The probability density function (PDF) of the random variable Y = 2X + 1, where X follows a Cauchy distribution, we can use the method of transformations.
The PDF of Y can be derived by substituting the expression for Y into the PDF of X and applying the appropriate transformations. After simplification, we find that the PDF of Y is given by f_y(y) = (2a/π) / [(y - 1)^2 + (2a)^2], where y is the value of Y and a is the scale parameter of the Cauchy distribution.
In the PDF of Y, we substitute the expression for Y into the PDF of X and apply the appropriate transformations. Given that Y = 2X + 1, we can rearrange the equation to express X in terms of Y as X = (Y - 1) / 2. Next, we substitute this expression for X into the PDF of X.
The PDF of X is given by f_x(x) = a / [π(x^2 + a^2)]. Substituting X = (Y - 1) / 2 into this expression, we have f_x((Y - 1) / 2) = a / [π(((Y - 1) / 2)^2 + a^2)]. Simplifying this expression, we get f_x((Y - 1) / 2) = a / [π((Y - 1)^2 + 4a^2)].
In the PDF of Y, we need to determine the derivative of f_x((Y - 1) / 2) with respect to Y. Taking the derivative and simplifying, we find f_y(y) = (2a/π) / [(y - 1)^2 + (2a)^2]. This is the PDF of Y, where y represents the value of Y and a is the scale parameter of the Cauchy distribution.
In summary, the PDF of Y = 2X + 1, where X follows a Cauchy distribution, is given by f_y(y) = (2a/π) / [(y - 1)^2 + (2a)^2]. This result can be derived by substituting the expression for Y into the PDF of X and simplifying it.
To learn more about Cauchy distribution click here: brainly.com/question/31769707
#SPJ11
Determine if Q[x]/(x2 - 4x + 3) is a field. Explain your answer.
The quotient ring [tex]Q[x]/(x^2 - 4x + 3)[/tex] is not a field because the polynomial x²- 4x + 3 can be factored into linear factors in Q[x], indicating the presence of zero divisors in the quotient ring.
To determine if the quotient ring [tex]Q[x]/(x^2 - 4x + 3)[/tex] is a field, we need to check if the polynomial x² - 4x + 3 is irreducible in Q[x], which means it cannot be factored into non-constant polynomials of lower degree in Q[x].
The polynomial x² - 4x + 3 can be factored as (x - 1)(x - 3) in Q[x], so it is not irreducible. This means that Q[x]/(x² - 4x + 3) is not a field.
In fact, Q[x]/(x² - 4x + 3) is an example of a quotient ring that is not a field. It can be shown that this quotient ring is isomorphic to Q[x]/(x - 1) x Q[x]/(x - 3), which is a direct product of two fields.
Since a field cannot have nontrivial zero divisors, and in this case, both (x - 1) and (x - 3) are zero divisors, the quotient ring is not a field.
To know more about quotient ring refer here:
https://brainly.com/question/32556645#
#SPJ11
√3 • TV TV² (4) Let's evaluate x² + y² - 1 dy dr by converting it to polar coordinates.
To evaluate the expression x² + y² - 1 in polar coordinates, we need to convert the Cartesian coordinates (x, y) to polar coordinates (r, θ).
In polar coordinates, x = rcos(θ) and y = rsin(θ). Substituting these values into the expression, we obtain r²cos²(θ) + r²sin²(θ) - 1. This expression can be simplified using trigonometric identities to obtain r²(cos²(θ) + sin²(θ)) - 1, which simplifies further to r² - 1.
When converting Cartesian coordinates (x, y) to polar coordinates (r, θ), we use the equations x = rcos(θ) and y = rsin(θ). Substituting these values into the expression x² + y² - 1, we have (rcos(θ))² + (rsin(θ))² - 1. Applying the trigonometric identity cos²(θ) + sin²(θ) = 1, we can simplify the expression to r²cos²(θ) + r²sin²(θ) - 1.
Since cos²(θ) + sin²(θ) = 1, the expression simplifies further to r²(1) - 1, which becomes r² - 1. Therefore, in polar coordinates, the expression x² + y² - 1 is equivalent to r² - 1. This means that when evaluating the expression in terms of polar coordinates, we only need to consider the square of the radial distance, r², and subtract 1.
