

See attachment for figure .

And as we know that TSA of cuboid is ,

[tex]\longrightarrow[/tex]TSA = 2( lb + bh + hl )

[tex]\longrightarrow[/tex] TSA = 2 ( 6*3 + 3*3 + 3*6) cm²

[tex]\longrightarrow[/tex]TSA = 2 ( 18 +9 +18 )cm²

[tex]\longrightarrow[/tex] TSA = 2 * 45cm²

[tex]\longrightarrow[/tex] TSA = 90 cm²

Hence the new surface area of the solid is 90cm² .

I hope this helps.

Two Cubes Each Of Volume 27^3cm Are Joined End To End To Form A Solid. Find The Surface Area. Of Resulting

Related Questions

help plssssssssssssssssss

Answers

Answer:

35x + 14

Step-by-step explanation:

multiply in the brackets

5x × 7 = 35x

(+)2 × 7 = (+)14

Consider five circles with radii of 1, 2, 4, 8, and 16 inches.

a. Complete the table.
b. Compare the areas and circumferences. What happens to the circumference of a circle when you double the radius? What happens to the area?
c. What happens when you triple the radius?

Please answer all questions or just the table, because I need help. Thanx!

Answers

Answer:

a) 2. 4pi (in) , 4pi  

  3. 8pi , 16pi

  4. 16pi, 64pi

  5. 32 pi  ,  256pi

Step-by-step explanation:

b) when radius increase , the areas and circumferences increase to

circumference = 2 pi * radius ; so if you double the radius , circumference will be double

area = pi * radius * radius ; if you double the radius , area will be 2^2 or 4 times

c) circumference will be triple and

area will be 3^2 or 9 times

what is the wavelength of a wave that has a frequency of 15 Hz and a speed of 2 m/s?​

Answers

Wavelength=speed/frequency

=2/15

=0.1333 m

9. Suppose you are comparing frequency data for two different
groups, 25 managers and 150 blue collar workers. Why would a
relative frequency distribution be better than a frequency
distribution?
ents

Answers

Answer:

A relative frequency distribution is better for comparison between groups whose numbers are different, since ratios are readily comparable.

Step-by-step explanation:

Using the net below, find the surface area
of the rectangular prism.
7 cm
3 cm
7 cm
5 cm
5 cm
3 cm
3 cm
3 cm
Surface Area

Answers

Answer:

the surface area of the rectangular prism is 142cm³

Step-by-step explanation:

35+15+21+21+35+15

PLEASE HELP I'LL DO ANYTHING


Simplify the expression

1/5 (5x + 9) + 4/5 (1 - 9x)​

Answers

Step-by-step explanation:

Use the Distributive Property:

[tex]1/5(5x+9)+4/5(1-9x)[/tex]

[tex]x+1.8+4/5-7.2x[/tex]

Combine Like-Terms:

[tex]-6.2x+2.6[/tex]

Help with math?Please? ANYONE

Answers

Answer:

(-1, 1)

Step-by-step explanation:

Hi there!

We want to solve the system of equations given as:
2x-3y=-5

3x+y=-2

Let's solve this equation by substitution, where we will set one variable equal to an expression containing the other variable, substitute the expression as the variable that it equals, solve for the other variable (the variable that the expression contains), and then use the value of the solved variable to find the value of the first variable
In the second equation, we have y by itself; therefore, if we subtract 3x from both sides, then we will get an expression that y is equal to.

So subtract 3x from both sides

y=-3x-2

Now substitute -3x-2 as y in the first equation.
It will look something like this:

2x - 3(-3x-2)=-5

Now do the distributive property.

2x+9x+6=-5

Combine like terms

11x+6=-5

Subtract 6 from both sides

11x=-11

Divide both sides by 11

x=-1

Now substitute -1 as x in the equation y=-3x-2 to solve for y:

y=-3(-1)-2

multiply

y=3-2

Subtract

y=1

The answer is x=-1, y=1; this can also be written as an ordered pair, which would be (-1, 1)
Hope this helps!
If you would like to see another problem for additional practice, take a look here: https://brainly.com/question/19212538

