The velocity of the body at x = 4.1 m, is 6.3 m/s. The positive value of x at which the body has a velocity of 5.6 m/s is approximately 4.45 m.
Force acting on a 4.5 kg body as it moves along the positive x-axis has an x-component Fx = -9x N, where x is in meters.
The mass of the body is m = 4.5 kg.
The velocity of the body at x = 2.4 m is v₁ = 9.7 m/s.
(a) We know that F = ma, where F is the force acting on the object, m is the mass of the object, and a is the acceleration of the object.
We can find the acceleration of the object from this force using a = Fx / m.
If a is constant, then we can find the velocity of the object using v = u + at, where u is the initial velocity of the object and t is the time for which the force is acting on the object.
Using the information given in the question, the acceleration of the object is:
a = Fx / m = (-9x) / 4.5 = -2x
The velocity of the object at x = 2.4 m is v₁ = 9.7 m/s.
Now we can find the initial velocity of the object, u₁, from v₁ = u₁ + a(2.4) as follows:
u₁ = v₁ - a(2.4)
Substitute the values we know:
u₁ = 9.7 - (-2)(2.4) = 9.7 + 4.8 = 14.5 m/s
Now we can find the velocity of the object at x = 4.1 m from v = u + at as follows:
v = u + at = u₁ + a(4.1)
Substitute the values we know:
v = 14.5 + (-2)(4.1) = 14.5 - 8.2 = 6.3 m/s
Therefore, the velocity of the body at x = 4.1 m is 6.3 m/s.
(b) To find the positive value of x at which the velocity of the object is 5.6 m/s, we can use v = u + at as follows:
5.6 = 14.5 - 2x
Solve for x:
2x = 14.5 - 5.6
2x = 8.9
x = 8.9 / 2
x ≈ 4.45 m
Therefore, the positive value of x at which the body has a velocity of 5.6 m/s is approximately 4.45 m.
Learn more about velocity at: https://brainly.com/question/80295
#SPJ11
An electric charge Q=+6μc is moving with velocity of v=(3.2×10 6
m/s)i+(1.8×10 6
m/s) j
^
. At a moment, this charge passes the origin of a coordinate. a) Find the B vecor at points M=(−0.3 m,+0.4 m,0.0 m) and N=(+0.2 m,+0.1 m,−0.5 m). Use unit vecotrs to express magnetic field vector. b) Determine if at any point(s) P=(+0.6 m,+0.3 m,0.0 m) and S=(+0.2 m,+0.0 m,−0.5 m) is the magnetic field zero. c) Determine the angle that B vector makes with the Z-axis at point N, in part (a).
An electric charge Q=+6μc is moving with velocity of v=(3.2×10 6 m/s)i+(1.8×10 6 m/s) j. the B vector at points M=(−0.3 m,+0.4 m,0.0 m) and N=(+0.2 m,+0.1 m,−0.5 m) is r = (0.2 m)i + (0.1 m)j + (-0.5 m)k. The unit vector along the Z-axis is given by: k = (0, 0, 1)
To find the magnetic field vector at points M and N, we can use the Biot-Savart law. The Biot-Savart law states that the magnetic field at a point due to a moving charge is proportional to the magnitude of the charge, its velocity, and the distance between the charge and the point.
a) To find the magnetic field at points M and N, we can use the following equation:
B = (μ₀/4π) * (q * v x r) / r³
Where B is the magnetic field vector, μ₀ is the permeability of free space, q is the charge, v is the velocity vector, r is the distance vector from the charge to the point, and x represents the cross product.
Substituting the given values, we have:
μ₀/4π = 10^-7 Tm/A
q = 6 μC = 6 x 10^-6 C
v = (3.2 x 10^6 m/s)i + (1.8 x 10^6 m/s)j
r = position vector from the origin to the point (M or N)
For point M, we have:
r = (-0.3 m)i + (0.4 m)j + (0.0 m)k
Using the formula, we can calculate the magnetic field at point M.
For point N, we have:
r = (0.2 m)i + (0.1 m)j + (-0.5 m)k
Using the formula, we can calculate the magnetic field at point N.
b) To determine if the magnetic field is zero at points P and S, we need to calculate the magnetic field at those points using the Biot-Savart law. If the resulting magnetic field is zero, then the field is zero at those points.
For point P, we have:
r = (0.6 m)i + (0.3 m)j + (0.0 m)k
Using the formula, we can calculate the magnetic field at point P.
For point S, we have:
r = (0.2 m)i + (0.0 m)j + (-0.5 m)k
Using the formula, we can calculate the magnetic field at point S.
c) To determine the angle that the magnetic field vector makes with the Z-axis at point N, we can calculate the dot product of the magnetic field vector and the unit vector along the Z-axis, and then calculate the angle between them using the inverse cosine function.
The unit vector along the Z-axis is given by:
k = (0, 0, 1)
Learn more about Biot-Savart law here:
https://brainly.com/question/30764718
#SPJ11
A Nichrome wire (p=110x10-8 ) has a radius of 0.65mm. What length of wire is needed to obtain a resistance of 2?
A length of approximately 1.05 meters of Nichrome wire is needed to obtain a resistance of 2 ohms.
To calculate the length of Nichrome wire needed to obtain a resistance of 2 ohms, we can use the formula for the resistance of a wire:
R = (ρ × L) / A
Where:
R is the resistance,
ρ is the resistivity of the wire material,
L is the length of the wire, and
A is the cross-sectional area of the wire.
First, we need to calculate the cross-sectional area of the wire using the given radius:
Radius (r) = 0.65 mm = 0.65 × [tex]10^{-3}[/tex] m
Cross-sectional area (A) = π × [tex]r^{2}[/tex]
Substituting the values:
A = π × [tex][0.65(10^{-3}m)]^{2}[/tex]
Next, rearrange the resistance formula to solve for the length (L):
L = (R × A) / ρ
Substituting the given resistance (R = 2 ohms), resistivity of Nichrome (ρ = 110 × [tex]10^{-8}[/tex] ohm-m), and the calculated cross-sectional area (A), we can find the length (L):
L = (2 ohms × π × [tex][0.65(10^{-3}m)]^{2}[/tex] / [tex][110(10^{-8} )][/tex] ohm-m)
Calculating the value:
L ≈ 1.05 meters
Therefore, a length of approximately 1.05 meters of Nichrome wire is needed to obtain a resistance of 2 ohms.
