Time-dependent Schrödinger's equation depends only on x. In contrast, Time- independent Schrödinger's equation depends on x and t

Answers

Answer 1

The time-dependent Schrödinger's equation is dependent only on position (x), while the time-independent Schrödinger's equation is dependent on both position (x) and time (t).

In quantum mechanics, the Schrödinger's equation describes the behavior of a quantum system. The time-dependent Schrödinger's equation, also known as wave equation, is given by:

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ,

The time-dependent Schrödinger's equation describes how the wave function evolves with time, allowing us to analyze dynamics and time evolution of quantum systems.

On the other hand, the time-independent Schrödinger's equation, also known as the stationary state equation, is used to find energy eigenstates and corresponding eigenvalues of a quantum system. It is given by:

-ħ²/2m ∂²ψ/∂x² + V(x)ψ = Eψ,

The time-independent Schrödinger's equation is independent of time, meaning it describes stationary, time-invariant solutions of a quantum system, such as the energy levels and wave functions of bound states.

Learn more about dependent here;

https://brainly.com/question/30958236

#SPJ11


Related Questions

Vector A points in the negative z direction. Vector points at an angle of 31.0" above the positive z axis. Vector C has a magnitude of 16 m and points in a direction 42.0* below the positive x axis. Part B Express your answer using two significant figures. |B|= ________ m

Answers

Vector A points in the negative z direction. Vector points at an angle of 31.0" above the positive z axis. Vector C has a magnitude of 16 m and points in a direction 42.0* below the positive x axis.

Vector A, A = {0, 0, -a}

Vector C, C = {16 cos 42.0°, 0, - 16 sin 42.0°}

Let B = A + B + C. Hence, B = {0, 0, -a} + {B sin 31.0° cos θ, B sin 31.0° sin θ, B cos 31.0°} + {16 cos 42.0°, 0, - 16 sin 42.0°}

Then, equating the x, y, and z components of the above equation separately, we get:

B sin 31.0° cos θ = - 16 cos 42.0°B sin 31.0° sin θ = 0

B cos 31.0° = a - 16 sin 42.0°

From the second equation, we have B = 0 or sin θ = 0, we have B = 0. But, B = 0 doesn't satisfy the third equation. Hence, sin θ = 0. So, θ = 0° or θ = 180°.When θ = 0°, we get,

B sin 31.0° cos θ = - 16 cos 42.0°B sin 31.0° (1) = - 16 cos 42.0°

B = - 16 cos 42.0° / sin 31.0°

Then, |B| = 22 m (approx.)

So, the required value of |B| is 22 m (approx.)

Note: You can also solve it by using the dot product of the vectors.

Learn more about vectors: https://brainly.com/question/17177764

#SPJ11

As shown in the figure, where V = 0 at infinity, what is the net electric potential at P due to the q1= 3.8, q2 = 3.8, q3 = 2.5, q4 = 6, q5 = 4.6, q6 = 8.6 with d =9.1.

Answers

The net electric potential at P due to charges q1, q2, q3, q4, q5, q6 is 13.47 x 10⁹ V

Given, q1= 3.8 μC, q2 = 3.8 μC, q3 = 2.5 μC, q4 = 6 μC, q5 = 4.6 μC, q6 = 8.6 μC and d =9.1. We have to find the net electric potential at P due to these charges.Let V1, V2, V3, V4, V5, V6 be the electric potentials at point P due to charges q1, q2, q3, q4, q5, q6 respectively.

Also, let VP be the resultant potential at P due to all charges.We know that the electric potential at any point due to a point charge q at a distance d from it is given by,V = (1/4πε) (q/d) ...........(1)Where ε is the permittivity of free space and has a constant value of 8.85 x 10⁻¹² C²/Nm².

Therefore, the electric potential at P due to charges q1, q2, q3, q4, q5, q6 can be given by,V1 = (1/4πε) (q1/d) ...........(2)V2 = (1/4πε) (q2/d) ...........(3)V3 = (1/4πε) (q3/d) ...........(4)V4 = (1/4πε) (q4/d) ...........(5)V5 = (1/4πε) (q5/d) ...........(6)V6 = (1/4πε) (q6/d) ...........(7)The net electric potential at P is given by the sum of all the potentials.

Therefore,VP = V1 + V2 + V3 + V4 + V5 + V6 ...........(8)Substituting the given values in equations (2) to (7), we get,V1 = (1/4πε) (3.8 x 10⁻⁶/9.1) = 1.35 x 10⁹ VV2 = (1/4πε) (3.8 x 10⁻⁶/9.1) = 1.35 x 10⁹ VV3 = (1/4πε) (2.5 x 10⁻⁶/9.1) = 8.85 x 10⁸ VV4 = (1/4πε) (6 x 10⁻⁶/9.1) = 2.12 x 10⁹ VV5 = (1/4πε) (4.6 x 10⁻⁶/9.1) = 1.64 x 10⁹ VV6 = (1/4πε) (8.6 x 10⁻⁶/9.1) = 3.06 x 10⁹ V.

Substituting these values in equation (8), we get,VP = 1.35 x 10⁹ + 1.35 x 10⁹ + 8.85 x 10⁸ + 2.12 x 10⁹ + 1.64 x 10⁹ + 3.06 x 10⁹= 13.47 x 10⁹ VTherefore, the net electric potential at P due to charges q1, q2, q3, q4, q5, q6 is 13.47 x 10⁹ V when V = 0 at infinity and d = 9.1 m. Answer: 13.47 x 10⁹ V.equations

Learn more about equations here,

https://brainly.com/question/29174899

#SPJ11

A concave mirror is to form an image of the filament of a headlight Part A lamp on a screen 8.50 m from the mirror. The filament is 8.00 mm tall, and the image is to be 26.0 cm tall. How far in front of the vertex of the mirror should the filament be placed? Express your answer in meters. Part B What should be the radius of curvature of the mirror? Express your answer in meters.

Answers

A)The filament should be placed approximately 0.325 meters (or 32.5 cm) in front of the vertex of the mirror. B)The radius of curvature of the mirror should be approximately 0.156 meters (or 15.6 cm).

Part A: The magnification formula for a concave mirror is given by:

magnification (m) = -image height ([tex]h_i[/tex]) / object height ([tex]h_o[/tex])

Given that the image height ([tex]h_i[/tex]) is 26.0 cm and the object height ([tex]h_o[/tex]) is 8.00 mm. Converting the object height to centimetres,

object height = 0.80 cm.

Rearranging the formula, solve for the object distance:

[tex]d_o = -h_i / (m * h_o)[/tex]

Since the mirror forms a real and inverted image, the magnification (m) is negative. Substituting the given values,

[tex]d_o = -26.0 cm / (-1 * 0.80 cm) \approx 32.5 cm[/tex]

Converting the object distance to meters, the filament should be placed approximately 0.325 meters (or 32.5 cm) in front of the vertex of the mirror.

Part B: The mirror equation for a concave mirror is given by:

[tex]1 / d_o + 1 / d_i = 1 / f[/tex]

It's already determined that the object distance ([tex]d_o[/tex]) is approximately 0.325 meters. The image distance ([tex]d_i[/tex]) is the distance between the mirror and the screen, which is given as 8.50 m.

