The product of zeros of cubic polynomial z³ - 3x² - x + 3 is [1 mark] Relationship betweeen Zeroes and coefficients] Options: -3 -1 3 1​

Answers

Answer 1

The product of zeros of cubic polynomial x³ - 3x² - x + 3 is 3

What are the zeroes of a cubic polynomial?

The zeroes of a cubic polynomial are the values of x at which the polynomial equals zero.

Given the cubic polynomial x³ - 3x² - x + 3, we desire to find the product of the zeroes of the polynomial. We proceed as follows.

For a cubic polynomial ax³ + bx² + cx + d with factors (x - l)(x - m)(x - n), and zeroes, l, m and n respectively, we have the the product of the zeroes are

lmn = d/a

So, comparing this with x³ - 3x² - x + 3 where a = 1 and d = 3.

So, the product of the zeroes is d/a = 3/1 = 3

So, the product of the zeroes is 3

Learn more about cubic polynomial here:

https://brainly.com/question/30042249

#SPJ1


Related Questions

how would you prepare 10ml of a 0.050m sucrose solution from the 0.10m solution? (hint: this is a dilution problem, use m1v1 = m2v2)

Answers

To prepare a 10mL of a 0.050M sucrose solution, we need to take 5mL of the 0.10M sucrose solution and dilute it with 5mL of distilled water.

To prepare a 10mL of a 0.050M sucrose solution from a 0.10M solution, we need to dilute the original solution.

The formula for dilution is:

C₁V₁ = C₂V₂

Where:

C₁ = initial concentration of the solution

V₁ = initial volume of the solution

C₂ = final concentration of the solution

V₂ = final volume of the solution

Substituting the given values, we get:

(0.10M) (V1) = (0.050M) (10mL)

Solving for V₁, we get:

V₁ = (0.050M) (10mL) / (0.10M)

V₁ = 5mL

This will result in a total volume of 10mL and a final concentration of 0.050M.

To learn more about solution click on,

https://brainly.com/question/31317096

#SPJ4

working together, evan and ellie can do the garden chores in 6 hours. it takes evan twice as long as ellie to do the work alone. how many hours does it take evan working alone?

Answers

Working together, Evan and Ellie can do the garden chores in 6 hours. it takes Evan twice as long as Ellie to do the work alone. Thus it takes Evan 18 hours to do the work alone.

Let x be the number of hours Ellie takes to do the garden chores alone. Then, Evan takes 2x hours to do the same work alone.

We can express their work rates as follows:
- Ellie's work rate: 1/x (jobs per hour)
- Evan's work rate: 1/(2x) (jobs per hour)

Now, we know that if they work together, they can do the garden chores in 6 hours. This means that their combined work rate is 1/6 of the job per hour.

When they work together, their work rates add up:
1/x + 1/(2x) = 1/6 (since they complete the work together in 6 hours)

Now, let's solve for x:
1/x + 1/(2x) = 1/6
To clear the fractions, multiply both sides by 6x:
We can solve for "x", which is Ellie's time to do the work alone:
1/6 = 3/2x
2x = 18
x = 9

So, Ellie takes 9 hours to complete the garden chores alone. Since Evan takes twice as long as Ellie, he takes 2 * 9 = 18 hours to complete the garden chores alone.

Learn more about hours:

brainly.com/question/13533620

#SPJ11

Let A be a 4 x 3 matrix and suppose that the vectors:
z1=[1,1,2] T
z2=[1,0,-1] T
*T stands for transpose*
Form a basis for N(A). If b=a1+2*a2+a3, find all solutions of the system Ax=b.

Answers

The general solution to Ax=b can be written as:

x = [2,2,6] T + c1*[1,1,2] T + c2*[1,0,-1] T

where c1 and c2 are arbitrary constants

Since the vectors z1 and z2 form a basis for the null space of A, any solution to Ax=0 can be expressed as a linear combination of these vectors. In other words, if x is a vector in N(A), then x can be written as:

x = c1z1 + c2z2

where c1 and c2 are constants.

To find all solutions to Ax=b, we can first find a particular solution xp to Ax=b using any method such as Gaussian elimination or inverse matrix. Then, the general solution to Ax=b can be written as:

x = xp + c1z1 + c2z2

where c1 and c2 are constants.

Let's first find a particular solution xp to Ax=b. We have:

A = [a1, a2, a3]

b = a1 + 2*a2 + a3

We want to find a vector xp such that Axp = b. We can write xp as:

xp = c1z1 + c2z2

where c1 and c2 are constants to be determined. Substituting xp into the equation Axp = b, we get:

c1a1 + c2a2 = -a3

Since the vectors z1 and z2 form a basis for N(A), we know that a linear combination of a1, a2, and a3 is equal to zero if and only if the coefficients of the linear combination satisfy the equation:

c1z1 + c2z2 = 0

In other words, we have:

c1*[1,1,2] T + c2*[1,0,-1] T = [0,0,0] T

This gives us the system of linear equations:

c1 + c2 = 0

c1 + 2c2 = 0

2c1 - c2 = 0

Solving this system of equations, we get:

c1 = 2

c2 = -2

Substituting these values into the equation xp = c1z1 + c2z2, we get:

xp = 2*[1,1,2] T - 2*[1,0,-1] T = [2,2,6] T

So, a particular solution to Ax=b is xp = [2,2,6] T.

Therefore, the general solution to Ax=b can be written as:

x = [2,2,6] T + c1*[1,1,2] T + c2*[1,0,-1] T

where c1 and c2 are arbitrary constants

To learn more matrix  visit:

https://brainly.com/question/28180105

#SPJ11

Solve the following:

a. 24!/19!
b. P[10,6]
c. C[8,6]

Answers

Answer:

a. 24!/19! = 24 × 23 × 22 × 21 × 20

= 5,100,480

b. P[10, 6] = 10!/4! = 10 × 9 × 8 × 7 × 6 × 5

= 151,200

c. C[8, 6] = 8!/(6!2!) = (8 × 7)/(2 × 1) = 56/2

= 28

The value of the factorials and combinations are
a. 24!/19! = 2,401,432,640
b. P[10,6] = 151,200
c. C[8,6] = 28


a. To solve 24!/19!, divide the factors of 24! from 20 to 24 by the factors of 19! (1 to 19). So, 24!/19! = 20 × 21 × 22 × 23 × 24 = 2,401,432,640.
b. P[10,6] represents the number of permutations of 10 items taken 6 at a time. Calculate using the formula P(n, r) = n!/(n-r)!. In this case, P(10,6) = 10!/(10-6)! = 10! / 4! = 151,200.
c. C[8,6] represents the number of combinations of 8 items taken 6 at a time. Calculate using the formula C(n, r) = n!/(r!(n-r)!). In this case, C(8,6) = 8!/(6!(8-6)!) = 8!/(6! × 2!) = 28.