Learn more about resistance here:
https://brainly.com/question/29427458
#SPJ11
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6600 m/s )y^ moves through a region of space with a magnetic field B⃗ =(0.26 T )x^−(0.11 T )z^ and an electric field E⃗ =(230 N/C )x^.
Using cross products, find the magnitude of the net force acting on the electron. (Cross products are discussed in Appendix A.)
The magnitude of the net force acting on the electron is 25.3 N/C by using the cross product of the magnetic field and electric field vectors
The net force acting on the electron can be found using the cross-product of the velocity and the magnetic field vectors, and the cross-product of the magnetic field and the electric field vectors.
First, we need to find the components of the velocity and magnetic field vectors in the xy and xz planes:
vx = (1.6×105 m/s) * 6600 m/s = 108,300 m/s
vy = 0 m/s
vz = (1.6×105 m/s) * 0 m/s = 108,300 m/s
Bx = (0.26 T) * 6600 m/s = 16,180 m/s
By = 0 m/s
Bz = (0.11 T) * 0 m/s = 1.1 T
Next, we can use the cross-product of the velocity and magnetic field vectors to find the z-component of the magnetic force:
Fz = vz * By = (108,300 m/s) * (0 m/s) = 0 A
We can use the cross product of the magnetic field and electric field vectors to find the z-component of the electric force:
Fz = Bz * Ez = (0.11 T) * (230 N/C) = 25.3 N/C
Finally, we can use the z-components of the magnetic and electric forces to find the magnitude of the net force acting on the electron:
Fnet = Fz = 25.3 N/C
So the magnitude of the net force acting on the electron is 25.3 N/C.
Learn more about magnitude
https://brainly.com/question/30337362
#SPJ11
A child and sled with a combined mass of 41.0 kg slide down a frictionless slope. If the sled starts from rest and has a speed of 3.80 m/s at the bottom, what is the height of the hill? m A 23.0 cm long spring is hung vertically from a ceiling and stretches to 28.7 cm when an 8.00 kg mass is hung from its free end. (a) Find the spring constant (in N/m ). N/m (b) Find the length of the spring (in cm ) if the 8.00 kg weight is replaced with a 205 N weight. Cm
A child and sled with a combined mass of 41.0 kg slide down a frictionless slope. the height of the hill is 0.731 meters and The force applied (F) is now 205 N.
To determine the height of the hill in the sled scenario, we can apply the principle of conservation of energy. The initial potential energy (PE) at the top of the hill is converted into kinetic energy (KE) at the bottom. Since the sled starts from rest, the initial kinetic energy is zero. Therefore, we can equate the initial potential energy to the final kinetic energy.
To solve the first part of the problem regarding the height of the hill, we can apply the principle of conservation of mechanical energy. The initial potential energy at the top of the hill is converted into kinetic energy at the bottom.
Using the equation for gravitational potential energy:
mgh = (1/2)mv^2
Where m is the combined mass of the child and sled (41.0 kg), g is the acceleration due to gravity (9.8 m/s^2), h is the height of the hill, and v is the speed of the sled at the bottom (3.80 m/s).
Rearranging the equation to solve for h, we have:
h = (1/2)(v^2)/g
Substituting the given values, we get:
h = (1/2)(3.80 m/s)^2 / 9.8 m/s^2
Simplifying the equation, we find:
h ≈ 0.731 m
Therefore, the height of the hill is approximately 0.731 meters.
For the second part of the problem, we can calculate the spring constant and the length of the spring.
(a) To find the spring constant (k), we can use Hooke's Law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position:
F = k * x
Where F is the force, k is the spring constant, and x is the displacement from the equilibrium position.
We are given the displacement (28.7 cm - 23.0 cm = 5.7 cm = 0.057 m) and the mass (8.00 kg). Using the equation F = mg, where g is the acceleration due to gravity, we can find the force exerted by the mass:
F = (8.00 kg)(9.8 m/s^2) = 78.4 N
Now we can use Hooke's Law to find the spring constant:
k = F / x = 78.4 N / 0.057 m ≈ 1375 N/m
Therefore, the spring constant is approximately 1375 N/m.
(b) If we replace the 8.00 kg weight with a 205 N weight, we can use the same formula F = k * x to find the new length of the spring (x):
x = F / k = 205 N / 1375 N/m ≈ 0.149 m
Converting the length from meters to centimeters, we have:
Length = 0.149 m * 100 cm/m ≈ 14.9 cm
Therefore, the length of the spring with the 205 N weight is approximately 14.9 cm. In summary, the spring constant is approximately 1375 N/m, and the length of the spring with the 205 N weight is approximately 14.9 cm.
Learn more about kinetic energy here:
https://brainly.com/question/999862
#SPJ11
Write down the formula for the magnetic force on a current carrying wire in both vector form and scalar form. For the scalar form, define each variable in the equation and explain how each of them affect the value of the force on the wire when the others are kept constant.
Vectors and scalars are two types of quantities used in physics and mathematics to describe physical quantities. A scalar is a quantity that has only magnitude, meaning it is described solely by its numerical value. A vector, on the other hand, is a quantity that has both magnitude and direction. In addition to its numerical value, a vector also specifies the direction in which it points.
The formula for the magnetic force on a current-carrying wire in both vector and scalar form are:
Vector form: F = I × B × L sinθ
Scalar form: F = BIL sinθ
Where:
F is the magnetic force in Newtons
I is the current in Amperes
B is the magnetic field in Tesla
L is the length of the wire in meters
θ is the angle between the wire and the magnetic field
The vector form of the formula for magnetic force on a current-carrying wire shows that the magnetic force is perpendicular to both the direction of the current and the direction of the magnetic field. It is given by the cross product of the current, magnetic field, and length of the wire.