[tex]\begin{cases} 2x-3y=-5\\ 3x+y=-2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 2x-3y=-5\implies 2x=3y-5\implies x=\cfrac{3y-5}{2} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{substituting on the 2nd equation}}{3\left( \cfrac{3y-5}{2} \right)+y=-2}\implies \cfrac{3(3y-5)}{2}+y=-2 \\\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2\left( \cfrac{3(3y-5)}{2}+y \right)}=2(-2)\implies 3(3y-5)+2y=-4 \\\\\\ 9y-15+2y=-4\implies 11y-15=-4\implies 11y=11[/tex]

[tex]y=\cfrac{11}{11}\implies \blacktriangleright y=1 \blacktriangleleft \\\\\\ \stackrel{\textit{since we know that}}{x=\cfrac{3y-5}{2}}\implies x=\cfrac{3(1)-5}{2}\implies x=\cfrac{-2}{2}\implies \blacktriangleright x=-1 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (-1~~,~~1)~\hfill[/tex]

which systems have infinite solution? check all that apply
A. y = 0.5x + 2.75 and 2y = x + 2.75
B. y = 0.5x + 2.75 and y - 0.5x = 2.75
C. y = 0.5x + 2.75 and 0.5x + y = 2.75
D. y = 0.5x + 2.75 and y = 0.5(x + 5.5)
E. y = 0.5x + 2.75 and y = -2(-0.25x) + 2.75​

Answers

Answer:

B

Step-by-step explanation:

Answer:

Ok got it

Step-by-step explanation:

the answers are y = 0.5x + 2.75 and y – 0.5x = 2.75

y = 0.5x + 2.75 and y = 0.5(x + 5.5)

y = 0.5x + 2.75 and y = –2(–0.25x )+ 2.75

It takes Jada 20 minutes to walk to school. It takes Andre 80 percentage as long to walk to school.How long does it take Andre to walk to school?

Answers

Answer:

16 minutes

Step-by-step explanation:

multiply 20 by 80% (20 times .80)

7x - 5y = -24
-9x + 5y = 18

Answers

Answer:

Nothing further can be done with this topic. Please check the expression entered or try another topic.

7x−5y=−24−9x+5y=187x-5y=-24-9x+5y=18

Answer:

Assuming this is a system of equations...

Point form > (3, 9)

Equation form > x = 3, y = 9

Step-by-step explanation:

So we need to solve for x in 7x - 5y = -24

Add 5y to both sides

7x = -24 + 5y

-9x + 5y = 18

Divide each term by 7

7x/7 = -24/7 + 4y/7

-9x + 5y = 18

x = -24/7 + 5y/7

-9x + 5y = 18

Now we need to replace all occurences of x with -24/7 + 5y/7

-9(-24/7 + 5y/7) + 5y = 18

x = -24/7 + 5y/7

So lets focus on simplifying -9(-24/7 + 5y/7) + 5y

Apply the distributive property

-9(-24/7) - 9 5y/7 + 5y = 18

Now multiply -9(-24/7)

So -1 by -9

9(24/7) - 9 5y/7 + 5y = 18

Combine 9 and 24/7

9 * 24/7 - 9 5y/7 + 5y = 18

Then Multiply 9 by 24

216/7 - 9 5y/7 + 5y = 18

Now we multiply -9 5y/7

So Combine -9 and 5y/7

216/7 + -9(5y)/7 + 5y = 18

Now Multiply 5 by -9

216/7 + -45y/7 + 5y = 18

Move the negative

216/7 - 45y/7 + 5y = 18

Now we need to multiply by 7/7 to make 5y a fraction with a common denom.

216/7 - 45y/7 + 5y * 7/7 = 18

Combine

216/7 + -45y + 5y * 7/7 = 18

Combine further

216 - 45y + 5y * 7/7 = 18

Multiply

216 - 45y + 35y

Add

216 - 10y/7 = 18

Factor 2 out of the equation

2(108) - 10y/7 = 18

Factor more

2(108) + 2(-5y)/7 = 18

Factor further

2(108 - 5y)/7 = 18

Now we want to solve for y in 2(108 - 5y)/7 = 18

Multiply both sides by 7 then simplify.

2(108 - 5y) * 7/7 = 18 * 7

2 * 108 + 2 (-5y) = 18 * 7

Multiply

216 + 2 (-5y) = 18 * 7

Multiply again

216 - 10y = 18 * 7

Reorder 216 and -10y

-10y + 216 = 18 * 7

Simplify the right side

-10y + 216 = 126

Now we need to solve for y

So lets move all terms not containing y to the right side.