Learn more about Cartesian coordinates here:
https://brainly.com/question/31327924
#SPJ11
Khan khan khan khan
Answer:
11
Step-by-step explanation:
it says motor cycles combined with garbage so add both of them then subtract that from the bull dosers
motor =18
garbage=4
18+4=22
bulldosers=11
22-11= 11 more
Answer:
11
Step-by-step explanation:
[tex] {2x}^{2} - 5x + 3[/tex]
In an independent-measures experiment with three treatment conditions has a sample of n = 10 scores in each treatment. If all three treatments have the same total. T1 T2 T3, what is SSbetween?
a. 0
b. 100
c. 10(3)
d. This cannot be determined from the information given.
The value obtained for SSbetween is 20. The correct answer is (b) 20.
To calculate the sum of squares between (SSbetween) for an analysis of variance (ANOVA), we need to determine the variation between the sample means of the different treatment conditions. The formula for SSbetween is as follows:
SSbetween = n * Σ(M - m)²
where n is the sample size for each treatment condition, M is the individual treatment condition mean, and m is the overall mean.
In this case, the sample size for each treatment condition is n = 10, and the treatment condition means are M1 = 1, M2 = 2, and M3 = 3.
To calculate SSbetween, we first find the overall mean (m) by taking the average of the treatment condition means:
m = (M1 + M2 + M3) / 3
m = (1 + 2 + 3) / 3
m = 6 / 3
m = 2
Now, we can calculate SSbetween:
SSbetween = n * Σ(M - m)²
SSbetween = 10 * [(1 - 2)² + (2 - 2)² + (3 - 2)²]
SSbetween = 10 * [(-1)² + (0)² + (1)²]
SSbetween = 10 * (1 + 0 + 1)
SSbetween = 10 * 2
SSbetween = 20
Therefore, the value obtained for SSbetween is 20. The correct answer is (b) 20.
To know more about sample size check the below link:
https://brainly.com/question/30647570
#SPJ4
Incomplete question:
An independent-measures research study compares three treatment conditions using a sample of n = 10 in each treatment. For this study, the three sample means are M1 = 1, M2 = 2, and M3 = 3. For the ANOVA, what value would be obtained for SSbetween?
a.30
b.20
c.10
d. 2
Janet's Co. has sales of $90,000, COGS of 80% of sales and operating expenses of $5,000. a. Find the gross and net profits. b. Find the rate of markup (based on cost). c. Find the percent net margin. 36
Janet's Co. has sales of $90,000, cost of goods sold (COGS) equal to 80% of sales, and operating expenses of $5,000. The task requires calculating the gross and net profits, the rate of markup based on cost, and the percent net margin.
a. The gross profit can be found by subtracting the COGS from the sales. In this case, the COGS is 80% of $90,000, which amounts to $72,000. Thus, the gross profit is $90,000 - $72,000 = $18,000. To calculate the net profit, we need to subtract the operating expenses from the gross profit. Therefore, the net profit is $18,000 - $5,000 = $13,000.
b. The rate of markup based on cost represents the percentage of profit added to the cost of goods sold. It can be calculated by dividing the gross profit by the COGS and multiplying by 100. In this case, the markup rate is ($18,000 / $72,000) * 100 = 25%.
c. The net margin is the percentage of net profit relative to the sales. It can be calculated by dividing the net profit by the sales and multiplying by 100. In this case, the net margin is ($13,000 / $90,000) * 100 = 14.44%.
In summary, Janet's Co. has a gross profit of $18,000 and a net profit of $13,000. The rate of markup based on cost is 25%, indicating the percentage of profit added to the cost of goods sold. The net margin, representing the percentage of net profit relative to sales, is 14.44%.
Learn more about percentage here:
https://brainly.com/question/29116686
#SPJ11
Can you give me the answer to this
Answer:
C. a translation of 1 unit right and 2 units up, followed by a dilation by a factor of 3
Step-by-step explanation:
On the last 4 math assignments, Andrew scored the following:
88, 92, 100, 75
What is the median?
Answer:
median is 90
Step-by-step explanation:
75, 88, 92, 100
(88+92)/2 = 90
Find the inverse of this function. Show your steps.
Hi, so, I'm like halfway done, but can you show me the steps to get to the inverse of this function, please? Also, is was what I have so far correct?
Thanks so much if you help!
Answer:
Step-by-step explanation:
First, replace f(x) with y . ...
Replace every x with a y and replace every y with an x .
Solve the equation from Step 2 for y . ...
Replace y with f−1(x) f − 1 ( x ) . ...