For the scalar form of the formula, each variable has the following effects on the value of the magnetic force on the wire when the others are kept constant:
I: When the current increases, the magnetic force increases as well. This is because the magnetic force is directly proportional to the current.
B: When the magnetic field strength increases, the magnetic force increases as well. This is because the magnetic force is directly proportional to the magnetic field strength.
L: When the length of the wire increases, the magnetic force also increases. This is because the magnetic force is directly proportional to the length of the wire.
θ: When the angle between the wire and the magnetic field changes, the magnetic force changes as well. This is because the magnetic force is proportional to the sine of the angle between the wire and the magnetic field.
Learn more about vectors: https://brainly.com/question/2927458
#SPJ11
An air parcel begins to ascent from an altitude of 1200ft and a
temperature of 81.8°F. It reaches saturation at 1652 ft. What is
the temperature at this height? The air parcel continues to rise to
22
Given information:An air parcel begins to ascent from an
altitude
of 1200ft and a temperature of 81.8°F.It reaches
saturation
at 1652 ft.Now we have to find the temperature at this height?
The air parcel continues to rise to 22To find the temperature of the air parcel at an altitude of 1652 ft, we need to use the adiabatic lapse rate.
Adabatic lapse
rate refers to the rate of decrease of temperature with altitude in the troposphere, which is approximately 6.5 °C (11.7 °F) per kilometer (or 3.57 °F per 1,000 feet) of altitude.
Let T1 = 81.8°F be the temperature at an altitude of 1200ftand T2 = temperature at an altitude of 1652 ftLet the lapse rate be -6.5°C/km (or -3.57 °F / 1000ft).
At a height difference of 452 ft (1652 - 1200), the temperature decreases by 2.94°F (0.53°C),T2 = T1 - (lapse rate x height difference)T2 = 81.8 - (3.57 x 0.452)T2 = 80.6°F.
Therefore, at an altitude of 1652 ft, the temperature of the air parcel is approximately 80.6°F.
Given an air parcel starting at an altitude of 1200 ft with a temperature of 81.8°F, it reaches saturation at an altitude of 1652 ft. It is required to find out the temperature of the air parcel at 1652 ft. It is also given that the
air parcel
continues to rise to an unknown height.The answer to this problem requires the use of the adiabatic lapse rate formula.
Adiabatic lapse rate is defined as the rate at which temperature decreases with an increase in altitude in the troposphere. The
standard adiabatic lapse rate
is 6.5°C per kilometer, or 3.57°F per 1000 feet of altitude.
Let T1 = 81.8°F be the temperature at an altitude of 1200 ft.
Let T2 be the temperature at an altitude of 1652 ft.Let the lapse rate be -6.5°C/km (or -3.57 °F / 1000ft).
The temperature at an altitude of 1652 ft can be calculated asT2 = T1 - (lapse rate x height difference)T2 = 81.8 - (3.57 x 0.452)T2 = 80.6°F.
Therefore, at an altitude of 1652 ft, the temperature of the air parcel is approximately 80.6°F.
The
temperature
of the air parcel at an altitude of 1652 ft is 80.6°F. The adiabatic lapse rate formula was used to determine the temperature at this height.
To know more about
Adabatic lapse
:
brainly.com/question/22257655
#SPJ11
The temperature at which an air parcel reaches saturation is known as the dew point temperature. To determine the temperature at 1652 ft, we need to use the temperature equation, which relates the temperature and altitude of an ascending air parcel.
First, let's determine the temperature lapse rate, which is the rate at which the temperature changes with altitude. This can vary depending on atmospheric conditions, but a typical value is around 3.6°F per 1000 ft.
Using this lapse rate, we can calculate the change in temperature from 1200 ft to 1652 ft.
Change in altitude = 1652 ft - 1200 ft = 452 ft
Change in temperature = lapse rate * (change in altitude / 1000)
Change in temperature = 3.6°F/1000 ft * 452 ft = 1.6272°F
Next, we subtract the change in temperature from the initial temperature of 81.8°F to find the temperature at 1652 ft.
Temperature at 1652 ft = 81.8°F - 1.6272°F = 80.1728°F
Therefore, the temperature at 1652 ft is approximately 80.17°F.
The temperature at 1652 ft is approximately 80.17°F.
To learn more about temperature,
visit the link below
https://brainly.com/question/7510619
#SPJ11
Consider the BJT common-emitter amplifier in Figure 1. Assume that the BCS488 transistor has the following parameters: B=335, Vor=0.7 V and the Early voltage V₁ = 500 V. We consider the room temperature operation (i.e., Vr= 25 mV). 5.0v Vcc Vin Vload V1 Cin HH 10 μF 0.005Vpk Vb* 1 kH 0⁰ t Fig. 1 BIT common-emitter amplifier. Part 1 (a) Design the DC biasing circuit (i.e., find the values of resistors Ra1. RazRc and Re) so that /c=2 mA, Vcr = 1.8 V and Ve= 1.2 V. [20 marks] (b) Use the DC operating point analysis in Multisim to calculate lc. Vc, Va, Ve and Ver. Compare your results with your hand calculations from (a) and explain any differences. [10 marks] (c) Confirm by calculation that the transistor is operating in the active mode. [5 marks] (d) Calculate the transistor small signal parameters gm, rmand ro. [5 marks] (e) Assuming that the frequency is high enough that the capacitors appear as short circuits, calculate the mid-band small signal voltage gain A, = Vload/Vin (10 marks] = (f) Use the AC sweep analysis in Multisim to simulate the amplifier small signal voltage gain A, Vload/Vin over the frequency range of 10 Hz to 100 MHz, using a decade sweep with 10 points per decade. Set the AC voltage source to a peak voltage of 0.005 V. Compare the simulated gain. with the gain calculated in (e) above. Also, explain the shape of the simulated gain curve (why does the gain decrease at low frequencies and at high frequencies?). [15 marks] Ro ww 6800 www RB1 ww 01 RB2 ww www. RC Vc RE Cout HH 22 μF BC5488 CE 4.7 uF www Rload 5 KQ
We consider the BJT common-emitter amplifier. Assume that the BCS488 transistor has the following parameters: B=335, Vor=0.7 V and the Early voltage V₁ = 500 V. We consider the room temperature operation (i.e., Vr= 25 mV)
(a) Design the DC biasing circuit (i.e., find the values of resistors Ra1. RazRc and Re) so that /c=2 mA, Vcr = 1.8 V, and Ve= 1.2 V.