-10y = 126 - 216 (Subtract 216 from both sides)

-10y = -90

Divide each term by -10

-10y/-10 = -90/-10

Simplify the left side

-90/10

And the right side

y = 9

x = -24/7 + 5y/7

Now replace y with 9

-24/7 + 5(9)/7

Simplify the right side

-24 + 5(9)/7

Multiply

-24 + 45

Add

21/7

x = 3

Therefore x = 3, y = 9 > (3, 9)

The perimeter of a regular octagon is 96 mm. How long each side?

Answers

Answer:

12

Step-by-step explanation:

regular implies that all sides are equal
8 sides
total of 96
96/8
12

express 7 1/2% to fraction

Answers

Answer:

15/2 is the answer to the question

Answer:

15/2

Step-by-step explanation:

The radius of a circle is 4 inches. How would you calculate the circumference?
A. π · 4² in.²
B. 2 · π· 4 in.
C. π · 8² in.²
D. 2· π · 8 in.

Answers

Step-by-step explanation:

the formula for the circumference of a circle is

2×pi×r

so, B is correct : 2×pi×4 in

b) 2 · π· 4 in.

Circumference of a circle: 2 • π • r

B. 2 · π· 4 in.



Find the area and circumference of this circle. Write your answer correct to the nearest hundredth

Answers

Answer:

Step-by-step explanation:

So we have that the diameter is 30, meaning the radius is 15.

Area: [tex]A=\pi r^{2}=\pi \cdot 15^{2}=225\pi \approx 706.86[/tex]

Circumference: [tex]C=2\pi r=2\pi \cdot 15 = 30\pi \approx 94.25[/tex]

4) In addition to using graphs, you should also be able to use a table to determine values in an equation. Fill in the following table based on your equation in question three defined the cost for these amount of loaves of bread that you buy.

(Equation is question 3 is y=1.60x+0)

5) where would you break even? In other words, how many loaves of bread would you need to buy where it would be the same cost to make those loaves of bread yourself? Look for the intersection of the two equations when you graph them on desmos.
How much would it cost to buy that many loaves of bread?

6) Give three advantages and three disadvantages to buying a bread maker. Would you choose to buy the bread maker or not? How did you make your decision?

Answers

It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.

Linear equation

A linear equation is in the form:

y = mx + b

where y, x are variables, m is the rate of change and b is the y intercept.

Let x represent the rate of cost of one loaf and y represent the total cost, hence:

y = 0.8x + 100

The rate of cost of one loaf is $0.8 and the start up cost is $100.

For the second bread it is given by:

y = 1.6x

For both cost to be the same:

1.6x = 0.8x + 100

x = 125

a = 1.6(4) = $6.4

b = 1.6(8) = $12.8

c = 1.6(12) = $19.2

It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.

Find out more on Linear equation at: https://brainly.com/question/13763238

Does anyone know the answer to this question?

Answers

Answer:

4

Step-by-step explanation:

You can set up the equation as 5x-3=2x+9. Subtract 2x from both sides, then add three to both sides which gives you 3x=12. Divide both sides by 3, and you get x=4.

find the smallest possible value of n for which 99n is multiple of 24​

Answers

Answer:

99 is not multiple of 24 you will get it wrong if you think it is

Step-by-step explanation:

Answer:

The answer is 8.

6.Name two streets that intersect.

7.Name two streets that are parallel

Answers

Answer:

6.Elm and Oak intersect

7.Birch and Maple are parallel

Step-by-step explanation:

If Elm and Oak continue, they will intersect with each other

Birch and Maple have same distance consistently between them


Is anybody able to help me with this?

Answers

Answer:

Step-by-step explanation:

Jeff is buying books at a used bookstore he wants to approximate the total cost of his purchase before checking out which amount is the most reasonable approximation of the total price of the five books

Answers

Answer:

$35.00

Step-by-step explanation:

I just did it rn

Section 8.1 Introduction to the Laplace Transforms

Problem 1.
Find the Laplace transforms of the following functions by evaluating the integral
[tex]F(s) = {∫}^{ \infty } _{0} {e}^{ - st} f(t)dt[/tex]
[tex](a)t[/tex]
[tex](b) {te}^{ - t} [/tex]
[tex](c) {sinh} \: bt[/tex]
[tex](d) {e}^{2t} - {3e}^{t} [/tex]
[tex](e) {t}^{2} [/tex]

Answers

For the integrals in (a), (b), and (e), you'll end up integrating by parts.