Substituting these values into the mirror equation, focal length (f):

1 / 0.325 + 1 / 8.50 = 1 / f

Simplifying the equation,

f ≈ 0.1556 m

Therefore, the radius of curvature of the mirror should be approximately 0.156 meters (or 15.6 cm).

Learn more about concave mirrors here:

https://brainly.com/question/31440449

#SPJ11

A 87 -kg adult sits at the left end of a 6.0−m-long board. His 34-kg child sits on the right end. Where should the pivot be placed (from the child's end, right endf so that the board is balanced ignoring the board's mass? (Write down your-answer in meters and up to two decimal points]

Answers

A 87 -kg adult sits at the left end of a 6.0−m-long board. His 34-kg child sits on the right end. the pivot should be placed approximately 0.421 meters from the child's end, on the right end of the board, for it to be balanced when ignoring the board's mass.

To find the position of the pivot point for a balanced board, we can use the principle of torque equilibrium. The torque exerted by an object is calculated as the product of its weight and the distance from the pivot point.

Given:

Mass of the adult (mA) = 87 kg

Mass of the child (mC) = 34 kg

Length of the board (L) = 6.0 m

Let x be the distance from the child's end to the pivot point. Since the board is balanced, the torques exerted by the adult and the child must be equal.

Torque exerted by the adult: TorqueA = mA * g * (L - x)

Torque exerted by the child: TorqueC = mC * g * x

Where g is the acceleration due to gravity.

Setting the torques equal to each other:

mA * g * (L - x) = mC * g * x

Simplifying the equation:

87 * 9.8 * (6.0 - x) = 34 * 9.8 * x

Solving for x:

510.6 - 87 * 9.8 * x = 333.2 * x

510.6 = (333.2 + 87 * 9.8) * x

510.6 = 1211.6 * x

x = 0.421

Therefore, the pivot should be placed approximately 0.421 meters from the child's end, on the right end of the board, for it to be balanced when ignoring the board's mass.

Learn more about torque here:

https://brainly.com/question/29361238

#SPJ11

A car with a mass of 750 kg moving at a speed of 23 m/s rear-ends a truck with a mass of 1250 kg and a speed of 15 m/s. (The two vehicles are initially traveling in the same direction.) If the collision is elastic, find the final velocities of the two vehicles. (This is a 1-dimensional collision.)

Answers

The final velocities of the two vehicles, if the collision is elastic, then v₁ = 18 m/s and v₂ = 48 m/s.

It is given that, Mass of car, m₁ = 750 kg, Initial velocity of car, u₁ = 23 m/s, Mass of truck, m₂ = 1250 kg, Initial velocity of truck, u₂ = 15 m/s and the collision is elastic. Therefore, the total momentum of the system is conserved, i.e.,

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

Putting the values, we get,

750 × 23 + 1250 × 15 = 750v₁ + 1250v₂

(17250 + 18750) = (750v₁ + 1250v₂)

36000 = 750v₁ + 1250v₂

(6 × 6000) = 750v₁+ 1250v₂

Now, we have two variables and only one equation. We need another equation. We can use the conservation of kinetic energy to get another equation.

Since the collision is elastic, the total kinetic energy of the system is conserved, i.e.,

(1/2)m₁*2u₁ + (1/2)m₂*2u₂ = (1/2)m₁*2v₁ + (1/2)m₂*2v₂

Putting the values, we get,

(1/2) × 750 × (23)2 + (1/2) × 1250 × (15)2 = (1/2) × 750 × 2v₁ + (1/2) × 1250 × 2v₂

Solving further, we get,

195375 = 375v₁ + 937.5v₂(195375 / 375) = v₁ + (937.5 / 375)v₂(521 / 5) = v₁ + (25 / 2)v₂

Multiplying the first equation by 25 and subtracting the second equation, we get,

15000 = (625/2)v₂

v₂ = 48 m/s

Putting the value of v₂ in the first equation, we get,

6 × 6000 = 750v1 + 1250(48)

v₁ = 18 m/s

Therefore, the final velocities of the two vehicles are:v₁ = 18 m/s , v₂= 48 m/s.

To learn more about velocity: https://brainly.com/question/80295

#SPJ11

A 33.70-kg object is moved through 2.00 m by a 1.80-N force acting in the same
direction as the distance it moves through. How much work is on the object during this
process?

Answers

A 33.70-kg object is moved through 2.00 m by a 1.80-N force acting in the same direction as the distance it moves through. the work done on the object during this process is 3.60 joules (J).

To determine the work done on the object, we can use the formula:

Work = Force × Distance × cos(θ)

Where the force and distance are given, and θ is the angle between the force and the direction of motion. In this case, the force and distance are in the same direction, so the angle θ is 0 degrees.

Given:

Force = 1.80 N

Distance = 2.00 m

θ = 0 degrees

Pllgging these values into the formula, we have:

Work = 1.80 N × 2.00 m × cos(0 degrees)

Since cos(0 degrees) = 1, the equation simplifies to:

Work = 1.80 N × 2.00 m × 1

Work = 3.60 N·m

Therefore, the work done on the object during this process is 3.60 joules (J).

The work done represents the energy transferred to the object as a result of the applied force over a given distance. In this case, a force of 1.80 N is exerted over a distance of 2.00 m in the same direction. As a result, the object gains 3.60 J of energy. This work can be used to change the object's speed, increase its potential energy, or perform other forms of mechanical work.

Learn more about force here:

https://brainly.com/question/13191643

#SPJ11

Alternating current have voltages and currents through
the circuit elements that vary as a function of time. Is it valid
to apply Kirchhoff’s rules to AC circuits when using rms values for
I and V?

Answers

Kirchhoff's rules can be applied to AC circuits using rms values for current and voltage. RMS values represent the effective values, allowing analysis of current distribution and voltage drops in AC circuits.

It is valid to apply Kirchhoff's rules to AC circuits when using rms (root mean square) values for current (I) and voltage (V). Kirchhoff's rules, which include Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL), are fundamental principles that govern the behavior of electrical circuits.

The rms values of current and voltage represent the effective values of the alternating current or voltage. They are calculated as the square root of the average of the squares of the instantaneous values over a complete cycle. By using rms values, we can treat AC circuits in a similar manner to DC circuits.

Kirchhoff's rules state that the algebraic sum of currents at any node in a circuit is zero (KCL), and the algebraic sum of voltages in any closed loop of a circuit is zero (KVL). These rules hold true for AC circuits because they are based on the conservation of charge and energy.

By using rms values, we can effectively analyze and solve AC circuits using Kirchhoff's rules, allowing us to determine current distribution, voltage drops, and power calculations in AC circuits.