To know more about factorials click on below link:

https://brainly.com/question/30136880#

#SPJ11

PLEASE HELP DUE AT MIDNIGHT

Answers



(a) To find the equations of medians AD, BE, and CF, we need to first find the coordinates of D, E, and F.

The coordinates of the midpoint of a line segment with endpoints (x1, y1) and (x2, y2) are ((x1 + x2)/2, (y1 + y2)/2).

So, the coordinates of D are:

((Bx + Cx)/2, (By + Cy)/2) = ((-9 + 1)/2, (6 - 4)/2) = (-4, 1)

The coordinates of E are:

((Ax + Cx)/2, (Ay + Cy)/2) = ((5 + 1)/2, (4 - 4)/2) = (3, 0)

The coordinates of F are:

((Ax + Bx)/2, (Ay + By)/2) = ((5 - 9)/2, (4 + 6)/2) = (-2, 5)

Now, we can find the equations of medians AD, BE, and CF.

The equation of the line passing through points (x1, y1) and (x2, y2) is:

y - y1 = ((y2 - y1)/(x2 - x1))(x - x1)

Using point-slope form, we can find the equations of the lines passing through points A, B, and C that are parallel to the medians.

The equation of the line passing through A and D is:

y - 4 = ((1 - 4)/(((-9 + 1)/2) - 5))(x - 5)
y - 4 = 3/4(x - 5)
y = 3/4x - 1/4

The equation of the line passing through B and E is:

y - 6 = ((0 - 6)/(((5 + 1)/2) - (-9)))(x - (-9))
y - 6 = 6/7(x + 9)
y = 6/7x + 120/7

The equation of the line passing through C and F is:

y + 4 = ((5 - (-4))/((-2) - 1))(x - 1)
y + 4 = -3/7(x - 1)
y = -3/7x - 25/7

(b) To show that the medians all pass through the same point, we can find the point of intersection of any two of the medians and then verify that the third median also passes through that point.

Let's find the point of intersection of medians AD and BE. To do this, we need to solve the system of equations:

y = 3/4x - 1/4
y = 6/7x + 120/7

Substituting one equation into the other, we get:

3/4x - 1/4 = 6/7x + 120/7
7(3x/4 - 1/4) = 6x + 720/4 - 7
21x - 28 = 24x + 720 - 28
-3x = -720
x = 240

Substituting x = 240 into either equation, we get y = 179/2.

So, the point of intersection of medians AD and BE is (240, 179/2).

Now, let's check if the third median CF passes through this point.

Substituting x = 240 into the equation of the line passing through C

7+2x/3=5 whats the answer?

Answers

x=-3
subtract 7 from both sides
2x/3=-2
multiply both sides by 3
2x=-6
divide by 2 on both sides
x=-3

what is the answer to −64>8x?

Answers

Answer:

-8>x

Step-by-step explanation:

-64>8x

divide each side by 8 to get x alone

-8>x

Find the area of the kite.

Answers

384ft^2 squared I did the math rn

for the hypothesis test h0:μ=5 against h1:μ<5 and variance known, calculate the p-value for the following test statistic: z0=-2.57.

Answers

The p-value for the given test statistic z0=-2.57 is 0.995.

Identify the given information: The null hypothesis (H0) is μ=5, the alternative hypothesis (H1) is μ<5, and the test statistic is z0=-2.57.

Determine the tail of the distribution: Since the alternative hypothesis is one-sided (μ<5), we are interested in the left tail of the standard normal distribution.

Find the cumulative distribution function (CDF): Using a standard normal distribution table or a calculator, find the cumulative distribution function (CDF) for the test statistic z0=-2.57. The CDF represents the probability that a standard normal random variable is less than or equal to a given value.

Calculate the p-value: Since the test statistic is in the left tail, the p-value is the probability of obtaining a value as extreme or more extreme than z0=-2.57 in the left tail of the standard normal distribution. This can be calculated as 1 - CDF(z0), where CDF(z0) is the cumulative distribution function for z0=-2.57.

Substitute the value of z0=-2.57 into the formula: p-value = 1 - CDF(-2.57).

Use a standard normal distribution table or a calculator to find the CDF for z0=-2.57. Let's assume the CDF is 0.005 (this is just an example, actual values may vary).

Substitute the CDF value into the formula: p-value = 1 - 0.005 = 0.995.

Interpret the result: The calculated p-value of 0.995 represents the probability of obtaining a test statistic as extreme or more extreme than z0=-2.57 under the null hypothesis. Therefore, if the significance level (α) is less than 0.995, we would reject the null hypothesis in favor of the alternative hypothesis at the given level of significance.

Therefore, the p-value for the given test statistic z0=-2.57 is 0.995.

To learn more about test statistic here:

brainly.com/question/28957899#

#SPJ11

The amount of time spent by North Americanadults watching television per day is normally distributedwith a mean of 6 hours and a standarddeviation of 1.5 hours.a. What is the probability that a randomly selectedNorth American adult watches television formore than 7 hours per day?b. What is the probability that the average timewatching television by a random sample of fiveNorth American adults is more than 7 hours?c. What is the probability that in a random sampleof five North American adults, all watch televisionfor more than 7 hours per day?