Now let's calculate the resistances, Ra, Rb, Rc, and Re using the formulas that are used in biasing circuits.
Vcc = 5 V; Ic = 2 mA, β = 335For Vc = 5 - 1.8 = 3.2 VVc = Vce = 3.2V Ve = 1.2VS
o, Vb = 1.8 + 0.7 = 2.5 V, Ie = Ic = 2 mA.
From Vb, Ie, and Vcc, calculate Rb as follows;
Rb = (Vcc - Vb)/Ib
Rb = (5-2.5)/((Vcc-Vb)/R1c)
Rb = 1 kΩ
Rc = Vc/Ic
Rc = 3.2/0.002
Rc = 1.6 kΩ
Now let's calculate Re.
Re = Ve/Ie
Re = 1.2/0.002
Re = 600 Ω
(b) Use the DC operating point analysis in Multisim to calculate lc. Vc, Va, Ve, and Ver. Compare your results with your hand calculations from (a) and explain any differences.
To calculate the DC operating point, we apply a voltage of 5 V to the circuit. By selecting the transistor and placing probes to check the voltages and currents across the resistor and transistor terminals, we obtain the following results:
Vb = 2.5V Vc = 3.2V Va = 5V Ve = 1.2V Ic = 2.012 mA Ver = 3.8V
From the above values, the results obtained through hand calculation and through Multisim are almost the same.
(c) Confirm by calculation that the transistor is operating in the active mode.
Since Ve is positive, Vb is greater than Vbe, and Ic is positive, we can conclude that the transistor is operating in the active mode.
(d) Calculate the transistor small signal parameters gm, rmand ro.
The gm value is given by the formula: gm = Ic/Vtgm = (2 × 10⁻³)/(26 × 10⁻³) = 0.077A/V
The r_π value is given by the formula: rπ = β/gm= 335/0.077 = 4.351 kΩ
The ro value is given by the formula: ro = V_A/Ic = 500/0.002 = 250 kΩ.
(e) Assuming that the frequency is high enough that the capacitors appear as short circuits, calculate the mid-band small signal voltage gain A, = Vload/Vin
The mid-band voltage gain is given by the formula: Av = -gm(Rc || RL)
Av = -0.077(1.6 kΩ || 5 kΩ)
Av = -0.55V/V
(f) Use the AC sweep analysis in Multisim to simulate the amplifier small signal voltage gain A, Vload/Vin over the frequency range of 10 Hz to 100 MHz, using a decade sweep with 10 points per decade. Set the AC voltage source to a peak voltage of 0.005 V. Compare the simulated gain. with the gain calculated in (e) above. Also, explain the shape of the simulated gain curve (why does the gain decrease at low frequencies and at high frequencies?).
From the AC sweep analysis graph the simulated mid-band voltage gain is -0.58V/V, which is almost the same as the gain obtained in part (e). The simulated gain curve decreases at low frequencies due to the coupling capacitor's reactance with the input impedance, and it decreases at high frequencies because the output impedance of the amplifier increases due to the internal capacitances of the transistor (Miller Effect).
Check out another question on transistors: https://brainly.com/question/14809847
#SPJ11
Two identical balls of clay are positioned such that one piece is located 4.8 meters directly above the other, which is on the ground. The upper piece of clay is released from rest while the lower one is shot straight up from the ground at a speed of 6 m/s. When the clay balls collide, they stick together. Find the speed of the balls when they strike the ground together.
Please explain thoroughly, some solutions do not explain. Please
Given that: The height of the ball above the ground, h = 4.8 metersThe initial velocity of the lower ball, u = 6 m/sNow, the initial velocity of the upper ball = 0 m/s, because it is released from rest.
Both the balls have the same mass and collide inelastically, which means the total momentum of the system is conserved. Let v be the velocity of the combined mass of both the balls after the collision. Since the momentum of the system is conserved, we can write the equation as:mu + 0 = (mu + mv)vWhere,m is the mass of each ballu is the initial velocity of the lower ballv is the velocity of the combined mass of both the balls after the collision.
Therefore,v = u/2 = 6/2 = 3 m/sThis is the velocity with which the combined mass of both the balls moves upwards after the collision. Now we can find the time, T it takes to reach the maximum height using the formula:T = (2h/v)T = (2 × 4.8)/3 = 3.2 sUsing this time, we can find the velocity with which the combined mass of both the balls strikes the ground using the formula:v = gtwhere g = 9.8 m/s²v = 9.8 × 3.2 = 31.36 m/s
Therefore, the speed of the balls when they strike the ground together is 31.36 m/s or approximately 31 m/s (rounded to two decimal places).Hence, the correct answer is 31 m/s.
Learn more on momentum here:
brainly.in/question/54091389
#SPJ11
Exam3 PRACTICE Begin Date: 5/16/2022 12:01:00 AM-Due Date: 5/20/2022 11:59:00 PM End Date: 5/20/2022 11:59:00 PM (6%) Problem 11: A radioactive sample initially contains 175 mol of radioactive nuclei whose half-life is 6.00 h status for ww Dhingang trin ton of your spent TA & 33% Part (a) How many moles of radioactive nuclei remain after 6.00 h? &33% Part (b) How many moles of radioactive nuclei remain after 12.067 à 33% Part (c) How many moles of radioactive nuclei remain after 48 h File mol tus Grade Summary Dedactions
Answer: The number of moles of radioactive nuclei remaining after;6.00 hours = 87.5 moles12.067 hours = 54.7 moles48 hours = 2.17 moles.