To know more about Kirchhoff's rules,

https://brainly.com/question/31824235

#SPJ11

The Starship Enterprise returns from warp drive to ordinary space with a forward speed of 60 km/s. To the crew's great surprise, a Klingon ship is 150 km directly ahead, traveling in the same direction at a mere 22 km/s. Without evasive action, the Enterprise will overtake and collide with the Klingons in just about 3.9 s . The Enterprise's computers react instantly to brake the ship. 6 of 6 Review | Constants Part A What magnitude acceleration does the Enterprise need to just barely avoid a collision with the Klingon ship? Assume the acceleration is constant.
Hint: Draw a position-versus-time graph showing the motions of both the Enterprise and the Klingon ship. Let zo = 0km be the location of the Enterprise as it returns from warp drive. How do you show graphically the situation in which the collision is "barely avoided"? Once you decide what it looks like graphically, express that situation mathematically.

Answers

The Enterprise needs to come to a stop just as it reaches position of Klingon ship. Therefore position-versus-time graph for Enterprise would be a straight line with a positive slope initially, representing its initial velocity of 60 km/s.

At the moment of collision avoidance, the Enterprise's position should match that of the Klingon ship. This means the two lines on the graph should intersect at the same point.
Mathematically, this can be expressed by setting the equations for the positions of the Enterprise and the Klingon ship equal to each other:
60t = 22t + 150
By rearranging the equation, we have: 60t - 22t = 150
38t = 150
t ≈ 3.95 seconds
Therefore, to just barely avoid a collision with the Klingon ship, the Enterprise needs to achieve an acceleration that brings it to a stop within approximately 3.95 seconds.

Learn more about position here;
https://brainly.com/question/28180944

#SPJ11

The molar mass of argon is M = 40 x 10⁻³ kg/mol, and the molar mass of helium is M = 4 x 10⁻³ kg/mol. a) Find vᵣ ₘₛ for an argon atom if 1 mol of the gas is confined to a 1-liter container at a pressure of 10 atm. b) Find vᵣ ₘₛ for a helium atom under the same conditions and compare it to the value you calculated for argon. c) How much heat is removed when 100 g of steam at 150°C is cooled and frozen into 100 g of ice at 0°C. Note that the specific heat of ice is 2,010 J/kg·K and the specific heat of liquid water is 4,186 J/kg·K.

Answers

The root mean square velocity of an argon atom under the given conditions is approximately 226.23 m/s. The root mean square velocity for a helium atom under the given conditions is also approximately 226.23 m/s. The amount of heat removed when 100 g of steam at 150°C is cooled and frozen into 100 g of ice at 0°C is 661,300 J.

a) To find vᵣ ₘₛ for an argon atom if 1 mol of the gas is confined to a 1-liter container at a pressure of 10 atm, use the ideal gas law formula:

vᵣ ₘₛ = RT/P

where R is the gas constant, T is the temperature, and P is the pressure.

Given:

R = 8.31 J/(mol·K)

T = 273 K (room temperature)

P = 10 atm

vᵣ ₘₛ = (8.31 J/(mol·K) * 273 K) / (10 atm) ≈ 226.23 m/s

Therefore, the root mean square velocity of an argon atom under the given conditions is approximately 226.23 m/s.

b) For a helium atom under the same conditions, use the same formula:

vᵣ ₘₛ = RT/P

Substituting the values:

vᵣ ₘₛ = (8.31 J/(mol·K) * 273 K) / (10 atm) ≈ 226.23 m/s

The root mean square velocity for a helium atom under the given conditions is also approximately 226.23 m/s.

Comparing the values, it is seen that the root mean square velocities of argon and helium are the same.

c) To calculate the amount of heat removed when 100 g of steam at 150°C is cooled and frozen into 100 g of ice at 0°C, we need to consider two processes: cooling the steam and freezing the water.

Cooling the steam:

Q1 = m1 * c1 * ΔT1

where m1 is the mass, c1 is the specific heat capacity, and ΔT1 is the change in temperature.

Given:

m1 = 100 g

c1 (specific heat of steam) = 4,186 J/(kg·K)

ΔT1 = 150°C - 0°C = 150 K

Q1 = 100/1000 * 4,186 J/(kg·K) * 150 K = 627,900 J

Freezing the water:

Q2 = m2 * L

where m2 is the mass and L is the latent heat of fusion.

Given:

m2 = 100 g

L (latent heat of fusion) = 334,000 J/kg

Q2 = 100/1000 * 334,000 J/kg = 33,400 J

The total heat removed is the sum of Q1 and Q2:

Q = Q1 + Q2 = 627,900 J + 33,400 J = 661,300 J

Therefore, the amount of heat removed when 100 g of steam at 150°C is cooled and frozen into 100 g of ice at 0°C is 661,300 J.

Learn more about heat: https://brainly.com/question/934320

#SPJ11

A rectangular loop of 270 turns is 31 cmcm wide and 17 cmcm
high.
Part A
What is the current in this loop if the maximum torque in a
field of 0.49 TT is 23 N⋅mN⋅m ?

Answers

The current in the rectangular loop is approximately 4.034 Amperes. To find the current in the rectangular loop, we can use the formula for the torque experienced by a current-carrying loop in a magnetic field:

Torque (τ) = N * B * A * I * sin(θ),

where:

τ is the torque,

N is the number of turns in the loop,

B is the magnetic field strength,

A is the area of the loop,

I is the current flowing through the loop,

θ is the angle between the magnetic field and the normal to the loop.

In this case, we are given the maximum torque (τ = 23 N⋅m), the number of turns (N = 270), the magnetic field strength (B = 0.49 T), and the dimensions of the loop (width = 31 cm, height = 17 cm).

First, we need to calculate the area of the loop:

A = width * height.

A = 31 cm * 17 cm.

Now, let's convert the area from square centimeters to square meters:

A = (31 cm * 17 cm) / (100 cm/m)².

Next, we can rearrange the torque formula to solve for the current (I):

I = τ / (N * B * A * sin(θ)).

Since we are not given the angle θ, we will assume it is 90 degrees (sin(90) = 1), which represents a perpendicular orientation between the magnetic field and the loop.

Substituting the given values:

I = 23 N⋅m / (270 * 0.49 T * A * 1).

Finally, substitute the calculated value for the loop's area:

I = 23 N⋅m / (270 * 0.49 T * (31 cm * 17 cm) / (100 cm/m)²).

Now, we can compute the current in the loop using the given values and perform the necessary calculations:

I ≈ 23 N⋅m / (270 * 0.49 T * (31 cm * 17 cm) / (100 cm/m)²).

I ≈ 4.034 A.

Therefore, the current in the rectangular loop is approximately 4.034 Amperes.

To know more about the torque

brainly.com/question/31323759

#SPJ11

A horizontal force of 230 N is applied to a 52 kg carton (initially at rest) on a level floor. The coefficient of static friction is 0.5. The frictional force acting on the carton if the carton does not move is: A) 230 N B) 200 N C) 510 N D) 150 N

Answers

A horizontal force of 230 N is applied to a 52 kg carton (initially at rest) on a level floor. the frictional force acting on the carton, if it does not move, is approximately 254.8 N. Thus, the correct answer is C) 510 N.

To determine the frictional force acting on the carton, we first need to understand the concept of static friction. Static friction is the force that prevents an object from moving when an external force is applied to it. It acts in the opposite direction of the applied force until the applied force exceeds the maximum static friction force.