Answers

The probability that in a random sample of five North American adults, all watch television for more than 7 hours per day is 0.000793 or approximately 0.08%.

a. To find the probability that a randomly selected North American adult watches television for more than 7 hours per day, we need to calculate the z-score and then use a standard normal distribution table or calculator.

z-score = (7 - 6) / 1.5 = 0.67

Using a standard normal distribution table or calculator, we find that the probability of a z-score greater than 0.67 is 0.2514. Therefore, the probability that a randomly selected North American adult watches television for more than 7 hours per day is 0.2514.

b. The distribution of the sample mean is also normal with mean = 6 and standard deviation = 1.5 / sqrt(5) = 0.67.

z-score = (7 - 6) / (1.5 / sqrt(5)) = 1.34

Using a standard normal distribution table or calculator, we find that the probability of a z-score greater than 1.34 is 0.0885. Therefore, the probability that the average time watching television by a random sample of five North American adults is more than 7 hours is 0.0885.

c. The probability that a single North American adult watches television for more than 7 hours is 0.2514 (from part a). The probability that all five adults in the sample watch television for more than 7 hours can be calculated using the binomial distribution:

P(X = 5) = (5 choose 5) * 0.2514^5 * (1 - 0.2514)^(5-5) = 0.000793

Therefore, the probability that in a random sample of five North American adults, all watch television for more than 7 hours per day is 0.000793 or approximately 0.08%.

To learn more about probability  visit: https://brainly.com/question/30034780

#SPJ11

Problem 7Letq=a/b and r=c/d be two rational numbers written in lowest terms. Let s=q+r and s=e/f be written in lowest terms. Assume that s is not 0.Prove or disprove the following two statements.a. If b and d are odd, then f is odd.b. If b and d are even, then f is evenPlease write neatly. NOCURSIVE OR SCRIBBLES

Answers

We have proved that if b and d are odd, then f is odd, but the statement that if b and d are even, then f is even is false.

a. If b and d are odd, then f is odd.

Proof:

Since q and r are written in lowest terms, a and b are coprime, and c and d are coprime. Therefore, we have:

ad - bc = 1 (by the definition of lowest terms)

Multiplying both sides by bf, we get:

adf - bcf = f

Similarly, we have:

bf = bd (since b and d are coprime)

df = bd (since s=q+r=a/b+c/d=(ad+bc)/(bd))

Substituting these values in the previous equation, we get:

adf - (s-b)bd = f

adf - sbd + b^2d = f

Since b and d are odd, b²d is odd as well. Therefore, f is odd if and only if adf - sbd is odd. But adf - sbd is the product of three odd numbers (since a, b, c, and d are all odd), which is odd. Therefore, f is odd.

b. If b and d are even, then f is even.

Counterexample:

Let q = 1/2 and r = 1/2. Then s = 1, which can be written as e/f for any odd f. For example, if f = 3, then e = 3 and s = 1/2 + 1/2 = 3/6, which is written in lowest terms as 1/2. Therefore, the statement is false.

Thus, we have proved that if b and d are odd, then f is odd, but the statement that if b and d are even, then f is even is false.

Learn more about “ lowest terms, “ visit here;

https://brainly.com/question/29151028

#SPJ4

What is the logarithmic form of the exponential equation [tex]4^3 = (5x+4)[/tex]

*Show your work*

Answers

Step-by-step explanation:

It can be written as log_4(5x+4)=3

to do this take the log base 4 on both sides

and according to the log rule (log(A)^B) can be written as B×log(A)

we can do the same thing and rewrite

log_4(4)³ as 3×log_4(4) log_4(4) can cancel

out to be one so we are left with 3 × 1 which

is just 3

this will leave 3 to be equal to log_4(5x+4)

to solve this equation for x

4³ = (5x+4)

64= 5x+4

-4 -4

60= 5x

divide both sides by 5

we get

x = 12

find the directional derivative of the function at the given point in the direction of the vector v. g(s, t) = s t , (3, 9), v = 2i − j

Answers

Directional derivative of the function g(s, t) = st at the point (3, 9) in the direction of the vector v = 2i - j is 15/√5.

Step by step find the directional derivative of the function g(s, t)?

Here are the steps:

1. Compute the partial derivatives of g(s, t) with respect to s and t:
  ∂g/∂s = t
  ∂g/∂t = s

2. Evaluate the partial derivatives at the given point (3, 9):
  ∂g/∂s(3, 9) = 9
  ∂g/∂t(3, 9) = 3

3. Write the gradient vector ∇g as a combination of the partial derivatives:
  ∇g = 9i + 3j

4. Normalize the given direction vector v = 2i - j:
  ||v|| = √(2² + (-1)²) = √5
  v_normalized = (2/√5)i + (-1/√5)j

5. Compute the directional derivative D_v g by taking the dot product of ∇g and v_normalized:
  D_v g = (9i + 3j) • ((2/√5)i + (-1/√5)j)
         = (9 ×  (2/√5)) + (3 × (-1/√5))
         = (18/√5) + (-3/√5)
         = 15/√5

So the directional derivative of the function g(s, t) = st at the point (3, 9) in the direction of the vector v = 2i - j is 15/√5.

Learn more about directional derivative.

brainly.com/question/30365299

#SPJ11

Flip a biased coin 100 times. On each flip, P[H] =p. LetXi denote the number of heads that occur on flip i.
a.) What is PX33 (x)?
b.) Are X1 and X2 independent? why?
Define Y = X1 + X2 + ....... +X1000
c.) What is PY (y)
d.) E[Y] and Var [Y].

Answers

a) The number of heads that occur on flip i, Xi, follows a Bernoulli distribution with parameter p. Therefore, the probability mass function (PMF) of Xi is given by:

P(Xi = x) = p^x(1-p)^(1-x), for x = 0,1

To find PX33(x), we need to compute the probability that X33 takes on the value x. Since each flip is independent, we can use the PMF of Xi to compute the joint PMF of X1, X2, ..., X100:

P(X1 = x1, X2 = x2, ..., X100 = x100) = p^(x1 + x2 + ... + x100) (1-p)^(100 - x1 - x2 - ... - x100)

Now, we can use the fact that the events X1 = x1, X2 = x2, ..., X100 = x100 are mutually exclusive and exhaustive (since each flip can only have two possible outcomes), and use the law of total probability to compute PX33(x):

PX33(x) = ∑ P(X1 = x1, X2 = x2, ..., X100 = x100), where the sum is taken over all possible combinations of x1, x2, ..., x100 that satisfy x33 = x.