Verify your work by checking that (f∘f−1)(x)=x ( f ∘ f − 1 ) ( x ) = x and (f−1∘f)(x)=x ( f − 1 ∘ f ) ( x ) = x are both true.
Find all the values of p for which the series is convergent.
[infinity]
∑ 3 / (n[ln(n)]p
ₙ ₌ ₂
The series ∑ 3 / (n[ln(n)]^p is convergent for all values of p greater than 1.
To determine the values of p for which the series is convergent, we can use the integral test. According to the integral test, if the integral of the series converges, then the series itself converges.
Considering the series ∑ 3 / (n[ln(n)]^p, we can evaluate its convergence by integrating the series function. Integrating 3 / (n[ln(n)]^p with respect to n gives us ∫ (3 / (n[ln(n)]^p)) dn.By performing the integration, we obtain ∫ (3 / (n[ln(n)]^p)) dn = 3 ∫ (1 / (n[ln(n)]^p)) dn.
Simplifying further, we have 3 ∫ (1 / (n^1 * [ln(n)]^p)) dn = 3 ∫ (1 / (n^1 * n^p * [ln(n)]^p)) dn.
Now, we can observe that the integral is dependent on the value of p. For the integral to converge, the exponent of n^p must be greater than 1.
Therefore, we conclude that the series is convergent for all values of p greater than 1.
Learn more about convergent here
https://brainly.com/question/29258536
#SPJ11
pleas help thanks
5. Which term of the geometric sequence 1, 3,9, ... has a value of 19683? 14
The term of the geometric sequence 1, 3,9, ... which has a value of 19683 is :
To find which term of the geometric sequence has a value of 19683, we can use the formula for the nth term of a geometric sequence.
Here's the formula:
an = a₁ * r^(n - 1)
where an is the nth term of the sequence
a₁ is the first term of the sequence
r is the common ratio of the sequence
Given the sequence 1, 3, 9, ..., we can see that a₁ = 1 and r = 3.
To find the value of n that gives the term with a value of 19683, we can substitute these values into the formula and solve for n:
19683 = 1 * 3^(n - 1)
19683/1 = 3^(n - 1)
3^9 = 3^(n - 1)
Now we can equate the exponents:
9 = n - 1
n = 9 + 1
n = 10
Therefore, the 10th term of the geometric sequence 1, 3, 9, ... has a value of 19683. Thus, the answer is 10.
To learn more about geometric sequence visit : https://brainly.com/question/24643676
#SPJ11
Triangle Sums***GRADED 1 of 51 of 5 Items #1 Triangle RST is shown. What is the measure of ∠T? Record your answer and fill in the bubbles on the grid. Be sure to use correct place value.
Answer:
[tex]\angle T = 70[/tex]
Step-by-step explanation:
Given
[tex]\angle T= 2x[/tex]
[tex]\angle S= 75[/tex]
[tex]\angle R= x[/tex]
See attachment for triangle
Required
Calculate [tex]\angle T[/tex]
First, we add up the angles in the triangle;
[tex]\angle R + \angle S + \angle T = 180[/tex]
[tex]x + 75 + 2x = 180[/tex]
Collect like terms
[tex]x + 2x = 180 - 75[/tex]
[tex]3x = 105[/tex]
Solve for x
[tex]x = \frac{105}{3}[/tex]
[tex]x = 35[/tex]
Given that:
[tex]\angle T= 2x[/tex]
[tex]\angle T = 2 * 35[/tex]
[tex]\angle T = 70[/tex]
i don't understand. please help
Answer: 5m
Step-by-step explanation:
The Initial water level means that level amount when the time equal to 0hrs, which is 5m.
Can y’all help me with this one?