The maximum static friction force can be calculated using the formula:

Frictional Force = Coefficient of Static Friction × Normal Force

In this case, the normal force is equal to the weight of the carton, which is given by the formula:

Normal Force = Mass × Acceleration due to Gravity

Normal Force = 52 kg × 9.8 m/s^2 (approximately)

Normal Force = 509.6 N (approximately)

Now, we can calculate the maximum static friction force:

Frictional Force = 0.5 × 509.6 N

Frictional Force = 254.8 N

Therefore, the frictional force acting on the carton, if it does not move, is approximately 254.8 N. Thus, the correct answer is C) 510 N.

Learn more about frictional force here:

https://brainly.com/question/30280206

#SPJ11

Photoelectric effect is observed on two metal surfaces.
Light of wavelength 300.0 nm is incident on a metal that has a work function of 2.80 eV. What is the maximum speed of the emitted electrons?
...m/s

Answers

Therefore, the maximum speed of the emitted electrons is 1.62 x 10⁶ m/s.

The photoelectric effect is observed on two metal surfaces. If light of wavelength 300.0 nm is incident on a metal that has a work function of 2.80 eV, the maximum speed of the emitted electrons is 1.62 x 10⁶ m/s. What is the photoelectric effect? The photoelectric effect, also known as the Hertz–Lenard effect, is a phenomenon in which electrons are emitted from a metal surface when light is shone on it. The photoelectric effect was initially studied by Heinrich Hertz in 1887 and later by Philipp Lenard in 1902.Latex-free answer: To calculate the maximum speed of emitted electrons using the photoelectric effect equation, we can use the following formula: KEmax = hν - φwhere KE max is the maximum kinetic energy of the ejected electron, h is Planck's constant, ν is the frequency of the incident light, and φ is the work function of the metal. Using the equation, we can convert the given wavelength of 300.0 nm to frequency by using the formula c = λν where c is the speed of light and λ is the wavelength. c = λνν = c/λν = (3.0 x 10⁸ m/s) / (300.0 x 10⁻⁹ m)ν = 1.0 x 10¹⁵ Hz, Now we can plug in the values in the equation: KE max = (6.626 x 10⁻³⁴ J s) (1.0 x 10¹⁵ Hz) - (2.80 eV)(1.60 x 10⁻¹⁹ J/eV)KE max = 1.06 x 10⁻¹⁹ J - 4.48 x 10⁻¹⁹ JKE max = -3.42 x 10⁻¹⁹ J. Since KE max is a positive value, we can convert the value to speed using the equation KE = 1/2mv² where m is the mass of the electron and v is the velocity of the electron: v = √(2KE/m)v = √[(2)(3.42 x 10⁻¹⁹ J)/(9.11 x 10⁻³¹ kg)]v = 1.62 x 10⁶ m/s. Therefore, the maximum speed of the emitted electrons is 1.62 x 10⁶ m/s.

To know more about photoelectric emission visit:

https://brainly.com/question/31793669

#SPJ11

The figure shows four particles, each of mass 30.0 g, that form a square with an edge length of d-0.800 m. If d is reduced to 0.200 m, what is the change in the gravitational potential energy of the f

Answers

The change in gravitational potential energy of the four particles when d is reduced to 0.200 m is ΔU = (-6.00687 × 10⁻¹²) (1/0.2 - 1/(d-0.8)).

The given figure shows four particles, each of mass 30.0 g, forming a square with an edge length of d-0.800 m. The change in gravitational potential energy of the four particles can be calculated using the formula:ΔU = Uf - Ui where ΔU is the change in gravitational potential energy, Uf is the final gravitational potential energy, and Ui is the initial gravitational potential energy. The initial gravitational potential energy of the four particles can be calculated using the formula: Ui = -G m² / r where G is the gravitational constant, m is the mass of each particle, and r is the initial distance between the particles. Since the particles form a square with an edge length of d-0.800 m, the initial distance between the particles is:r = d - 0.800 m. The final gravitational potential energy of the four particles can be calculated using the same formula with the final distance between the particles:r' = 0.200 mΔU = Uf - Ui= -G m² / r' - (-G m² / r)= -G m² (1/r' - 1/r)Now, substituting the given values,G = 6.6743 × 10⁻¹¹ m³ / kg s²m = 0.03 kr = d - 0.8 mr' = 0.2 kΔU = (-6.6743 × 10⁻¹¹ × 0.03²) (1/0.2 - 1/(d-0.8))= (-6.6743 × 10⁻¹¹ × 0.0009) (1/0.2 - 1/(d-0.8))= (-6.00687 × 10⁻¹²) (1/0.2 - 1/(d-0.8)). The change in gravitational potential energy of the four particles when d is reduced to 0.200 m is ΔU = (-6.00687 × 10⁻¹²) (1/0.2 - 1/(d-0.8)).

To know more about particles,  visit:

https://brainly.com/question/30381265

#SPJ11

The drag force of a projectile in air is proportional to the square of the velocity: D=bv² Which of the following options correctly represents the dimensions of the constant b? a. m² = kg/s² b. kg/m c. m³kg d. Ns/m² e. kg/s²

Answers

The dimensions of the constant b is  Ns/m². The correct option is d

The drag force of a projectile in air is proportional to the square of the velocity.

This means that D= bv²

where

D is the drag force,

v is the velocity,  

b is a constant.

Therefore, the dimensions of the constant b can be obtained as follows:

Dimension of force F = MLT−2

Dimension of velocity v = LT−1

Dimension of drag coefficient b = D/F = [MLT−2]/[L2T−2] = [M/T] [1/L]2

The above is the dimensional formula for b.

To make this dimensionless constant into SI units we need to do some conversions to get the right combination of dimensions that give the correct unit.

Now, mass is in kilograms (kg), length is in meters (m), and time is in seconds (s).

Therefore, we have,

Dimension of b = [M/T] [1/L]2

                         = kg/s . 1/m2

                         = Ns/m²

Hence, the correct option is d. Ns/m².

Learn more about the dimension:

brainly.com/question/30338180

#SPJ11

material and energy balance equations for an unsteady
compressible flow in Cartesian coordinates

Answers

In an unsteady compressible flow in Cartesian coordinates, material and energy balance equations are used to describe the conservation of mass and energy within the system. These equations are commonly referred to as the continuity equation and the energy equation, respectively.

Continuity Equation:

The continuity equation for an unsteady compressible flow in Cartesian coordinates can be expressed as:

∂ρ/∂t + ∂(ρu)/∂x + ∂(ρv)/∂y + ∂(ρw)/∂z = 0

where:

ρ is the density of the fluid,

t is the time,

u, v, and w are the components of velocity in the x, y, and z directions, respectively, and

x, y, and z are the Cartesian coordinates.

This equation represents the conservation of mass and states that the rate of change of density within a control volume, together with the divergence of the mass flux in each direction, must sum to zero.

Energy Equation:

The energy equation for an unsteady compressible flow in Cartesian coordinates can be expressed as:

∂(ρe)/∂t + ∂(ρeu)/∂x + ∂(ρev)/∂y + ∂(ρew)/∂z = -∇•(pu) + ∂(τu)/∂x + ∂(τv)/∂y + ∂(τw)/∂z + Q

where:

e is the specific internal energy of the fluid,

p is the pressure,

τ is the stress tensor,

Q is the heat transfer per unit volume,

and other terms have the same meaning as in the continuity equation.