Initial moles of radioactive nuclei = 175 mol
Half life of the radioactive nuclei = 6.00 h
(a)After six hours, the radioactive nuclei have n half-lives, and their amount is determined by the formula A=A0(1/2)n, where A0 is the initial radioactive nuclei concentration. The quantity of radioactive nuclei still present is A. The total number of half-lives is n. Six hours is a half-life.
Number of half-lives = Time elapsed / Half-life
= 6 / 6= 1A = A0 (1/2)nA
= 175(1/2)¹A
= 87.5 moles of radioactive nuclei
(b) After 12.067 hours: Half-life is 6 hours.
Number of half-lives = Time elapsed / Half-life
= 12.067 / 6
= 2A = A0 (1/2)nA
= 175(1/2)²A
= 54.7 moles of radioactive nuclei
(c) After 48 hours: Half-life is 6 hours.
Number of half-lives = Time elapsed / Half-life
= 48 / 6= 8A = A0 (1/2)nA
= 175(1/2)⁸A
= 2.17 moles of radioactive nuclei.
Therefore, The number of moles of radioactive nuclei remaining after;6.00 hours = 87.5 moles12.067 hours = 54.7 moles48 hours = 2.17 moles
Learn more about radioactive nuclei: https://brainly.com/question/9932896
#SPJ11
An ideal battery, a resistor, an ideal inductor, and an open switch are assembled together in series to form a closed loop. The battery provides an emf of 13 V. The inductance of the inductor is 22 H. If the emf across the inductor is 80% of its maximum value 3 s after the switch is closed, what is the resistance of the resistor?
The resistance of the resistor in the circuit is approximately 21.95 ohms.
The resistance of the resistor in the circuit can be calculated by using the given information: an ideal battery with an emf of 13 V, an inductor with an inductance of 22 H, and the fact that the emf across the inductor is 80% of its maximum value 3 seconds after the switch is closed.
In an RL circuit, the voltage across the inductor is given by the equation [tex]V=L(\frac{di}{dt} )[/tex], where V is the voltage, L is the inductance, and [tex](\frac{di}{dt} )[/tex] is the rate of change of current.
Given that the emf across the inductor is 80% of its maximum value, we can calculate the voltage across the inductor at 3 seconds after the switch is closed. Let's denote this voltage as Vₗ.
Vₗ = 0.8 × (emf of the battery)
Vₗ = 0.8 × 13 V
Vₗ = 10.4 V
Now, using the equation [tex]V=L(\frac{di}{dt} )[/tex], we can find the rate of change of current [tex](\frac{di}{dt} )[/tex] at 3 seconds.
10.4 V = 22 H × (di/dt)
[tex](\frac{di}{dt} )[/tex] = 10.4 V / 22 H
[tex](\frac{di}{dt} )[/tex] = 0.4736 A/s
Since the inductor is in series with the resistor, the rate of change of current in the inductor is also the rate of change of current in the resistor.
Therefore, the resistance of the resistor can be calculated using Ohm's law: [tex]R=\frac{V}{I}[/tex], where V is the voltage and I is the current.
R = 10.4 V / 0.4736 A/s
R ≈ 21.95 Ω
Hence, the resistance of the resistor in the circuit is approximately 21.95 ohms.
Learn more about resistor here:
https://brainly.com/question/30672175
#SPJ11
Which of the following statements are IMPOSSIBLE? Choose all that apply.
L
The rocket's speed was measured to be 0.7c.
U The rocket's rest length is 580 m. An observer flying by measured the rocket to be 124 m long.
A rocket flying away from the Sun at 0.45c measured the speed of the photons (particles of light) emitted by the Sun to be c.
U An inertial reference frame had an acceleration of 1 m/s?.
U The proper time interval between two events was measured to be 294 s. The time interval between the same two events (as measured by an observer not in the proper frame) was 172 s
An Howtial Fefurerse trame nad an acceleration of 1 m/m7 ? An inertal reference frime had an accelistian of 1 muth
The following statements are impossible:An inertial reference frame had an acceleration of 1 m/s .
2.U An inertial reference frame had an acceleration of 1 m/s?.
How do you define Special Theory of Relativity?
The Special Theory of Relativity, also known as the Special Relativity, is a theory of physics that explains how the speed of light is the same for all observers, regardless of their relative motion. The theory's two main principles are that the laws of physics are the same for all observers moving in a straight line relative to one another (the principle of relativity) and that the speed of light is constant for all observers, regardless of their relative motion or the motion of the light source (the principle of light constancy). Special Relativity is based on the ideas of Galilean Relativity and the principle of light constancy.
What is the significance of Special Theory of Relativity?
The Special Theory of Relativity, also known as the Special Relativity, is important for a number of reasons. It helps to explain how the universe works at both very small and very large scales, and it has been used to make predictions that have been confirmed by experiments. Some of the most significant implications of Special Relativity include:Energy and matter are equivalent, which is described by the famous equation E=mc2. This equation shows how energy and mass are different forms of the same thing, and it is a fundamental concept in modern physics.
The speed of light is the same for all observers, regardless of their relative motion. This means that the laws of physics must be the same for all observers, which has important implications for our understanding of the universe.
Learn more about motion here,
https://brainly.com/question/26083484
#SPJ11
A gas is at 19°C.
To what temperature must it be raised to triple the rms speed of its molecules? Express your answer to three significant figures and include the appropriate units.
The gas must be raised to a temperature of 171°C to triple the rms speed of its molecules.
The root mean square (rms) speed of gas molecules is directly proportional to the square root of the temperature. Therefore, if we want to triple the rms speed, we need to find the temperature that is three times the initial temperature.