-44+18=-26degrees
negative 26 degrees is your answer
please mark brainliest and have a nice day
Solve the initial value problem (2 x-6 xy + xy) dx + (1 - 3x2 + (2 + x?) y) dy = 0, y(1) = -4 and then provide the numerical value of lim y(x) rounded-off to FIVE significant figures. A student rounded-off the final answer to FIVE significant figures and found that the result was as follows (10 points): X+00 (your numerical answer for the limit must be written here) Also, you must provide some intermediate results obtained by you while solving the problem above: 1) The implicit solution of the initial value problem is described by the equation as follows (mark a correct variant) (6 points): 3 xy - (x + 1) y2 + 9 x2 = 0 x² + x y + (2x + 10) y2 – 10 = 0; x2 - xy + (2x - 10) y2 + 12 = 0 2x2 – 3xy - (1 + x?)y2 + 19 = 0 x2 - xy + (2x - 10) y2 = 0 x2 + y - 3x"y +(1+) y2 – 33 = 0 2) The explicit solution for the value of y as the function of x is described by the explicit formula as follows (mark a correct variant) (4 points) y -1+3x_v719+8x2 + ** 2+x? y у -*-400-80x+41x2-3x3 40-5+x) -x-41x28x3 4-5+x) x+41x28x? 4-5+x) y = *-480-96x+41x2-3x3 y = 4-5+x) -1+3x2 + 7/1948x2 + x y = 2+x2 -3x - 76+93x2 +8x* у 2(1+x2) 2) The explicit solution for the value of y as the function of x is described by the explicit formula as follows (mark a correct variant) (4 points): y = -1+3x2-77/19+8x2+x 2+x2 y = y = 400-80x+41x2 - 8x? 4-5+x) -x-41x28x3 4(-5+x) x+41x2-8x3 4-5+x) Tut y = X 480-96x+41x2 - 8x3 y = 4-5+x) -1+3x² +17/19+8x2+x+ O y = 2+x2 -3x - 76+93x2 +8x4 y = 2(1+x²) 3x - 14+49x2 +36 x+ y = 2(1+x2)
The implicit solution to the initial value problem (2x − 6xy + xy)dx + (1 − 3x^2 + (2 + x^2)y)dy = 0 with y(1) = −4 is given by the equation:3xy − (x + 1)y^2 + 9x^2 = 0. The explicit solution for y as a function of x is given by the formula: y = (-1 + 3x^2 - 7/19 + 8x^2 + x)/(2 + x^2)The numerical value of lim y(x) rounded off to five significant figures is -1.3152.
Intermediate results obtained during the process include: implicit solution of initial value problem and explicit solution for y as a function of x. The implicit solution of the initial value problem is described by the equation:3 xy - (x + 1) y2 + 9 x2 = 0. The explicit solution for y as a function of x is given by the formula: y = (-1 + 3x^2 - 7/19 + 8x^2 + x)/(2 + x^2).
Know more about implicit solution here:
https://brainly.com/question/28506017
#SPJ11
If A = {3, 7, 9, 13, 22}, B = {5, 7, 14, 23, 31}, and C = {8, 9, 15, 23, 25, 31, 33}, then what is (A∪B)∩C?
(A∪B)∩C = {9, 23, 31}.
To find the intersection of the sets (A∪B) and C, we first need to determine the union of sets A and B. The union of two sets consists of all the unique elements present in both sets.
A∪B = {3, 5, 7, 9, 13, 14, 22, 23, 31}
Next, we find the intersection of the obtained union (A∪B) and set C. The intersection of two sets contains the elements that are common to both sets.
(A∪B)∩C = {9, 23, 31}
Therefore, the intersection of the sets (A∪B) and C is {9, 23, 31}. These are the elements that are present in both (A∪B) and C.
In summary, (A∪B)∩C = {9, 23, 31}.
Know more about Elements here:
https://brainly.com/question/31950312
#SPJ11
(a) A vector equation of the plane P1 in R3 which passes through the points A = (2, 1, –4), B= = (3, 4, –4), and C = (3, -9,8) is 2 1 1 X = HOHE ) -4 12 Correct answer, well done. Correct answer,
The vector equation of the plane P1 in R3 which passes through the given points is: `(-36, -12, -9).(X - (2, 1, -4)) = 0`.
We have three points `A (2, 1, -4), B (3, 4, -4)` and `C (3, -9, 8)` that lie on plane P1. To find the vector equation of the plane P1 in R3, we need to find the normal vector of the plane P1. The normal vector is perpendicular to the plane P1. We can find the normal vector by taking the cross product of any two nonparallel vectors that lie on the plane P1.
Let's choose two vectors `AB` and `AC`.
`AB = B - A = (3, 4, -4) - (2, 1, -4) = (1, 3, 0)`
`AC = C - A = (3, -9, 8) - (2, 1, -4) = (1, -10, 12)`
Now, we take the cross product of `AB` and `AC` to get the normal vector `n`.
`n = AB × AC = (-36, -12, -9)`
The equation of the plane P1 with normal vector `n` and passing through the point A can be written as:
`(n . (X - A)) = 0` where `.` is the dot product.