This equation represents the conservation of energy and states that the rate of change of energy within a control volume, together with the work done by pressure forces, heat transfer, and viscous effects, must sum to zero.

These material and energy balance equations provide a mathematical framework for analyzing and predicting the behavior of unsteady compressible flows in Cartesian coordinates. They are essential tools in fields such as fluid dynamics, aerodynamics, and thermodynamics for understanding the flow and energy exchange processes within a system.

Learn more about fluid dynamics here:

https://brainly.com/question/30578986

#SPJ11

If your heart rate is 150 beats per minute during strenuous exercise, what is the time per beat in units of seconds? Answer 14. A stroboscope is set to flash every 9.00×10 −5
s. What is the frequency of the flashes? Answer 15. When an 90.0-kg man stands on a pogo stick, the spring is compressed 0.150 m. What is the force constant of the spring? Answer 16. What is the period of a 1.00−m-long pendulum?

Answers

The period of the 1.00-meter-long pendulum is approximately 2.01 seconds. The period represents the time it takes for the pendulum to complete one full swing, moving back and forth from one extreme to the other.

The period of a pendulum is the time it takes to complete one full swing. For a 1.00-meter-long pendulum, the period can be calculated using the formula T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

To find the period of a pendulum, we can use the formula T = 2π√(L/g), where T represents the period, L is the length of the pendulum, and g is the acceleration due to gravity. In this case, we have a 1.00-meter-long pendulum. The acceleration due to gravity on Earth is approximately 9.8 m/s². Plugging these values into the formula, we get:

T = 2π√(1.00/9.8)

≈ 2π√(0.102)

≈ 2π × 0.320

≈ 2.01 seconds

Therefore, the period of the 1.00-meter-long pendulum is approximately 2.01 seconds. The period represents the time it takes for the pendulum to complete one full swing, moving back and forth from one extreme to the other. This value is influenced by the length of the pendulum and the acceleration due to gravity, and it remains constant as long as these factors remain unchanged.

Learn more about period of a pendulum:

https://brainly.com/question/29702798

#SPJ11

A single red train car moving at 15 m/s collides with three stationary blue train cars connected to each other. After the collision, the red train car bounces back at a speed of 10 m/s, and the blue train cars move forward. If the mass of a single blue train car is twice the mass of a red train car, what is the speed of the blue train cars (in m/s ) after the collision? Round to the nearest hundredth (0.01).

Answers

The speed of the blue train cars after the collision is 4.17 m/s .

The answer to the question can be found using the law of conservation of momentum. When two objects collide, the total momentum of the system before the collision is equal to the total momentum after the collision. Therefore, we can use the following equation to solve the problem:Mass × Velocity = Momentumwhere momentum is the product of mass and velocity.

Let us assume that the mass of a single red train car is m1, and the mass of a single blue train car is m2. After the collision, the red train car bounces back at a speed of 10 m/s. Therefore, its velocity is -10 m/s (negative sign indicates that it's moving in the opposite direction). The blue train cars move forward at a speed of v m/s.

Therefore, the total momentum of the system before the collision is:m1 × 15 m/s = 15m1The total momentum of the system after the collision is:m1 × (-10 m/s) + 3m2 × v = -10m1 + 3m2vTherefore, using the law of conservation of momentum, we can write:15m1 = -10m1 + 3m2vSolving for v, we get:v = 25m1 / (3m2)We know that the mass of a single blue train car is twice the mass of a red train car.

Therefore, we can write:m2 = 2m1Substituting this into the equation above, we get:v = 25m1 / (6m1) = 4.17 m/sTherefore, the speed of the blue train cars after the collision is 4.17 m/s .

Learn more about collision here,

https://brainly.com/question/7221794

#SPJ11

The acceleration due to gravity on planet X is 2,7 m-s-2. The radius of this planet is a third (⅓) of the radius of Earth.

1. Calculate the mass of planet X.​

Answers

To calculate the mass of planet X, we can use the formula for the acceleration due to gravity:

g = G * (M / R^2)

Where:
g is the acceleration due to gravity,
G is the gravitational constant,
M is the mass of the planet, and
R is the radius of the planet.

Given:
Acceleration due to gravity on planet X (g) = 2.7 m/s^2
Radius of planet X (r) = (1/3) * Radius of Earth (R)

Let's denote the mass of planet X as "Mx."

Substituting the values into the formula, we have:

2.7 m/s^2 = G * (Mx / (r^2))

Now, let's consider the ratio of the radii:

r = (1/3) * R

Substituting this into the equation:

2.7 m/s^2 = G * (Mx / ((1/3 * R)^2))

Simplifying further:

2.7 m/s^2 = G * (Mx / (1/9 * R^2))

Multiplying both sides by (1/9 * R^2):

2.7 m/s^2 * (1/9 * R^2) = G * Mx

Rearranging the equation to solve for Mx:

Mx = (2.7 m/s^2 * (1/9 * R^2)) / G

The value of G, the gravitational constant, is approximately 6.67430 × 10^-11 m^3/(kg * s^2).

Let's assume the radius of Earth (R) is approximately 6,371 km (or 6,371,000 meters).

Now, we can substitute these values into the equation to calculate the mass of planet X (Mx):

Mx = (2.7 m/s^2 * (1/9 * (6,371,000 m)^2)) / (6.67430 × 10^-11 m^3/(kg * s^2))

Calculating this expression will give us the mass of planet X.

What formula is used to find the experimental equivalent resistance?

Answers

The formula used to find the experimental equivalent resistance in a circuit is [tex]R_eq = V/I[/tex],

where [tex]R_eq[/tex] is the equivalent resistance, V is the applied voltage, and I is the current flowing through the circuit.

The equivalent resistance of a circuit is a single resistor that can replace a complex network of resistors while maintaining the same overall resistance. It represents the combined effect of all the resistors in the circuit.

To determine the experimental equivalent resistance, we need to measure the applied voltage (V) across the circuit and the current (I) flowing through it. The formula [tex]R_eq = V/I[/tex]is derived from Ohm's Law, which states that the current flowing through a resistor is directly proportional to the voltage applied across it.

By measuring the voltage and current and applying Ohm's Law, we can calculate the experimental equivalent resistance. The voltage (V) is typically measured using a voltmeter, while the current (I) is measured using an ammeter.

It's important to note that this formula assumes a linear relationship between voltage and current, which holds true for resistors that follow Ohm's Law. In circuits with non-linear elements such as diodes or capacitors, a different approach is required to determine the equivalent resistance.

Learn more about resistance

https://brainly.com/question/17563681

#SPJ11

An X-ray photon is scattered at an angle of θ=180.0 ∘
from an electron that is initially at rest. After scattering, the electron has a speed of 5.40×10 6
m/s. Find the wavelength of the incident X-ray photon.

Answers

The wavelength of the incident X-ray photon is 3.57 × 10-11 m.