Since we are only interested in the value of X33, we can fix x33 = x and sum over all possible combinations of x1, x2, ..., x32 and x34, x35, ..., x100 that satisfy the condition:

x1 + x2 + ... + x32 + x34 + ... + x100 = 100 - x

This is the same as flipping a biased coin 99 times and counting the number of heads that occur. Therefore, we have:

PX33(x) = P(X = 100 - x) = p^(100-x) (1-p)^x

b) X1 and X2 are independent if the outcome of X1 does not affect the outcome of X2. Since each flip is independent, X1 and X2 are also independent.

c) Y = X1 + X2 + ... + X1000 follows a binomial distribution with parameters n = 1000 and p, where p is the probability of getting a head on each flip. Therefore, the PMF of Y is given by:

PY(y) = C(1000,y) p^y (1-p)^(1000-y), for y = 0,1,2,...,1000

where C(n,k) denotes the binomial coefficient.

d) The expected value of Y is:

E[Y] = E[X1 + X2 + ... + X1000] = E[X1] + E[X2] + ... + E[X1000] (by linearity of expectation)

Since each Xi has the same distribution, we have:

E[Xi] = p*1 + (1-p)*0 = p

Therefore, E[Y] = 1000p.

The variance of Y is:

Var[Y] = Var[X1 + X2 + ... + X1000] = Var[X1] + Var[X2] + ... + Var[X1000] + 2 Cov[Xi, Xj]

Since each Xi has the same distribution, we have:

Var[Xi] = p(1-p)

and

Cov[Xi, Xj] = 0 for i ≠ j, since Xi and Xj are independent.

Therefore, we have:

Var[Y] = 1000p(1-p)

Visit here to learn more about Bernoulli distribution brainly.com/question/30971436

#SPJ11

A straw is placed inside a rectangular box that is 1 inches by 5 inches by 5 inches, as shown. If the straw fits exactly into the box diagonally from the bottom left corner to the top right back corner, how long is the straw? Leave your answer in simplest radical form.

Answers

The length of the diagonal of the rectangular box is[tex]\sqrt{51}[/tex] inches.

how to find length of straw ?

Using the Pythagorean theorem, we can find the length of the diagonal of the rectangular box.

given that height of rectangular box is 5 inches, base is  1 inches, and length is 5 inches.

Lets join base diagonal of rectangular box ,and its denoted by 'a'

then to find diagonal value :

[tex]a^{2}=5^{2}+1^{2} \\a^{2}=25+1\\ a^{2} =26\\a=\sqrt{26}[/tex]

now lets say length of straw is l  ,then by  Pythagorean theorem

we have ,

[tex]l^{2} =a^{2}+heigth^{2} \\l^{2}= 26+5^{2}\\ l^{2}=25+26\\ l^{2}=51\\ l=\sqrt{51} \\[/tex]

So the length of the diagonal of the rectangular box is[tex]\sqrt{51}[/tex] inches. Since the straw fits exactly into the box diagonally from the bottom left corner to the top right back corner, the length of the straw is also    [tex]\sqrt{51}[/tex]  inches.

know more about cuboid visit :

https://brainly.com/question/29568631

#SPJ1

after school philipe spent 1 3/4 at baseball practice, 2 1/4 hours on homework and 1/4 hour getting ready for bed. about how many house after school will he be ready for bed? explain

Answers

Answer:4 1/4

Step-by-step explanation:

1 3/4 + 2 1/4 + 1/4= 4 1/4

Theorem: There are three distinct prime numbers less than 12 whose sum is also prime. Select the sets of numbers that show that the existential statement is true. a. 3, 9, 11 b. 3, 7, 13 c. 2, 3, 11 d. 5, 7, 11 e. 3, 5, 11

Answers

The sets of numbers that satisfy the theorem are:

d. 5, 7, 11

e. 3, 5, 11

How to satisfy the theorem?

Find three distinct prime numbers less than 12 that has sum is also prime. We can check each set of numbers given in the options to see if they satisfy the theorem.

a. 3, 9, 11

Sum = 23 (not prime)

Does not satisfy the theorem.

b. 3, 7, 13

Sum = 23 (not prime)

Does not satisfy the theorem.

c. 2, 3, 11

Sum = 16 (not prime)

Does not satisfy the theorem.

d. 5, 7, 11

Sum = 23 (prime)

Satisfies the theorem.

e. 3, 5, 11

Sum = 19 (prime)

Satisfies the theorem.

Therefore, the sets of numbers that satisfy the theorem are d and e.

Learn more about theorem.

brainly.com/question/14101142

#SPJ11

Determine the values of constants a, b, c, and d, so that f(x)=ax3+bx2+cx+d has a local maximum at the point (0, 0) and a local minimum at the point (1, -1).

Answers

The values of the constants a, b, c, and d for the function [tex]f(x) = ax^3 + bx^2 + cx + d[/tex] that has a local maximum at (0,0) and a local minimum at (1,-1) are: a = 0, b = 0, c = 0, d = -1.

What is function?

In mathematics, a function is a relation between two sets in which each element of the first set (called the domain) is associated with a unique element of the second set (called the range). In other words, a function is a rule or a set of rules that assigns exactly one output for each input.

To find the values of the constants a, b, c, and d, we need to use the first and second derivatives of the function f(x).

First, we find the first derivative of f(x):

[tex]f'(x) = 3ax^2 + 2bx + c[/tex]

Next, we find the second derivative of f(x):

f''(x) = 6ax + 2b

Since f(x) has a local maximum at (0,0), we know that f'(0) = 0 and f''(0) < 0. Similarly, since f(x) has a local minimum at (1,-1), we know that f'(1) = 0 and f''(1) > 0.

Using these conditions, we can set up a system of equations to solve for a, b, c, and d:

f'(0) = 0 => c = 0

f''(0) < 0 => 2b < 0 => b < 0

f'(1) = 0 => 3a + 2b = 0

f''(1) > 0 => 6a + 2b > 0 => 3a + b > 0

Solving the third equation for a, we get:

a = -(2b/3)

Substituting this into the fourth equation, we get:

3a + b > 0

3(-(2b/3)) + b > 0

-b > 0

b < 0

Therefore, we have determined that b < 0.

Substituting a = -(2b/3) and c = 0 into the equation for f'(1) = 0, we get:

3(-(2b/3)) + 2b = 0

-2b = 0

b = 0

Therefore, we have determined that b = 0.