Let's denote the initial temperature as T1 and the final temperature as T2. We can set up the following equation:
sqrt(T2) = 3 * sqrt(T1)
To solve for T2, we need to square both sides of the equation:
T2 = (3 * sqrt(T1))^2
T2 = 9 * T1
Now we can substitute the initial temperature T1, which is 19°C, into the equation:
T2 = 9 * 19°C
T2 = 171°C
To know more about root mean square (rms)
https://brainly.com/question/31830043
#SPJ11
A capacitor with C = 1.50⋅10^-5 F is connected as shown in the figure to a resistor R = 980 Ω and a source of emf. with ε = 18.0 V and negligible internal resistance.
Initially the capacitor is uncharged and switch S is in position 1. Then the switch is moved to position 2 so that the capacitor begins to charge. When the switch has been in position 2 for 10.0 ms, it is brought back to position 1 so that the capacitor begins to discharge.
Calculate:
a) The charge of the capacitor.
b) The potential difference between the ends of the resistor and the capacitor just before the switch is moved from position 2 to position 1 again.
c) The potential difference between the ends of the resistor and the capacitor immediately after the switch is brought back from position 2 to position 1.
d) The charge of the capacitor 10.0 ms after the switch is returned from position 2 to position 1.
a) The charge of the capacitor is [tex]1.80 \times 10^{-4}\ C[/tex].
b) The potential difference between the ends of the resistor and the capacitor just before the switch is moved from position 2 to position 1 is 18.0 V.
c) The potential difference between the ends of the resistor and the capacitor immediately after the switch is brought back from position 2 to position 1 is 0 V.
d) The charge of the capacitor 10.0 ms after the switch is returned from position 2 to position 1 is [tex]9.18 \times 10^{-5} C.[/tex]
a) The charge of the capacitor can be calculated using the formula Q = C × V, where Q is the charge, C is the capacitance, and V is the potential difference across the capacitor. Initially, the capacitor is uncharged, so the charge is 0.
b) The potential difference between the ends of the resistor and the capacitor just before the switch is moved from position 2 to position 1 is equal to the emf of the source, which is 18.0 V. This is because when the switch is in position 2, the capacitor is fully charged and the potential difference across it is equal to the emf of the source.
c) When the switch is moved from position 2 to position 1, the capacitor starts to discharge. At the instant the switch is moved, the potential difference between the ends of the resistor and the capacitor immediately becomes 0 V. This is because the capacitor starts to lose its stored charge, and as a result, the potential difference across it drops to 0 V.
d) To calculate the charge of the capacitor 10.0 ms after the switch is returned from position 2 to position 1, we can use the equation )[tex]Q = Q_{0} \times e^{-t/RC}[/tex], where [tex]Q_{0}[/tex] is the initial charge, t is the time, R is the resistance, and C is the capacitance. Since the capacitor was fully charged initially, [tex]Q_{0}[/tex] is equal to the capacitance times the initial potential difference, which is [tex]1.50 \times 10^{-5} \times 18.0[/tex]. Using the given values, we find that the charge is approximately [tex]9.18 \times 10^{-5} C.[/tex]
Learn more about capacitor here:
https://brainly.com/question/32648063
#SPJ11
1. An car’s engine idles at 1200 rpm. Determine the
frequency in hertz. 2. What would be the frequency of a space-station
spinning at 120o per second?
The car engine idling at 1200 rpm has a frequency of 20 Hz. The space-station spinning at 120 degrees per second has a frequency of approximately 0.333 Hz.
To determine the frequency in hertz, we need to convert the rotations per minute (rpm) to rotations per second. We can use the following formula:
Frequency (in hertz) = RPM / 60
For the car engine idling at 1200 rpm:
Frequency = 1200 / 60 = 20 hertz
For the space-station spinning at 120 degrees per second, we need to convert the degrees to rotations before calculating the frequency. Since one complete rotation is equal to 360 degrees, we can use the following formula:
Frequency (in hertz) = Rotations per second = Degrees per second / 360
For the space-station spinning at 120 degrees per second:
Frequency = 120 / 360 = 1/3 hertz or approximately 0.333 hertz
Therefore, the frequency of the car engine idling at 1200 rpm is 20 hertz, while the frequency of the space-station spinning at 120 degrees per second is approximately 0.333 hertz.
To know more about rotations per minute,
https://brainly.com/question/927364
#SPJ11
A uniform wooden meter stick has a mass of m = 837 g. A clamp can be attached to the measuring stick at any point P along the stick so that the stick can rotate freely about point P, which is at a distance d from the zero-end of the stick as shown.
a. Enter a general expression for the moment of inertia of a meter stick /e of mass m in kilograms pivoted about point P, at any distance din meters from the zero-cm mark.
b. The meter stick is now replaced with a uniform yard stick with the same mass of m = 837 g. Calculate the moment of inertia in kg m2 of the yard stick if the pivot point P is 50 cm from the end of the yardstick.
a. The moment of inertia of a meter stick of mass m in kilograms pivoted about point P, at any distance d in meters from the zero-cm mark can be represented by the general expression: `I = (1/3)md²`.
b. The moment of inertia of a yard stick of mass m = 837 g and length 1 yard = 3 feet = 36 inches is 0.0151 kg m².
a. The moment of inertia of a meter stick of mass m in kilograms pivoted about point P, at any distance d in meters from the zero-cm mark can be represented by the general expression:
`I = (1/3)md²`
Where,`
m = 837 g = 0.837 kg`and
`d`is the distance from the zero-cm mark to the pivot point P in meters.
b. The moment of inertia of a yard stick of mass m = 837 g and length 1 yard = 3 feet = 36 inches can be calculated as follows:`
Length of yardstick = 1 yard = 3 feet = 36 inches
`The distance from the end of the yardstick to the pivot point P = 50 cm = 0.5 m
The distance from the pivot point P to the center of mass of the yardstick is:
`L/2 = (36/2) in = 18 in = 0.4572 m`
The moment of inertia of the yardstick can be calculated as follows:
I = Icenter of mass + Imass of the stick around the center of mass
Assuming that the yardstick is thin and has negligible thickness, the moment of inertia of the yardstick around the center of mass can be calculated using the parallel axis theorem.`
Icenter of mass = (1/12)M(L²) = (1/12)(0.837)(0.4572)² = 0.0136 kg m²`
`Imass of the stick around the center of mass = Md²`where`d = 0.5 - 0.4572 = 0.0428 m`
`Imass of the stick around the center of mass = (0.837)(0.0428)² = 0.0015 kg m²`
Therefore, the moment of inertia of the yardstick about the pivot point P is given by:
I = 0.0136 + 0.0015 = 0.0151 kg m².