A wavelength of the incident X-ray photon is required if an X-ray photon is scattered at an angle of θ = 180.0∘ from an electron that is initially at rest and the electron has a speed of 5.40 × 10 6 m/s after scattering.

The momentum conservation law holds for the electron and photon before and after scattering because the interaction is a collision. Before scattering: p i = h/λ... (1)

After scattering:p f = h/λ′... (2)

The momentum conservation law can be stated as follows:p i = p f + p e... (3), where pe is the momentum of the electron after scattering and can be calculated using the following equations:

Kinetic energy = 1/2 mv2Pe = mv... (4), where m is the mass of the electron, and v is the velocity of the electron, which is given in the problem as 5.40 × 10 6 m/s.

The momentum of the photon can be calculated using the following equations: E = pc... (5), where E is the energy of the photon, c is the speed of light, and p is the momentum of the photon.

The energy of the photon before scattering is equal to the energy of the photon after scattering because the scattering is elastic. Therefore, E i = E f... (6), where Ei is the energy of the incident photon and Ef is the energy of the scattered photon.

The energy of a photon can be expressed as E = hc/λ... (7), where h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.

Substituting equations (1) through (7) into equation (3) and solving for λ gives: λ = h/(mc)(1−cosθ)+(h/mcλ′)

Substituting the given values into the above equation:λ = [(6.63 × 10-34)/(9.11 × 10-31 × 3 × 108)](1 - cos 180°) + [(6.63 × 10-34)/(9.11 × 10-31 × 5.40 × 106)]λ = 1.03 × 10-11 + 2.54 × 10-11λ = 3.57 × 10-11 m

Therefore, the wavelength of the incident X-ray photon is 3.57 × 10-11 m.

To learn about wavelength here:

https://brainly.com/question/29213586

#SPJ11

73. A small soap factory in Laguna supplies soap containing 30% water to a local hotel at P373 per 100 kilos FOB. During a stock out, a different batch of soap containing 5% water was offered instead.

Answers

The new cost of the soap containing 5% water would be cheaper. However, it is important to note that the new batch of soap may not have the same quality as the original batch containing 30% water. The hotel may also not be satisfied with the quality of the new batch and may choose to switch suppliers.

In the case of a small soap factory in Laguna that supplies soap containing 30% water to a local hotel at P373 per 100 kilos FOB and then experiencing a stock out, the factory may provide a different batch of soap containing 5% water. This will change the cost of the soap. The cost of the soap containing 30% water is calculated using:P373 per 100 kilos = (30% x 100 kilos) water + (70% x 100 kilos) soap= 30 kilos water + 70 kilos soap Therefore, the cost of the soap component is:P373/70 kilos soap = P5.33/kilo soapOn the other hand, if the soap contains 5% water, the cost of the soap will change. The cost of the soap component in this case would be:P373/95 kilos soap = P3.93/kilo soap. Therefore, the new cost of the soap containing 5% water would be cheaper. However, it is important to note that the new batch of soap may not have the same quality as the original batch containing 30% water. The hotel may also not be satisfied with the quality of the new batch and may choose to switch suppliers.

To know more about soap  visit:

https://brainly.com/question/27807899

#SPJ11

Just then, you realized something---the wavelength of this man's butt beam is 525 nm. Didn't your pendulum have the print "project 525?" Was that a coincidence? When you confronted him, he said "I was just funding project 525. I was told to produce and sell as many free electrons as possible. Muons and antimuons have mean life (not half life) of 2.20 us, so it didn't take me a long time to produce 600 electrons from 1000 muons/antimuons that I was given." How long did it actually take him to do that? O 1.62 us 02.91 us 01.12 us 2.02 us

Answers

It took the man 880 μs (or 0.88 μs) to produce 600 electrons from the given 1000 muons/antimuons.

The man funded Project 525, which involved producing and selling free electrons. He was given 1000 muons/antimuons, and he managed to produce 600 electrons. Since muons and antimuons have a mean life (not half-life) of 2.20 μs, we can calculate the time it took for him to produce 600 electrons.

The mean life (τ) of a particle is related to its decay rate (λ) by the equation τ = 1/λ. In this case, the mean life of muons/antimuons is given as 2.20 μs.

The decay rate can be calculated using the formula λ = N/t, where N is the number of decays and t is the time interval. In this case, the number of decays is 1000 - 600 = 400, as 600 electrons were produced from the given 1000 muons/antimuons.

We can rearrange the formula to find the time interval: t = N/λ. Substituting the values, we have t = 400 / (1/2.20 μs) = 400 * (2.20 μs) = 880 μs.

Learn more about antimuons here:

https://brainly.com/question/30888729

#SPJ11

) Fourier Transform of Signals a) Obtain the Fourier Transform of the signal: x(t) = e-alt where "a" is a positive real number. (4 Marks) b) Obtain the Fourier Transform of the signal: x(t) = 8(t) + sin(wot) + 3. Where 8(t) is a unit impulse function.

Answers

The Fourier Transform of the given signal is 8(ω) + (1/2j) [δ(w-w0) - δ(w+w0)] + 3δ(w) is the answer.  The notation used here assumes a two-sided Fourier Transform, where the frequencies can be positive or negative.

a) Obtain the Fourier Transform of the signal x(t) = e^-at where "a" is a positive real number. A Fourier Transform is defined as the mathematical technique that decomposes a time-domain signal into its corresponding frequency-domain spectrum.

The Fourier Transform of the signal x(t) = e^-at is as follows:

X(ω) = ∫e^(-at) e^(-jωt) dt 0 ∞

= ∫e^(-(a+jω)t) dt 0 ∞

= -1/(a+jω) [-e^(-(a+jω)t)]∣∣0∞

= 1/(a+jω),

Re{a+jω}>0.

b) Obtain the Fourier Transform of the signal x(t) = 8(t) + sin(wot) + 3.

Where 8(t) is a unit impulse function.

The Fourier transform of x(t) is given as

X(ω) = F[x(t)]

= F[8(t)] + F[sin(wot)] + F[3]

= 8(ω) + (1/2j) [δ(w-w0) - δ(w+w0)] + 3δ(w).

Hence, the Fourier Transform of the given signal is 8(ω) + (1/2j) [δ(w-w0) - δ(w+w0)] + 3δ(w).

Please note that the notation used here assumes a two-sided Fourier Transform, where the frequencies can be positive or negative. If you are working with a one-sided Fourier Transform, you may need to adjust the representation accordingly.

know more about Fourier Transform

https://brainly.com/question/1542972

#SPJ11

. Consider the signal x = cos((2π/3)n). The signal is downsampled by a factor of two. Indicate the frequency of the resulting output, normalized by 27. (E.g., if the frequency is π/2, write 1/4)

Answers

Frequency of the resulting output, normalized by 27 is 1/3.

To determine the frequency of the resulting output after downsampling, we need to consider the original signal and the downsampling factor.

The original signal is given by x = cos((2π/3)n), where n represents the discrete time index.

When downsampling by a factor of two, every other sample of the original signal is selected, effectively reducing the sampling rate by half.

Since the original signal has a frequency of (2π/3) radians per sample, downsampling by a factor of two reduces the frequency by half as well.