(a)

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt[/tex]

Let

[tex]u = t \implies du = dt[/tex]

[tex]dv = e^{-st} \, dt \implies v = -\dfrac1s e^{-st}[/tex]

Then

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = uv\bigg|_{t=0}^{t\to\infty} - \int_0^\infty v\, du[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = \left(-\frac1s te^{-st}\right)\bigg|_0^\infty + \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1s \left(\lim_{t\to\infty} te^{-st} - 0\right) + \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1{s^2} e^{-st} \bigg|_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1{s^2} \left(\lim_{t\to\infty}e^{-st} - 1\right) = \boxed{\frac1{s^2}}[/tex]

(b)

[tex]\displaystyle \int_0^\infty t e^{-t} e^{-st} \, dt = \int_0^\infty t e^{-(s+1)t} \, dt[/tex]

Let

[tex]u = t \implies du = dt[/tex]

[tex]dv = e^{-(s+1)t} \, dt \implies v = -\dfrac1{s+1} e^{-(s+1)}t[/tex]

Then

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\dfrac1{s+1} te^{-(s+1)t} \bigg|_0^\infty + \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\dfrac1{s+1} \left(\lim_{t\to\infty}te^{-(s+1)t} - 0\right) + \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\frac1{(s+1)^2} e^{-(s+1)t} \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\frac1{(s+1)^2} \left(\lim_{t\to\infty}e^{-(s+1)t} - 1\right) = \boxed{\frac1{(s+1)^2}}[/tex]

(e)

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt[/tex]

Let

[tex]u = t^2 \implies du = 2t \, dt[/tex]

[tex]dv = e^{-st} \, dt \implies v = -\dfrac1s e^{-st}[/tex]

Then

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = -\frac1s t^2 e^{-st} \bigg|_0^\infty + \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = -\frac1s \left(\lim_{t\to\infty} t^2 e^{-st} - 0\right) + \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

The remaining integral is the transform we found in (a), so

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = \frac2s \times \frac1{s^2} = \boxed{\frac2{s^3}}[/tex]

Computing the integrals in (c) and (d) is much more immediate.

(c)

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \int_0^\infty \frac{e^{bt}-e^{-bt}}2 \times e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \int_0^\infty \left(e^{(b-s)t} - e^{(b+s)t}\right) \, dt[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left(\frac1{b-s} e^{(b-s)t} - \frac1{b+s} e^{(b+s)t}\right) \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left[\lim_{t\to\infty}\left(\frac1{b-s} e^{(b-s)t} - \frac1{b+s} e^{(b+s)t}\right) - \left(\frac1{b-s} - \frac1{b+s}\right)\right][/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left(\frac1{b+s} - \frac1{b-s}\right) = \boxed{\frac{s}{s^2-b^2}}[/tex]

(d)

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \int_0^\infty \left(e^{(2-s)t} - 3e^{(1-s)t}\right) \, dt[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \left( \frac1{2-s} e^{(2-s)t} - \frac3{1-s} e^{(1-s)t} \right) \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \lim_{t\to\infty} \left( \frac1{2-s} e^{(2-s)t} - \frac3{1-s} e^{(1-s)t} \right) - \left( \frac1{2-s} - \frac3{1-s} \right)[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \frac3{1-s} - \frac1{2-s} = \boxed{-\frac{2s-5}{s^2-3s+2}}[/tex]

(1−x21​)5)=?
can someone help me ​

Answers

Answer:

answer is 105 hope u like it

There are 380 light bulbs lined up in a row in a long room.
Each bulb has its own switch and is currently switched off.
Each bulb is numbered consecutively from 1 to 380. You
first flip every switch. You then flip the switch on every
second bulb(turning off 2, 4,6...). You then flip the switch
on every third bulb (3, 6, 9...). This continues until you
have gone through the process 380 times.

Answers

Bulb 2 was activated 760 times throughout the process.