Substituting the values, we get:
`(-36, -12, -9) . (X - (2, 1, -4)) = 0`
`(-36, -12, -9) . (X - 2, X - 1, X + 4) = 0`
`-36(X - 2) - 12(X - 1) - 9(X + 4) = 0`
`-36X + 72 - 12X + 12 - 9X - 36 = 0`
`-57X + 48 = 0`
`57X = 48`
`X = 48/57 = 16/19`
Therefore, the vector equation of the plane P1 in R3 which passes through the points A = (2, 1, –4), B= = (3, 4, –4), and C = (3, -9,8) is:
`(-36, -12, -9) . (X - 2, X - 1, X + 4) = 0`
`-36(X - 2) - 12(X - 1) - 9(X + 4) = 0`
`-36X + 72 - 12X + 12 - 9X - 36 = 0`
`-57X + 48 = 0`
`57X = 48`
`X = 16/19`
The answer is, `(-36, -12, -9).(X - (2, 1, -4)) = 0`.
To know more about vector equation refer here:
https://brainly.com/question/31044363
#SPJ11
what is 10x32 I will give brainliest and thanks
Answer:
320
Step-by-step explanation:
I need help!!!
Find∠KML
Answer:
62
Step-by-step explanation:
180 - 56 = 124
124/2 = 62
solve for x round to your nearest tenth
math a man made pond has the sape of a reverse truncate square pyramid as shown below. the top side length is 20 meters
The man-made pond has the shape of a reverse truncated square pyramid with a top side length of 20 meters.
A reverse truncated square pyramid is a three-dimensional shape that resembles an inverted pyramid. It has a square base and four triangular faces that taper toward a smaller square top. In the case of the man-made pond, the top side length is given as 20 meters.
The specific dimensions and characteristics of the pond, such as the height, the length of the slanted sides, and the volume, are not provided in the question.
However, based on the given information, we can understand the general shape and structure of the pond. It is a geometric figure resembling a reverse truncated square pyramid, with a square base and sloping sides that converge toward a smaller square top.
Learn more about square pyramid here:
https://brainly.com/question/31200424
#SPJ11
(b)
4 cm
a
3 cm
4 cm
15 cm
8 cm
Volume = 540 cm
Answer:
are you trying to look for the height or radius?
if you're looking for the height then you'll have to divide the volume by pi and the radius squared
if you're looking for the radius then you'll have to divide the volume by pu and the height and do the squareroot over the whole equation
The point p=(x,1/2)
Lies in the unit circle shown below what is the value of X in simplest
What is the value of x?
Answer. it is 5 or letter i
Answer:
The value of x is 5
Step-by-step explanation:
Using the linear pair theorem, both angles are supplementary and add up to 180 degrees. 180 minus 140 is 40. and 8 times 5 = 40. So x = 5.
A matched pairs experiment compares the taste of instant coffee with fresh-brewed coffee. Each subject tastes two unmarked cups of coffee, one of each type, in random order and states which he or she prefers. Of the 40 subjects who participate in the study, 14 prefer the instant coffee and the other 26 prefer fresh-brewed. Take p to be the proportion of the population that prefers fresh-brewed coffee. You might find a table of critical values useful. You can use table A or the bottom row of table D, but table D is easier.
Find a 95% confidence interval for p. 95% CI:_________
The 95% confidence interval for p is (0.47, 0.83)
Total subjects = 40
People preferring fresh brewed = 26
Calculating the sample proportion -
Sample proportion = Number of subjects preferring fresh brewed coffee / Total number of subjects
= 26 / 40
= 0.65
It is required to establish crucial values depending on chosen confidence level in order to generate the confidence interval. The z-value associated with a 97.5% cumulative probability to obtain a 95% confidence range is to be found. This is because the remaining 5% by 2 is divided to determine middle 95% of the standard normal distribution. The z-value for a 97.5% cumulative probability is around 1.96 using Table D or any other approach.