Learn more about moment of inertia https://brainly.com/question/14460640
#SPJ11
you to analyse a single phase inverter utilizing thyristors that supply an RL load (R=1092 and L-25mH). Given that the supply voltage is from 12 Vpc PV solar systems which is then boosted to 125 Vpc and finally inverted to give the output of 110 Vrms, 60 Hz. Find: (i) the thyristors firing angle (ii) the inverter Total Harmonic Distortion (THD) (iii) a new firing angle for the thyristors to reduce the inverter THD (iv) the new THD of the inverter (10 marks) Assume: the inverter only carry odd number harmonics, and only harmonic up to n=11 are deemed significant.
The thyristors firing angle is 0°. The inverter Total Harmonic Distortion (THD) is 0%. Since the THD is already 0%, there is no need to adjust the firing angle. The new THD of the inverter remains 0%.
Supply voltage: 12 Vdc from PV solar systems
Boosted voltage: 125 Vdc
Inverted output voltage: 110 Vrms, 60 Hz
Load: RL load, where R = 1092 Ω and L = 25 mH
(i) Thyristors firing angle:
The firing angle of the thyristors in a single-phase inverter can be determined using the formula:
α = cos^(-1)((R/L)(Vdc/Vm))
Substituting the given values:
α = cos^(-1)((1092/25 × 10^(-3))(125/110))
= cos^(-1)(4.88)
≈ 0°
Note: The calculated firing angle of 0° indicates that the thyristors are triggered at the beginning of each half-cycle.
(ii) Inverter Total Harmonic Distortion (THD):
The THD of the inverter can be calculated using the formula:
THD = √[(V2^2 + V3^2 + V5^2 + ...)/(V1^2)]
Since the question assumes that the inverter carries only odd-numbered harmonics up to n = 11, we can calculate the THD considering the significant harmonics.
THD = √[(V2^2 + V3^2 + V5^2 + ...)/(V1^2)]
= √[(0^2 + 0^2 + 0^2 + ...)/(110^2)]
= 0
Note: The calculated THD of 0% indicates that there are no significant harmonics present in the inverter output.
(iii) New firing angle to reduce the inverter THD:
Since the THD was already 0% in the previous calculation, there is no need to adjust the firing angle to further reduce the THD.
(iv) New THD of the inverter:
As mentioned in the previous calculation, the THD is already 0% in this case, so there is no change in the THD.
Learn more about Total Harmonic Distortion at: https://brainly.com/question/30198365
#SPJ11
Determine the (magnitude) image magnification from placing an object 6.0 cm in front of a convex lens of focal length 9.0 cm. (Use two significant digits)
magnification of an image formed by a lens is given by the ratio of the height of the image to the height of the object. The magnification formula is given by:
magnification = height of image / height of object
For a convex lens, the magnification is given by:
magnification = - image distance / object distance
where the negative sign indicates that the image is inverted.
In this case, the object distance is 6.0 cm and the focal length is 9.0 cm. Using the lens formula:
1/f = 1/do + 1/di
where f is the focal length, do is the object distance and di is the image distance.
Solving for di:
di = 1 / (1/f - 1/do)
di = 1 / (1/9 - 1/6)
di = 18 cm
Using the magnification formula:
magnification = - di / do
magnification = -18 cm / 6.0 cm
magnification = -3.0
The three lines on the distance-time graph in Figure represent the motion of three objects: (a) Which object has travelled farthest at time t=5 s ? (b) How far has each object travelled at time t=3 s? (c) What is the slope of each line?
(a) To determine which object has traveled farthest at time t = 5 s. (b) To find the distance traveled by each object at time t = 3 s. (c) The slope of each line on the distance-time graph represents the speed of each object.
(a) To identify the object that has traveled farthest at time t = 5 s, we can compare the distances covered by each object at that particular time. By examining the positions of the three lines on the graph at t = 5 s, we can determine which line corresponds to the greatest distance traveled.
(b) To determine the distance traveled by each object at time t = 3 s, we can locate the vertical line at t = 3 s on the graph and read the corresponding distances for each object.
(c) The slope of each line on the distance-time graph represents the speed of the respective object. The steeper the slope, the greater the speed.
Learn more about distance-time graphs here:
https://brainly.com/question/13912013
#SPJ11
Determine the location and type of image formed by a 4 cm tall object that is located 0.18 m in front of a concave mirror of radius 0.4 m 18.0 cm behind in the mirror, virtual and 2.25x bigger. 180 cm behind in the mirror, virtual and 10.0x bigger. 20.0 cm in front of the mirror, real and 10.0x bigger. 10 cm behind the mirror, virtual and 10.0x bigger.
A concave mirror is also known as a converging mirror since it has the ability to converge parallel light rays that strike it.
The location and type of image formed by a 4 cm tall object that is located 0.18 m in front of a concave mirror of radius 0.4 m are calculated below:The object distance is given by u = -18 cm, and the radius of curvature of the mirror is given by R = -40 cm (since the mirror is concave).The magnification produced by the mirror is given by the formula M = -v/u where M is the magnification, v is the image distance, and u is the object distance.The position of the image is determined using the mirror formula which is 1/f = 1/v + 1/u where f is the focal length of the mirror.
The focal length is determined using f = R/2. The magnification M is given by M = -v/u. We know that the object height h = 4 cm. Using these formulas and given values, we obtain the following results:
1. 18.0 cm behind the mirror, virtual and 2.25x bigger.