Therefore, the frequency of the resulting output, normalized by 27, would be (2π/3) / 2π = 1/3.

To learn more about Signal frequency, visit:

https://brainly.com/question/28592924

#SPJ11

3- For the Op-Amp circuit shown in figure 3 • Design the circuit to implement a current amplifier with a gain 1₁/₁ = 5 What is the value of I
10mA www li- 1 1k0 1 V Figure 3 8kQ www Vx RL w

Answers

The problem involves designing an op-amp circuit to function as a current amplifier with a specified gain of 5. The circuit diagram (Figure 3) includes an op-amp, resistors, and a load.

The task is to determine the value of the input current (I) that will achieve the desired gain. In the given problem, the objective is to design an op-amp circuit that acts as a current amplifier. The circuit diagram, represented in Figure 3, consists of an op-amp, resistors, and a load resistor (RL). The desired gain for the current amplifier is given as 1₁/₁ = 5, meaning the output current (I₁) should be five times the input current (I).

To design the circuit, we need to select appropriate resistor values that will achieve the desired gain. One common approach is to use a feedback resistor connected between the output and the inverting terminal of the op-amp (the '-' terminal). In this case, the feedback resistor can be chosen as 1 kΩ.

To calculate the value of the input current (I), we can use the formula for the current gain of an inverting amplifier, which is given by the equation I₁/I = -Rf/Rin, where Rf is the feedback resistor and Rin is the input resistor.Since the desired gain is 5, we can substitute the given values into the equation and solve for I. Plugging in Rf = 1 kΩ and the desired gain of -5, we can calculate the value of I. Note that the negative sign in the gain equation indicates that the output current will have an opposite polarity to the input current.

Once the value of I is determined, the circuit can be constructed accordingly, with appropriate resistor values, to achieve the desired current amplification.

In conclusion, the problem involves designing an op-amp circuit to function as a current amplifier with a gain of 5. The circuit diagram (Figure 3) includes an op-amp, resistors, and a load. By selecting appropriate resistor values and using the current gain equation, the value of the input current (I) can be determined to achieve the desired gain. This design allows for the amplification of the input current and can be implemented in various applications where current amplification is required.

Learn more about amplification here:- brainly.com/question/30300512

#SPJ11

A boat whose velocity through the water is 14 km/h is moving in a river whose current is 6 km/in relative to the riverbed. The velocity of the boat relative to the riverbed must be between O 6 and 14 km/h 6 and 20 km/h and 14 km/h 8 and 20 km/h

Answers

A boat whose velocity through the water is 14 km/h is moving in a river whose current is 6 km/h.

To determine the velocity of the boat relative to the riverbed, we need to calculate the resultant velocity of the boat. The velocity of the boat relative to the riverbed must be between 8 km/h and 20 km/h.Resolution of the velocities can be used to determine the resultant velocity. It refers to the separation of a vector quantity into two or more components. By definition, these components are scalar components.

A velocity vector's resolution into two perpendicular components is known as a rectangular resolution.

Let’s find the resultant velocity by using the formula of the Pythagorean theorem.

Velocity of the boat relative to the riverbed = Velocity of the boat in still water + velocity of the rivercurrent

= 14 km/h + 6 km/h= 20 km/h

Using the Pythagorean theorem, the resultant velocity is determined as follows:

Resolving the velocity in the x and y directions:

Velocity in the x-direction (upstream) = V × cos θ= 20 × cos 30°

= 17.32 km/h

Velocity in the y-direction (downstream) = V × sin θ= 20 × sin 30°= 10 km/h

Therefore, the boat's velocity relative to the riverbed is between 8 km/h and 20 km/h.

Learn more about resultant velocity here

https://brainly.com/question/12982473

#SPJ11

You are given a lens that is thinner in the center than at the edges. Questions 23-24 refer to this lens. This lens is: Concave Diverging Convex Converging You are given a lens that is thinner in the center than at the edges. Questions 23-24 refer to this lens. This lens could be used to remedy: Glaucoma Cataracts Nearsightedness Farsightedness

Answers

A lens that is thinner in the center than at the edges is called a concave or diverging lens. It is denoted by a negative sign (-).So the correct option is (B) diverging lens and it is used to remedy myopia or nearsightedness.

Nearsightedness occurs when the light rays entering the eye are focused in front of the retina instead of directly on it. As a result, the individual can see nearby objects more clearly than distant objects.A diverging lens is used to correct nearsightedness by spreading out the light rays entering the eye so that they are focused directly on the retina. This results in the distant objects appearing clearer to the individual.

The other options, such as glaucoma, cataracts, and farsightedness are not corrected by a diverging lens.


Learn more about lens here:

https://brainly.com/question/29834071


#SPJ11

A typical wall outlet in a place of residence in North America is RATED 120V, 60Hz. Knowing that the voltage is a sinusoidal waveform, calculate its: a. PERIOD b. PEAK VOLTAGE Sketch: c. one cycle of this waveform (using appropriate x-y axes: show the period on the y-axis and the peak voltage on the x-axis)

Answers

The typical wall outlet in North America has a rated voltage of 120V and operates at a frequency of 60Hz. The period of the voltage waveform is 1/60 seconds, and the peak voltage is ±170V.

The frequency of the voltage waveform represents the number of complete cycles per second, which is given as 60Hz. The period of the waveform can be calculated by taking the reciprocal of the frequency: 1/60 seconds. This means that the waveform completes one cycle every 1/60 seconds.

The peak voltage refers to the maximum voltage value reached by the waveform. In this case, the rated voltage is 120V, which represents the RMS voltage. Since the waveform is sinusoidal, the peak voltage can be both positive and negative. The [tex]V_{peak} = \sqrt{2} V_{RMS} = \sqrt{2} * 120 V = 170V[/tex]. Therefore, the peak voltage is ±170V, indicating that the voltage swings from positive 170V to negative 170V during each cycle.

The cycle of wave form is given below.

Learn more about frequency here:

https://brainly.com/question/31938473

#SPJ11

a.) a golf ball rolls off a cliff horizontally with a speed of 15.9 m/s. the cliff is a vertical distance of 14.8 m above the surface of a lake below. find how long the ball was in the air.
b.) what is the impact speed of the ball just as it reaches the surface of the water?

Answers

(a) The ball was in the air for approximately [tex]\sqrt{3}[/tex] seconds.

(b) The impact speed of the ball as it reaches the surface of the water is 15.9 m/s.

a) To find how long the ball was in the air, we can use the equation of motion for vertical motion:

Δy = v₀y × t + (1/2) × g × t²

Where:

Δy is the vertical distance (14.8 m),

v₀y is the initial vertical velocity (0 m/s since the ball is rolling horizontally),

t is the time,

g is the acceleration due to gravity (-9.8 m/s²).