How to calculate how many times light bulb #2 was activated?

To calculate how many times light bulb #2 was activated, we must identify how many times it is activated in each process.

Based on the information provided, bulb two has the following activity.

Power on oncePower off once

According to the above, bulb #2 is activated 2 times each process. So to know how many times it is activated in total, we must multiply the number of times it is activated in each process by the total number of processes (380).

380 × 2 = 760

Note: This question is incomplete because the question is missing. Here is the question:

After repeating this process 380 times, how many times was light bulb 2 activated?

Learn more about light bubs in: https://brainly.com/question/4723473

(1 point) Use differentials (or equivalently, a linear approximation) to approximate sin(56∘)
sin(56∘) as follows: Let ()=sin() and find the equation of the tangent line to () at a "nice" point near 56∘. Then use this to approximate sin(56∘).
Approximation =

Answers

Linear approximations are used to estimate functions using derivatives

The approximated value of sin(56 degrees) is 0.8429

How to approximate sin(56)

The trigonometry expression is given as:

[tex]\sin(56^o)[/tex]

Convert 56 degrees to radians

[tex]56^o = \frac{56}{180}\pi[/tex]

To approximate, we make use of 45 degrees.

Where:

[tex]\sin(45^o) = \cos(45^o) = \frac{\sqrt 2}{2}[/tex]

Also, we have:

[tex]45^o= \frac{\pi}{4}[/tex]

And

[tex](\sin\ x)'= \cos\ x[/tex]

So, the approximation of sin(56 degrees) become:

[tex]\sin(56\°) = \sin(45\°) + (\frac{56}{180}\pi - \frac{\pi}{4}) *\cos(45\°)[/tex]

Substitute known values

[tex]\sin(56\°) = \frac{\sqrt 2}{2} + (\frac{56}{180}\pi - \frac{\pi}{4}) *\frac{\sqrt 2}{2}[/tex]

Take LCM

[tex]\sin(56\°) = \frac{\sqrt 2}{2} + \frac{56 - 45}{180}\pi *\frac{\sqrt 2}{2}[/tex]

[tex]\sin(56\°) = \frac{\sqrt 2}{2} + \frac{11}{180}\pi *\frac{\sqrt 2}{2}[/tex]

Solve the expression

[tex]\sin(56^o) = 0.8429[/tex]

Hence, the approximated value of sin(56 degrees) is 0.8429

Read more about linear approximation at:

https://brainly.com/question/26164627

Rajeev started to move from point A towards point B exactly an hour after Rohit started from B in the opposite direction but at a speed twice as much as that of rohit.By the time rohit covers ⅙ of the distance between the point B and A Rajeev also covers the same distance.

Answers

Speed is the rate of change of distance over time

It takes Rohit 2 hours to cover the same distance

How to determine the time

Represent Rajeev with A, and Rohit with B

Speed is calculated as:

[tex]Speed = \frac{Distance}{Time}[/tex]

Rohit covers 1/6 of the distance between point AB

So, we have:

[tex]S_B = \frac{AB/6}{T_B}[/tex]

Make T the subject

[tex]T_B = \frac{AB/6}{S_B}[/tex]

[tex]T_B = \frac{AB}{6S_B}[/tex]

Rajeev's speed is twice that of Rohit.

So, we have:

[tex]S_A = 2 * S_B[/tex]

[tex]S_A = \frac{AB}{T_A}[/tex]

So, the time taken by Rajiv to cover 1/6 of the distance is:

[tex]T_A = \frac{AB}{12S_B}[/tex]

The difference between the time is given as 1.

So, we have:

[tex]\frac{AB}{6S_B} - \frac{AB}{12S_B} = 1[/tex]

Multiply through by 12SB

[tex]2AB - AB = 12S_B[/tex]

[tex]AB = 12S_B[/tex]

Recall that:

[tex]T_B = \frac{AB}{6S_B}[/tex]

So, we have:

[tex]T_B =\frac{12S_B}{6S_B}[/tex]

[tex]T_B = 2[/tex]

Hence, it takes Rohit 2 hours to cover the same distance

Read more about speed at:

https://brainly.com/question/4931057

Calculus AB Homework, does anyone know how to do this...