Substituting b = 0 into the equation for a, we get:

a = 0

Therefore, we have determined that a = 0.

Finally, using the condition that f(1) = -1, we can solve for d:

[tex]f(1) = a(1)^3 + b(1)^2 + c(1) + d = 0 + 0 + 0 + d = d = -1[/tex]

Therefore, we have determined that d = -1.

In summary, the values of the constants a, b, c, and d for the function [tex]f(x) = ax^3 + bx^2 + cx + d[/tex] that has a local maximum at (0,0) and a local minimum at (1,-1) are:

a = 0

b = 0

c = 0

d = -1

To learn more about function visit:

https://brainly.com/question/11624077

#SPJ1

question 1 what type of bias would be introduced if a random sample of individuals are polled in a phone survey and asked how happy they are with their life?

Answers

If a random sample of individuals are polled in a phone survey and asked how happy they are with their life, selection bias would be introduced.

This is because the sample is limited to individuals who have access to phones and are willing to participate in the survey, which may not accurately represent the entire population. Additionally, the question itself may introduce response bias if it is worded in a way that encourages respondents to give a certain answer. The type of bias that would be introduced if a random sample of individuals are polled in a phone survey and asked how happy they are with their life is called "response bias." This occurs because individuals might not provide accurate answers due to factors like social desirability, personal preferences, or misinterpretation of the question, leading to a skewed representation of the true feelings of the population.

Know more about response bias here;

https://brainly.com/question/28047176

#SPJ11

how much more probable is it that one will win 6/48 lottery than the 6/52lottery?

Answers

It is about 1.657 times more probable to win a 6/48 lottery than a 6/52 lottery.

To find out how much more probable it is to win a 6/48 lottery than a 6/52 lottery, we need to compare their respective probabilities of winning.

The probability of winning a 6/48 lottery is given by the formula:

P(6/48) = C(6, 48) = 1/12271512

where C(6, 48) is the number of ways to choose 6 numbers out of 48.

Similarly, the probability of winning a 6/52 lottery is given by the formula:

P(6/52) = C(6, 52) = 1/20358520

where C(6, 52) is the number of ways to choose 6 numbers out of 52.

To find out how much more probable it is to win the 6/48 lottery than the 6/52 lottery, we can calculate their relative probabilities:

P(6/48) / P(6/52) = (1/12271512) / (1/20358520) ≈ 1.657

Therefore, it is about 1.657 times more probable to win a 6/48 lottery than a 6/52 lottery.

To learn more about probability visit:

https://brainly.com/question/30034780

#SPJ11

A poll agency reports that 48% of teenagers aged 12-17 own smartphones. A random sample o 150 teenagers is drawn. Round your answers to four decimal places as needed. Part 1 Find the mean. The mean gp is 0.48- Part 2 Find the standard deviation σ . The standard deviation ơB is 0.0408] Part 3 Find the probability that more than 50% of the sampled teenagers own a smartphone. The probability that more than 50% of the sampled teenagers own a smartphone is 3120 . Part 4 out of 6 Find the probability that the proportion of the sampled teenagers who own a smartphone is between 0.45 and 0.55 The probability that the proportion of the sampled teenagers who own a smartphone is between 0.45 and 0.55 is

Answers

The probability that the proportion of sampled teenagers who own a smartphone is between 0.45 and 0.55 is:

0.9564 - 0.2296 ≈ 0.7268

What is Probability ?

Probability is a measure of the likelihood or chance of an event occurring. It is expressed as a number between 0 and 1, where 0 represents impossibility (an event that can never occur) and 1

Part 1: The mean is calculated as:

mean = gp = 0.48

Part 2: The standard deviation is calculated as:

σ = √[(gp * (1 - gp))÷n]

where n is the sample size.

σ = √[(0.48 * 0.52)÷150]

σ ≈ 0.0408

Part 3: To find the probability that more than 50% of the sampled teenagers own a smartphone, we need to calculate the z-score and use a standard normal distribution table. The z-score is calculated as:

z = (x - gp)÷σ

where x is the proportion of teenagers owning smartphones. We want to find the probability that x is greater than 0.50. So,

z = (0.50 - 0.48)÷0.0408 ≈ 0.49

Using a standard normal distribution table, the probability corresponding to a z-score of 0.49 is approximately 0.3120.

Part 4: To find the probability that the proportion of sampled teenagers who own a smartphone is between 0.45 and 0.55, we need to standardize the range of values using the z-score formula:

z1 = (0.45 - 0.48)÷0.0408 ≈ -0.74

z2 = (0.55 - 0.48)÷0.0408 ≈ 1.71

Using a standard normal distribution table, the probability corresponding to a z-score of -0.74 is approximately 0.2296, and the probability corresponding to a z-score of 1.71 is approximately 0.9564.

Therefore, the probability that the proportion of sampled teenagers who own a smartphone is between 0.45 and 0.55 is:

0.9564 - 0.2296 ≈ 0.7268

To learn more about Probability from given link.

https://brainly.com/question/29221515

#SPJ1

Find the critical numbers for f=ln(x)/x in the interval [1,3]
If there is more than one, enter them as a comma separated list. x=______
Enter none if there are no critical points in the interval.
The maximum value of f on the interval is y=______
The minimum value of f on the interval is y=_______

Answers

To find the critical numbers of f=ln(x)/x in the interval [1,3], we need to first find the derivative of the function:

f'(x) = (1 - ln(x))/x^2

To find the critical numbers, we need to set the derivative equal to zero and solve for x:

(1 - ln(x))/x^2 = 0

1 - ln(x) = 0

ln(x) = 1

x = e

Since e is not in the interval [1,3], there are no critical numbers in the interval.

To find the maximum and minimum values of f on the interval, we need to evaluate the function at the endpoints and at any possible critical points outside of the interval:

f(1) = ln(1)/1 = 0

f(3) = ln(3)/3 ≈ 0.366

Since there are no critical numbers in the interval, we don't need to evaluate the function at any other points.

Therefore, the maximum value of f on the interval is y=ln(3)/3 ≈ 0.366, and the minimum value of f on the interval is y=0.
To find the critical numbers for f(x) = ln(x)/x in the interval [1,3], we need to first find the first derivative of the function and then set it equal to zero.