Since the initial vertical velocity is 0 m/s, the equation simplifies to:

Δy = (1/2) × g × t²

Plugging in the values, we have:

14.8 = (1/2) × (-9.8) × t²

Simplifying the equation:

14.8 = -4.9 × t²

Dividing both sides by -4.9:

t² = -14.8 / -4.9

t² = 3

Taking the square root of both sides:

t = [tex]\sqrt{3}[/tex]

So, the ball was in the air for approximately [tex]\sqrt{3}[/tex] seconds.

b) To find the impact speed of the ball just as it reaches the surface of the water, we can use the equation of motion for horizontal motion:

Δx = v₀x × t

Where:

Δx is the horizontal distance (which we assume to be the same as the initial speed, 15.9 m/s),

v₀x is the initial horizontal velocity (also 15.9 m/s),

t is the time.

Plugging in the values, we have:

15.9 = 15.9 × t

Solving for t:

t = 1

So, the time taken for the ball to reach the surface of the water is 1 second.

Since the horizontal velocity remains constant, the impact speed of the ball is equal to the initial horizontal velocity. Therefore, the impact speed of the ball as it reaches the surface of the water is 15.9 m/s.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

Explain how energy is transformed when you cook food on a stove.

Answers

Answer:

A stove top acts as a source of heat energy when it burns the gas. Anything which is placed above the stove also becomes a source of energy to cook things

Explanation:

hope you understand it

Other Questions
Describe effective communication strategies for gathering information, educating, patient, and the importance of applying these skills What are the differences between systematic and narrativeliterature reviews? When might each be employed? 1. A 3 phase, overhead transmission line has a total series impedance per phase of 200 ohms and a total shunt admittance of 0.0013 siemens per phase. The line delivers a load of 80 MW at a 0.8 pf lagging and 220 kV between the lines. Determine the sending end line voltage and current by Rigorous method. 2. Obtain the symmetrical components of a set of unbalanced currents: IA = 1.6 225 IB = 1.0 2180 Ic = 0.9 2132 3. Given Vo = 3.5 4122, V = 5.0 - 10, V = 1.9 292, find the phase sequence components V, VB and Vc. 4. The following are the symmetrical components of phase B current. Positive sequence component = 10 cis (45) Negative sequence component 20 cis (-30) 0.5 + j0.9 Zero-sequence component Determine the positive-sequence component of phase A. Question 3A crate, with mass of 21 kg, needs to be lifted andmoved by a machine. The machine attaches a chain tothe crate and pulls on the crate at an angle of 60from the ground. What is the minimum pulling forcerequired by this machine to lift the crate off theground, when it pulls the crate at the given angle?206.0 N1.25 ptsO 237.9 NO 305.5 NO 412.0 N Which time lags is one that fiscal policy faces but monetary policy does not? a. evaluation lag b. recognition lag c. effectiveness lag d. legislative lag Which time lags is one that fiscal policy faces but monetary policy does not? f a. evaluation lag O b. recognition lag c. effectiveness lag legislative lag d. Enter electrons as e The following skeletal oxidation-reduction reaction occurs under basic conditions. Write the balanced OXIDATION half reaction. NH4+ SNHOH + S- Reactants Products Anna's monthly expenses on food, transportation, and rent are in the ratio of 3: 5: 8. If she spends $750 on rent, how much does she spend on food? Exercises (2) 6. An electromagnet shown below has a core of effective length 610 mm and a cross-sectional area of 520 mm2. A rectangular block of steel of mass 2.5 kg is attracted by the electromagnet's force of alignment when its 300-turn coils are energized. The magnetic circuit is 220 mm long and the effective cross-sectional area is also 520 mm2. If the relative permeability of both core and steel block is 750, estimate the coil current. Neglect frictional losses and assume the accelerationgdue &ogravity as Power Source laz 300 Turns Electromagnet Rectangular Steel Block The studies by Asch and by Milgram indicate that both conformity to group pressure and obedience to commands are reduced by O a group cohesiveness b. the presence of a dissenter (one who disagrees or doesn't go along) O c. deindividuation O d. group unanimity (agreement among all participants) A- A firm is deciding between two different sewing machines. Technology A has fixed costs of $840 and marginal costs of $60 whereas Technology B has fixed costs of $540 and marginal costs of $110. At what quantity is the firm indifferent between the two technologies?B- Suppose a firm's total expected costs at each quantity are given by the function:C(q) = 32000 + 60 q - 1.5 q2 + .05 q3What is the formula for marginal cost? (a) Solve for the autarky equilibrium wages, prices, production and consumption allocation in each country. You may normalize the price of good Y to 1 in each country. (b) Solve for the equilibrium with free trade (wages, prices, production, consumption, and exports in each country). Which country exports good X and which country exports good Y ? (c) Suppose that the level of productivity in the production of good Y in the US doubles, so that b Y=4. Solve for the equilibrium with trade. [Hint: the equilibrium does not have complete specialization.] Does Canada gain or lose from the increased productivity in the US? There are two countries, Canada (country A) and the US (country B). Each country can produce two goods, X and Y. The preferences of consumers in each country are represented by the following utility functions: Canada: US: U A(c XA,c YA)=lnc XA+lnc YAU B(c XB,c YB)=lnc XB+lnc YBEach country is endowed with 400 units of labour, which may be transformed into the two goods with constant unit labor requirements (linear production functions). The amounts of labor required to produce a unit of each good in each country are: compare and contrast the PASS and CHC theories of intelligence Please answer ASAP I will brainlist Obsessive-compulsive disorder usually has its onset in what age range?a. adolescence to young adulthood (10 to 25)b. middle adulthood (30 to 50)c. childhood (3 to 10)d. old age (60 and up) Discuss the cultural issues and trends that specifically applyto each of the following regional population groups of the UnitedStates.Hispanic Americans in the SouthwestKurdish Americans in Tennes What are four possible barriers to the promotion and uptake of health initiative information within the Maori community?. For each one, suggest ways in which these barriers could be overcome. Calvin wants to save at least $1500 to take his family on vacation. He alreadyhas $75 saved. He plans to save an additional $40 each week. What is theminimum number of weeks Calvin will need to save to have at least $1500?Write and solve an inequality. The integration of both the science of psychology and theapplied/practical application of psychology is:Scientist Practitioner Model.Sociocultural model.Humanistic model.Psychodynamic model. Which of the following compounds would give a positive Tollens' test? A) 1-propanol B) 2-propanone C) propanoic acid D) propanal E) phenol A B C D {E} By using the reverse-engineering principle, the following calculation and explain in the detail on the possible assessment and decision making made. Your answer must be based from the perspective of Engineering Economics and justification is needed for each points made. Provide five (5) points with justifications. PW A==[C (A/P,10%,0)](P/A,10%,0)[C (A/P,10%,3,6,9,12)](P/A,10%,3,6,9,12)[X (A/P,10%,0)](P/A,10%,0)[X (A/P,10%,3,6,9,12)](P/A,10%,3,6,9,12)+4D+EG(P/A,10%,15)H(P/F,10%,2.5,5.5,8.5,11.5,14.5)4 J[C (A/P,10%,0)](P/A,10%,0)[C ( A/P,10%,5,10)](P/A,10%,5,10)[X (A/P,10%,0)](P/A,10%,0)[X ( A/P,10%,5,10)](P/A,10%,5,10)+2M+EQ(P/A,10%,15)H(P/F,10%,2.5,5.5,8.5,11.5,14.5)3 JW(P/F,10%,3.5,8.5,13.5)