Answers

(a) f(x) is continuous at x = 1 if the limits of f(x) from either side of x = 1 both exist and are equal:

[tex]\displaystyle \lim_{x\to1^-}f(x) = \lim_{x\to1} (2x-x^2) = 1[/tex]

[tex]\displaystyle \lim_{x\to1^+}f(x) = \lim_{x\to1} (x^2+kx+p) = 1 + k + p[/tex]

So we must have 1 + k + p = 1, or k + p = 0.

f(x) is differentiable at x = 1 if the derivative at x = 1 exists; in order for the derivative to exist, the following one-sided limits must also exist and be equal:

[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1^+}f'(x)[/tex]

Note that the derivative of each piece computed here only exists on the given open-ended domain - we don't know for sure that the derivative *does* exist at x = 1 just yet:

[tex]f(x) = \begin{cases}2x-x^2 & \text{for }x\le1 \\ x^2+kx+p & \text{for }x>1\end{cases} \implies f'(x) = \begin{cases}2 - 2x & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2x + k & \text{for }x > 1 \end{cases}[/tex]

Compute the one-sided limits of f '(x) :

[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1} (2 - 2x) = 0[/tex]

[tex]\displaystyle \lim_{x\to1^+}f'(x) = \lim_{x\to1} (2x+k) = 2 + k[/tex]

So if f '(1) exists, we must have 2 + k = 0, or k = -2, which in turn means p = 2, and these values tell us that we have f '(1) = 0.

(b) Find the critical points of f(x), where its derivative vanishes. We know that f '(1) = 0. To assess whether this is a turning point of f(x), we check the sign of f '(x) to the left and right of x = 1.

• When e.g. x = 0, we have f '(0) = 2 - 2•0 = 2 > 0

• When e.g. x = 2, we have f '(2) = 2•2 - 2 = 2 > 0

The sign of f '(x) doesn't change as we pass over x = 1, so this critical point is not a turning point. However, since f '(x) is positive to the left and right of x = 1, this means that f(x) is increasing on (-∞, 1) and (1, ∞).

(c) The graph of f(x) has possible inflection points wherever f ''(x) = 0 or is non-existent. Differentiating f '(x), we get

[tex]f'(x) = \begin{cases}2-2x & \text{for }x<1 \\ 0 & \text{for }x=1 \\ 2x+k & \text{for }x>1\end{cases} \implies f''(x) = \begin{cases}- 2 & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2 & \text{for }x > 1 \end{cases}[/tex]

Clearly f ''(x) ≠ 0 if x < 1 or if x > 1.

It is also impossible to choose a value of f ''(1) that makes f ''(x) continuous, or equivalently that makes f(x) twice-differentiable. In short, f ''(1) does not exist, so we have a single potential inflection point at x = 1.

From the above, we know that f ''(x) < 0 for x < 1, and f ''(x) > 0 for x > 1. This indicates a change in the concavity of f(x), which means x = 1 is the only inflection point.

How can you use
ratios to determine if a
relationship is
proportional?

Answers

Proportions are corresponding assuming they address a similar relationship. One method for checking whether two proportions are corresponding is to keep in touch with them as divisions and afterward decrease them. Assuming the decreased divisions are something similar, your proportions are relative.

Answer:

Ratios are proportional if they represent the same relationship. One way to see if two ratios are proportional is to write them as fractions and then reduce them. If the reduced fractions are the same, your ratios are proportional.

Step-by-step explanation:

Find the difference between 3x+5 and 10x-4.

Answers

Answer:

7x+9

Step-by-step explanation:

10x- 3x=7x

5--4=9

so you just bring them together so 7x+9

What is the value of triangle?

Answers

Answer:

the area of the triangle is 36

HELP PLS - ITS DUE TMR

Answers

The first one is 68 and the second one is 360
Other Questions
Membrane-bound organelles in plant cells that perform cellularfunctions such as photosynthesis (chloroplasts) or making andstoring pigments (chromoplasts) are knows as Find the value of x. a) x=109 b) x=115c) x=95d) x=129 Write an entry as if you are a women in 1910 who is involved in the suffrage movement. Describe the events around you. Are you involved in an organization and if so which one? Describe the important women around you and how they have influenced you and others. What is your ultimate goal and how do you plan to achieve that goal? Or take the stance of someone opposing women's suffrage. Why would you think that women should not be allowed to vote? What would you have done to try and keep the status quo where women did not cast ballots.Your journal response should be at least 200 words long. The _______ stipulates that if a state tries to pass a law that conflicts within an area that has federal legislative jurisdiction it will be found unconstitutional. Privileges and immunities clause State powers doctrine Bill of Rights State preemption doctrine Federal preemption doctrine A student checks the air pressure in her bicycle tires early in the morning when it is cool outside. If she measures it again later in the day when it is hotter, what will she most likely observe? The pressure is the same. The pressure has increased. The pressure has decreased. What should be in each box Suppose you have 12 chips, each a different color. How many different stacks of 5 chips can you make how does the opossum defend itself? What is the total surface area of rectangular prism? What happens to a tax bill after it is introduced in the United States House of Representatives, debated by a House Committoo, and approved by a House Committee? What isthe next stop in the lawmaking process?o the approved bill is sent to the Presidento the billis debated by the Senateo the bills debated and voted on in the entire House of Representativeso the bill is sent to a conference committee How did the Scientific Revolution contribute to the Enlightenment? It lessened the importance of observation and measurement in scientific discovery. It led individuals to recommit to traditional ideas. It strengthened people's belief in the authority of the Church. It led thinkers to seek out explanations instead of accepting common knowledge. The Hellenistic culture was a result of:A. a philosophical response to suffering.B. the long reign and lasting dynasty of Alexander the Great.C. the blending of the Eastern and Western cultures of Alexander's Empire.D. All of these choices are correct. (first stanza) The word rage can mean anger, but it can also mean passionan outpouring of feeling. How might Thomas have been using both meanings in the poem? Do not go gentle into that good night,Old age should burn and rave at close of day;Rage, rage against the dying of the light.Though wise men at their end know dark is right,Because their words had forked no lightning theyDo not go gentle into that good night.Good men, the last wave by, crying how brightTheir frail deeds might have danced in a green bay,Rage, rage against the dying of the light.Wild men who caught and sang the sun in flight,And learn, too late, they grieved it on its way,Do not go gentle into that good night.Grave men, near death, who see with blinding sightBlind eyes could blaze like meteors and be gay,Rage, rage against the dying of the light,And you, my father, there on the sad height,Curse, bless me now with your fierce tears, I pray.Do not go gentle into that good night.Rage, rage against the dying of the light. A student was asked to simplify the expression 2(x+3)+(4x8)7x . What form of advertising is a type of broadcast media?A. television adB. billboardC. mailD. newspaper ad Which one of these countries is not a group of islands?Indonesia, Philippines, Japan, China a = 12, b = 16, c = ?b) a = 15, b = ?, c = 18c) a = ?, b = 6, c = 15d) a = 4.1, b = 3.3, c = ?e) a = ?, b = 6.5, c = 12.2 The table shows the results of a survey of 200 randomly selected people on whether they like watermelon, cantaloupe, or both. A 4-column table with 3 rows. The first column has no label with entries cantaloupe, not cantaloupe, total. The second column is labeled watermelon with entries 93, 66, 159. The third column is labeled not watermelon with entries 16, 25, 41. The fourth column is labeled total with entries 109, 91, 200. Which is the marginal relative frequency for the people who do not like cantaloupe? StartFraction 25 Over 91 EndFraction StartFraction 66 Over 200 EndFraction StartFraction 91 Over 200 EndFraction StartFraction 66 Over 91 EndFraction. Suzie is going to run for 32 minutes. She can run 1 mile in 5 minutes and she cools off for 7minutes. How many miles can she run in her time limit? Read the passage below and answer the question that follows.Late Thursday evening, Jane was walking home from her friend Audreys house when she heard a startling noise. The still of the night was disturbed by the loud sound of trash cans hitting the ground. Anxious, Jane went to investigate the cause. She took out her pepper spray as she inched closer to the alley. Suddenly, one of the lids clattered to the floor. Startled, Jane jumped back and was about to yell for help when she saw the tail of a black cat disappearing behind the wall. She shook her head and sighed, relieved.Why did Jane take out her pepper spray?A. She was bored.B. She was hungry.C. She was scared.D. She was excited.Please select the best answer from the choices providedABCDPLEASE HELP ME!!!