The first derivative of f(x) = ln(x)/x is:
f'(x) = (1 - ln(x))/x^2

Now we set f'(x) equal to zero and solve for x:
(1 - ln(x))/x^2 = 0
1 - ln(x) = 0
ln(x) = 1
x = e

Since e ≈ 2.718 lies in the interval [1,3], there is one critical point: x = e.

Next, we need to find the maximum and minimum values of f(x) on the interval [1,3]. We evaluate the function at the critical point x = e and the endpoints of the interval (x = 1 and x = 3).

f(1) = ln(1)/1 = 0
f(e) ≈ ln(e)/e ≈ 1/e ≈ 0.368
f(3) ≈ ln(3)/3 ≈ 0.366

The maximum value of f on the interval is y ≈ 0.368, and the minimum value of f on the interval is y = 0.

Your answer:
x = e
The maximum value of f on the interval is y ≈ 0.368.
The minimum value of f on the interval is y = 0.

Visit here to learn more about derivative brainly.com/question/30365299

#SPJ11

A particle of mass m moves with momentum of magnitude p.
(a) Show that the kinetic energy of the particle is K = p2/(2m) .
(b) Express the magnitude of the particle's momentum in terms of its kinetic energy and mass. p =

Answers

The kinetic energy of the particle is K = p^2/(2m).

The magnitude of the particle's momentum is p = sqrt(2mK).

.

(a) To show that the kinetic energy of the particle is K = p^2 / (2m), we can start by defining the relationship between momentum and velocity:

p = mv, where m is the mass and v is the velocity.

Next, let's define kinetic energy as :

K = 1/2 mv^2.

Now, we want to express v in terms of p and m:

v = p / m

Substitute this expression for v into the kinetic energy equation:

K = 1/2 m (p / m)^2
K = 1/2 m (p^2 / m^2)
K = p^2 / (2m)

So, the kinetic energy of the particle is K = p^2 / (2m).

(b) To express the magnitude of the particle's momentum in terms of its kinetic energy and mass, we can rearrange the equation we derived in part (a):

p^2 = 2mK

Now, take the square root of both sides:

p = sqrt(2mK)

So, the magnitude of the particle's momentum is p = sqrt(2mK).

To learn more about kinetic energy visit : https://brainly.com/question/25959744

#SPJ11

The kinetic energy of the particle is K = p^2/(2m).

The magnitude of the particle's momentum is p = sqrt(2mK).

.

(a) To show that the kinetic energy of the particle is K = p^2 / (2m), we can start by defining the relationship between momentum and velocity:

p = mv, where m is the mass and v is the velocity.

Next, let's define kinetic energy as :

K = 1/2 mv^2.

Now, we want to express v in terms of p and m:

v = p / m

Substitute this expression for v into the kinetic energy equation:

K = 1/2 m (p / m)^2
K = 1/2 m (p^2 / m^2)
K = p^2 / (2m)

So, the kinetic energy of the particle is K = p^2 / (2m).

(b) To express the magnitude of the particle's momentum in terms of its kinetic energy and mass, we can rearrange the equation we derived in part (a):

p^2 = 2mK

Now, take the square root of both sides:

p = sqrt(2mK)

So, the magnitude of the particle's momentum is p = sqrt(2mK).

To learn more about kinetic energy visit : https://brainly.com/question/25959744

#SPJ11

HELPPPP WITH THIS ASAP PLS

Answers

Answer:   B yes A, I think so

Step-by-step explanation:

Definitely not C and D

C means all angles and sides are the same

D means their sides would be the same

B for sure.  They are similar because all angles are same but the sides are increased by 3/2

And I think A is true too because they are the same shape.  Both triangles

given an integer n, show that you can multiply n by 35 using only five multiplications by 2, two additions and storing intermediate results in memory

Answers

We can successfully multiplied n by 35 using only five multiplications by 2, two additions, and intermediate storage of results.

How can we show to multiply n by 35?

We can use the following sequence of operations:

Multiply n by 4 using two multiplications by 2.

Multiply n by 8 using three multiplications by 2.

Add the result of step 1 to the result of step 2 using one addition.

Multiply n by 2 using one multiplication by 2.

Add the result of step 3 to the result of step 4 using one addition.

Multiply the result of step 5 by 4 using two multiplications by 2.

Add the result of step 5 to the result of step 6 using one addition.

The final result is n × 35.

Here's how it works:

Step 1: 4n

Step 2: 8n

Step 3: 4n + 8n = 12n

Step 4: 24n

Step 5: 12n + 24n = 36n

Step 6: 144n

Step 7: 36n + 144n = 180n

So, we have successfully multiplied n by 35 using only five multiplications by 2, two additions, and intermediate storage of results.

to know more about multiplications

brainly.com/question/24327271

#SPJ1

What is the first step to solve for slope intercept form of :-x + 4y = 11 *
a. Subtract 11 from both sides
b. Add. X to both sides
c. Subtract x from both sides
d. Subtract 4 from both sides ​

Answers

The first step to solve for slope intercept form of a linear equation, - x + 4y = 11, is add x to both sides. So, the option(b) is right answer for problem.

The slope intercept form of a linear equation is written as, y = mx + b, where 'm' is the slope of the straight line and 'b' is the y-intercept and (x, y) represent every point on the line x and y have to be kept as the variables while applying the above formula. It is involved only a constant and a first-order (linear) term.

the coordinates of any point on the line must satisfy otherwise not.

We have a linear equation, - x + 4y = 11 --(2). To write slope intercept form of equation (2), we take dependent variable, y in one side and remaining on other sides. That is add x both sides, 4y

= 11 + x

dividing by 4 both sides

=> [tex] y = \frac{ 11}{4} + \frac{ x }{4}[/tex]

Comparing the equation (1) and equation (2) we can having, slope, m = 11/4 and b = 1. This is the required form. Therefore, the first step to determine required results is addition of x both sides.

For more information about slope-intercept form visit :

https://brainly.com/question/27713759

#SPJ4

use calculus to find the area a of the triangle with the given vertices (0,0) (4,2) (1,7)

Answers

The area A of the triangle with the given vertices (0,0), (4,2), and (1,7) is 13 square units.