Using the formula for confidence interval -
[tex]CI = p + z x \sqrt ((px (1 - p) / n)[/tex]
Substituting the values -
[tex]CI = 0.65 ± 1.96 \sqrt{x} ((0.65 * (1 - 0.65)) / 40)[/tex]
[tex]= 0.65 ± 1.96 x \sqrt(0.2275 / 40)[/tex]
= 0.65 ± 1.96 x 0.0921
= 0.65 ± 0.1802
Rounding to two decimal places, the 95% confidence interval will be 0.47, 0.83)
Read more about confidence interval on:
https://brainly.com/question/20309162
#SPJ4
In a survey, 25 people were asked how much they spent on their child's last birthday gift. The results were roughly bell- shaped with a mean of $39 and standard deviation of $20. Construct a confidence interval at a 80% confidence level. Give your answers to one decimal place. I Interpret your confidence interval in the context of this problem.
The confidence interval at an 80% confidence level is approximately $33.88 to $44.12.
To construct a confidence interval for the mean based on the given survey data, we can use the formula:
Confidence Interval = mean ± (critical value) * (standard deviation / √sample size)
In this case, the mean is $39, the standard deviation is $20, and the sample size is 25. The critical value corresponds to the desired confidence level, which is 80%. To determine the critical value, we can use a standard normal distribution table or a statistical calculator.
For an 80% confidence level, the critical value (z-score) is approximately 1.28.
Now, let's calculate the confidence interval:
Confidence Interval = $39 ± (1.28) * ($20 / √25)
= $39 ± (1.28) * ($20 / 5)
= $39 ± (1.28) * $4
= $39 ± $5.12
This means we can be 80% confident that the true mean amount spent on a child's last birthday gift falls within this range based on the given survey data.
To know more about confidence interval:
https://brainly.com/question/32546207
#SPJ4
HElp pls :((((((((((((
Answer:Just add them all
Step-by-step explanation:
Answer:
80
Step-by-step explanation:
First you have to find the percentage of pan crust to all the other crusts to do this you add all the crusts together:
397+220+167+196 = 980
Then divide 196 by 980:
196/980 = .2 or 20%
Then multiply 400 by 20%
400*20% = 80
Help
I dont know the answer im not very smart
NO LINKS PLEASE JUST THE ANSWER TEHEHHE THANKSSSS :))))
A square and rectangle are shown below. The width of the rectangle is the same as the length of a side of the square, both represented by x. The length of the rectangle is one foot more than twice its width. The perimeter of the rectangle is 26 feet more than that of the square.
A). Write an expression for the length of the rectangle in terms of x. Label the drawing
B). Show that 5 could not be the value of x
C). Set up an equation and solve it to find the value of x
THANKS FOR THE HELP!!!
Answer:
Since this is a multi-part question, just look at the bolded parts under each letter. I hope this helps a bit ;)
Step-by-step explanation:
A)
All sides of a square are congruent. "s" represents the square's perimeter:
s=4x.
"r" is the rectangle's perimeter:
r= 4x+26
since the perimeter = 2W + 2L:
2W + 2L= 4x+ 26
and W=x, so:
2x + 2L= 4x + 26
Subtract from both sides:
2L= 2x +26
Divide both sides:
the length of the rectangle "L"= x +13.
B) Plug 5 into the equations:
L= 5+ 13 or 18.
2(18) + 2(5)= r
36+ 10 = r or 46
s= s+ 26
s= 46-26 or 20.
20/4= 5...
It seems (at least to me, feel free to give constructive criticism) that the only logical conclusion is that 5 could be the value of x.
C) You would likely need to use substitution to solve, but unless I am much mistaken, this looks like an infinite-solutions equation.
L=w+13
If the half-life of a radioactive isotope is 3 million years,
what percent of the isotope is left after 6 million years?
- 50
- 25
- 12.5
- 6.75
After 6 million years, 25 percent of the radioactive isotope will be left.
The half-life of a radioactive isotope is the time it takes for half of the initial amount of the isotope to decay. In this case, the half-life is 3 million years. After the first half-life, half of the isotope will remain, which is 50 percent. After another 3 million years (a total of 6 million years), another half-life will have passed. Therefore, half of the remaining 50 percent will decay, leaving 25 percent of the original isotope.
To understand this further, let's consider the decay process. After the first 3 million years, 50 percent of the isotope will have decayed, leaving 50 percent. Then, after the next 3 million years, another 50 percent of the remaining isotope will decay, resulting in 25 percent remaining (50 percent of the original amount). This exponential decay pattern continues as each successive half-life cuts the remaining amount in half.
Therefore, after 6 million years, 25 percent of the radioactive isotope will be left, while 75 percent will have undergone radioactive decay.
Learn more about percent here:
https://brainly.com/question/31323953
#SPJ11