To find the area A of the triangle with the given vertices (0,0), (4,2), and (1,7) using calculus, we can apply the Shoelace Theorem formula, which is:

A = (1/2) * |Σ(x_i * y_i+1 - x_i+1 * y_i)|, where i ranges from 1 to n (number of vertices) and the last vertex is followed by the first one.

Let's apply this formula to our vertices:

A = (1/2) * |(0 * 2 - 4 * 0) + (4 * 7 - 1 * 2) + (1 * 0 - 0 * 7)|

A = (1/2) * |(0) + (28 - 2) + (0)|

A = (1/2) * |26|

A = 13 square units

Know more about triangle here:

https://brainly.com/question/2773823

#SPJ11

Use synthetic division and the Remainder Theorem to evaluate P(c). P(x) = 2x2 + 9x + 4, c = 1 /2
P 1/ 2 =

Answers

We add 1 and 3/2 to get 5/2, which is the remainder. According to the Remainder Theorem, this is the value of P(c). Therefore, P(1/2) = 5/2.

To use synthetic division and the Remainder Theorem to evaluate P(c), we first set up the synthetic division table with the constant term of P(x) as the divisor and c as the value we want to evaluate:

1/2 | 2   9   4
   |_______
   
Next, we bring down the leading coefficient 2:

1/2 | 2   9   4
   |_______
       2

Then, we multiply c (1/2) by 2 and write the result under the next coefficient:

1/2 | 2   9   4
   |_______
       2   1

We add 2 and 1 to get 3, and then multiply c by 3 to get 3/2 and write it under the last coefficient:

1/2 | 2   9   4
   |_______
       2   1
           3/2

We add 1 and 3/2 to get 5/2, which is the remainder. According to the Remainder Theorem, this is the value of P(c). Therefore, P(1/2) = 5/2.

Visit here to learn more about Remainder Theorem  : https://brainly.com/question/9160275
#SPJ11

In Exercises 13–17, determine conditions on the bi's, if any, in order to guarantee that the linear system is consistent. 15. x1 - 2x2 + 5x3 = bi 4x1 - 5x2 + 8x3 = b2 - 3x1 + 3x2 – 3xz = b₃ 16. xi – 2x2 - xz = b - 4x1 + 5x2 + 2x3 = b2 - 4x1 + 7x2 + 4x3 = bz

Answers

Therefore, the linear system is consistent if and only if the bi's satisfy the condition: b + 4b2 ≠ 0.

For the linear system:

[tex]x_1 - 2x_2 + 5x_3 = b_1[/tex]

[tex]4x_1 - 5x_2 + 8x_3 = b_2[/tex]

[tex]-3x_1 + 3x_2 - 3x_3 = b_3[/tex]

We can write the system in the matrix form as AX = B, where

A = [1 -2 5; 4 -5 8; -3 3 -3],

X = [x1; x2; x3],

and B = [b1; b2; b3].

The system is consistent if and only if the rank of the augmented matrix [A|B] is equal to the rank of the coefficient matrix A. The augmented matrix is obtained by appending B to A as an additional column.

So, we form the augmented matrix:

[1 -2 5 | b1]

[4 -5 8 | b2]

[-3 3 -3 | b3]

We perform row operations to obtain the row echelon form of the matrix:

[1 -2 5 | b1]

[0 3 -12 | b2-4b1]

[0 0 0 | b3+3b1-3b2]

The rank of A is 3 because there are three nonzero rows in the row echelon form. So, the system is consistent if and only if the rank of [A|B] is also 3, which means that the third row must not be a pivot row. This gives us the condition:

[tex]b_3 + 3b_1 - 3b_2 = 0[/tex]

Therefore, the linear system is consistent if and only if the bi's satisfy the condition:

[tex]b_3 + 3b_1 - 3b_2 = 0[/tex]

For the linear system:

[tex]x_1 - 2x_2 - x_3 = b[/tex]

[tex]-4x_1 = b_2[/tex]

We can write the system in the matrix form as AX = B, where

A = [1 -2 -1; -4 0 0],

X = [x1; x2; x3],

and B = [b; b2].

The system is consistent if and only if the rank of the augmented matrix [A|B] is equal to the rank of the coefficient matrix A. The augmented matrix is obtained by appending B to A as an additional column.

So, we form the augmented matrix:

[1 -2 -1 | b]

[-4 0 0 | b2]

We perform row operations to obtain the row echelon form of the matrix:

[1 -2 -1 | b]

[0 -8 -4 | b+4b2]

The rank of A is 2 because there are two nonzero rows in the row echelon form. So, the system is consistent if and only if the rank of [A|B] is also 2, which means that the second row must not be a pivot row. This gives us the condition:

b + 4b2 ≠ 0

To know more about matrix visit:

https://brainly.com/question/29132693

#SPJ1

write the equation in exponential form. assume that all constants are positive and not equal to 1. log n ( r ) = p logn(r)=p

Answers

The exponential form of the equation log_z(w) = p is z^p = w, which states that if the logarithm of w to the base z is equal to p, then z raised to the power of p is equal to w.

The logarithm of a number w to a given base z is the power to which the base z must be raised to obtain w. Mathematically, it can be represented as log_z(w), where z is the base, w is the number being evaluated, and the result is the exponent to which z must be raised to obtain w.

In the equation log_z(w) = p, we are given the logarithm of w to the base z, which is equal to p. We can rearrange this equation to obtain the exponential form by isolating the base z. To do this, we raise both sides of the equation to the power of z

z^log_z(w) = z^p

On the left side of the equation, we have the base z raised to the logarithm of w to the base z. By definition, this is equal to w. Therefore, we can simplify the left side of the equation to obtain

w = z^p

This is the exponential form of the equation. It states that z raised to the power of p is equal to w. In other words, if we know the logarithm of w to the base z, we can find the value of w by raising z to the power of the logarithm.

Learn more about exponential form here

brainly.com/question/29166310

#SPJ4

The given question is incomplete, the complete question is:

Write the equation in exponential form. Assume that all constants are positive and not equal to 1. log_z (w) = p

Other Questions
A particular solution of the differential equation y" + 3y' + 4y = 8x + 2 is Select the correct answer. a. y_p = 2x + 1 b. y_p = 8x + 2 c. y_p = 2x - 1 d. y_p = x^2 + 3x e. y_p = 2x - 3 if someone helps me I will be joyful, thanks! What is the coefficient of x9 in the expansion of (x+1)^14 + x^3(x+2)^15 ? i start with y, add 5 and then, double the result what is the difference between performance and organizational citizenship behaviors? how would you increase someones performance? how would you increase citizenship behaviors? for a particular process at 300 k, g g = -10.0 kj and h h = -7.0 kj. if the process is carried out reversibly, the amount of useful work (in kj) that . select the single best answer. assuming it is planar, is the following ion aromatic, antiaromatic, or not aromatic?aromatic antiaromatic not aromatic the radial part of a hydrogen 2p wave function expectiation valueR2p(r)=1^24(1/a0)3/2(r/a0)e-r/2a0. a. Draw schematically, the R2p radial wave functions as a function of r/ao. b. Locate the maximum of the radial electron density distribution. c. Calculate the expectation value for the distance between electron and nucleus. Make a box plot of the data. Average daily temperatures in Tucson, Arizona, in December:58, 60, 59, 50, 67, 53, 57, 62, 58, 57, 56, 63, 57, 53, 58, 58, 59, 49, 64, 58Find and label the 5 critical values pls. help for chemistry hw. ASAP Baker Is single and earned $226,900 of salary as an employee in 2020. How much should his employer hove withheld from his paycheck for FICA LIVE (Round your answer to the nearest whole dollar amount.) Multiple Choice:A. $12.070 B. $11,800 C. $10.562 D. $17.257 A Robertsonian translocation is considered non-reciprocal because _______. A Robertsonian translocation is considered non-reciprocal because _______. an uneven number of gametes is produced in each meiosis the smaller of the two reciprocal products of translocated chromosomes is lost for every viable gamete formed, there are two inviable gametes formed trisomies of chromosome 21 are viable, whereas monosomies of the same chromosome are no Nora, a psychologist, developed a personality test that groups people into one of four personality profilesAAstart text, A, end text, BBstart text, B, end text, CCstart text, C, end text, and DDstart text, D, end text. Her study suggests a certain expected distribution of people among the four profiles. Nora then gives the test to a sample of 300300300 people. Here are the results:ProfileAAstart text, A, end textBBstart text, B, end textCCstart text, C, end textDDstart text, D, end textExpected10%10%10, percent40%40%40, percent40%40%40, percent10%10%10, percent# of people282828125125125117117117303030Nora wants to perform a 2 2 \chi, squared goodness-of-fit test to determine if these results suggest that the actual distribution of people doesn't match the expected distribution.What is the expected count of people with profile BBstart text, B, end text in Nora's sample?You may round your answer to the nearest hundredth. A student wants to determine the angular speed w of a rotating object. The period T is 0.50 s +/- 5%. The angular speed is = 2/TWhat is the percentage uncertainly of ? A. 0.2%B. 2.5% C. 5% D. 10% 4.45 find the covariance of the random variables x and y of exercise 3.49 on page 106. . Problem a. A spy ring has contacted you anonymously and offered to pay you handsomely if you will write a program to encrypt and decrypt a text message using symmetric encryption with an 8-bit key. b. The program is to output a binary file, cipher.bin, with the encrypted text. C. The program is to input cipher.bin and write the decrypted text to binary file plain.bin. 2. Analysis a. Symmetric encryption works by taking the key and using the XOR operation. i. XOR is the bit operator in C 1. 0^0 = 0 2. 0^1 = 1 3. 110 = 1 4. 1^1 = 0 ii. Example encryption with plaintext-key 1. plaintext: 10111011 2. key: 11011001 3. ciphertext: 01100010 iii. Example decryption with ciphertext"key 1. ciphertext: 01100010 2. key: 11011001 3. plaintext: 10111011 b. To perform encryption and decryption in C, the following types should be used i. "unsigned char" instead of "char" for the key ii. "unsigned char plaintext[SIZE]" instead of "char plaintext[SIZE]" C. Binary files i. Binary files are used for unsigned characters as the encrypted text will not be readable in a text editor. ii. Use a define macro to set a maximum size for the plaintext and ciphertext. iii. If the plaintext length is less than the maximum size, then pad it with dashes before encryption. iv. After encryption, the entire ciphertext unsigned character array can be written to the cipher.bin file using one fwrite 1. OT_TYHCJN_^N_BNNU_TYHCIN v. After decryption, the entire plaintext unsigned character array can be input from the plain.bin file using one fread 1. Unencrypted text to encrypt-- d. The key is to be randomly assigned using the random number generator in C. i. Seed the random number generator with a desired integer, such as 3 ii. Assign the key to the first random number where that number is converted to the range from o to 255 (255 is the largest integer that can be stored in an unsigned character). iii. The key is applied using a to each character in the plaintext during encryption and in the ciphertext during decryption. e. Functions - five functions are recommended: i. One function to pad the plaintext string with dashes if the string in the plaintext is shorter than the maximum size of the array. ii. One function to save an unsigned character array of max size to a binary file. iii. One function to input an unsigned character array of max size from a binary file. iv. One function to encrypt the plaintext with a given key. v. One function to decrypt the ciphertext with a given key. It ends with us book reportSummary:Setting:Conflict:Solution:Main Message: Name Period_Date Rotation: Worksheet 9 Angular Momentum The following masses are swung in horizontal circles at the end of a thin string at constant speed. a. A 2.0 kg mass moving at 2.0 on the end of a 2.0 m long thin string. b. A 3.0 kg mass moving at 1.om, on the end of a 2.0 m long thin string. c. A 1.0 kg mass moving at 3.0 on the end of a 2.0 m long thin string. d. A 2.0 kg mass moving at 1.0 on the end of a 4.0 m long thin string. e. A 2.0 kg mass moving at 2.0 on the end of a 4.0 m long thin string find the differential of f(x,y)= sqrt(x^3 + y^2) at the point (1,2) Verify that the vector Xp is a particular solution of the given system. X=(2 1 3 4) X-(1 7)e^t; Xp=(1 1)^et+(1 -1)^te^t For Xp= (1 1) e^t + (1 -1)te^t , one has since the above expressions _____ Xp=(1 1)^e^t+(1 -1)t^et is a particular solution of the given system.