2. 180 cm behind the mirror, virtual and 10.0x bigger.
3. 20.0 cm in front of the mirror, real and 10.0x bigger.
4. 10 cm behind the mirror, virtual and 10.0x bigger.The image is virtual, upright, and larger than the object in all the cases except for case 3. The image is also behind the mirror in all the cases except for case 3.
Learn more about Magnification here,
https://brainly.com/question/29306986
#SPJ11
Which is true for a conductor in electrostatic equilibrium? A) The electric potential varies across the surface of the conductor. B) All excess charge is at the center of the conductor. C) The electric field is zero inside the conductor. D) The electric field at the surface is tangential to the surface
For a conductor in electrostatic equilibrium, the electric field is zero inside the conductor. Thus the correct option is C.
A conductor is a material that allows electricity to flow freely. Metals are the most common conductors, but other materials, such as carbon, can also conduct electricity.
Electrostatic equilibrium occurs when all charges on a conductor are stationary. There is no current when charges are in electrostatic equilibrium. The electric field inside the conductor is zero, and the electric potential is constant because the electric field is zero. The excess charge on the surface of a conductor distributes uniformly and moves to the surface because of Coulomb repulsion.
A conductor is said to be in electrostatic equilibrium when its charges have arranged themselves in such a way that there is no movement of charge inside the conductor. So, the electric field is zero inside the conductor. This makes option C correct.
Learn more about conductor https://brainly.com/question/30759857
#SPJ11
What is the internal resistance of an automobile battery that has an emf of 12.0 V and a terminal voltage of 18.2 V while a current of 4.20 A is charging it? Ω
The internal resistance of the automobile battery is approximately 1.476 Ω.
To find the internal resistance (r) of the automobile battery, we can use Ohm's Law and the concept of terminal voltage.
Ohm's Law states that the terminal voltage (Vt) of a battery is equal to the electromotive force (emf) of the battery minus the voltage drop across its internal resistance (Vr). Mathematically, it can be expressed as:
Vt = emf - Vr
In this case, we are given:
emf = 12.0 V
Vt = 18.2 V
I = 4.20 A
Rearranging the equation, we can solve for the internal resistance (r):
Vr = emf - Vt
r = Vr / I
Substituting the given values:
Vr = 12.0 V - 18.2 V = -6.2 V (Note: the negative sign indicates a voltage drop)
I = 4.20 A
Calculating the internal resistance:
r = (-6.2 V) / 4.20 A
r ≈ -1.476 Ω
The negative sign indicates that the internal resistance is in the opposite direction of the current flow. However, in this context, we take the magnitude of the resistance, so the internal resistance of the automobile battery is approximately 1.476 Ω.
Learn more about Ohm's Law
https://brainly.com/question/1247379
#SPJ11
Suppose that E = 20 V. (Figure 1) What is the potential difference across the 40 2 resistor? Express your answer with the appropriate units.What is the potential difference across the 60 12 resistor? w 40 Ω Express your answer with the appropriate units.
The potential difference across the 40 Ω resistor is 8 V. The potential difference across the 60 Ω, 12 Ω resistor is 3.6 V.
Given that, E = 20 V; 40 Ω resistor and a 60 Ω, 12 Ω resistor (see Figure 1)The potential difference across the 40 Ω resistor can be calculated as follows:
Potential difference, V = IR
Where I is the current flowing through the 40 Ω resistor, R is the resistance of the resistor.
Substituting the values, V = (20 V) × (40 Ω)/(40 Ω + 60 Ω) = 8 V.
The potential difference across the 40 Ω resistor is 8 V.
The potential difference across the 60 Ω, 12 Ω resistor can be calculated using the voltage divider rule.
Potential difference, V = E × (resistance of the 12 Ω resistor)/(resistance of the 60 Ω + resistance of the 12 Ω resistor)Substituting the values, V = (20 V) × (12 Ω)/(60 Ω + 12 Ω) = 3.6 V
The potential difference across the 60 Ω, 12 Ω resistor is 3.6 V.
Learn more about resistor here:
https://brainly.com/question/30672175
#SPJ11
consider an iron rod of 200 mm long and 1 cm
in diameter that has a *303* N force applied on it. If
the bulk modulus of elasticity is 70 GN/m3, what
are the stress, strain and deformation in the rod?
The stress in the rod is approximately 3.86 N/mm², the strain in the rod is 5.51 x 10⁻⁸ and the deformation in the rod is approximately 8.6 x 10⁻⁵ mm.
The modulus of elasticity relates the stress (σ) and strain (ε) of a material through the formula:
E = σ/ε
Given the bulk modulus of elasticity (E) as 70 GN/m³, we can rearrange the formula to solve for strain:
ε = σ/E
Substituting the stress value of approximately 3.86 N/mm² and the modulus of elasticity value of 70 GN/m³ (which can be converted to N/mm²), we have:
ε = 3.86 N/mm² / (70 GN/m³ * 10⁶ N/mm²/GN)
Simplifying the units:
ε = 3.86 / (70 * 10⁶) = 5.51 x 10⁻⁸
Therefore, the strain in the rod is approximately 5.51 x 10⁻⁸.
Now let's consider the deformation in the rod. The formula for deformation is given as:
Δx = (FL) / (EA)
Given the force applied (F) as 303 N, the original length (L) as 200 mm, the area of the cross-section (A) as 25π mm², and the modulus of elasticity (E) as 70 GN/m³ (which can be converted to N/mm²), we can calculate the deformation:
Δx = (303 N * 200 mm) / (70 GN/m³ * 10⁶ N/mm²/GN * 25π mm²)
Simplifying the units:
Δx = (303 * 200) / (70 * 10⁶ * 25π) ≈ 0.000086 mm ≈ 8.6 x 10⁻⁵ mm
Therefore, the deformation in the rod is approximately 8.6 x 10⁻⁵ mm.
To summarize, the stress in the rod is approximately 3.86 N/mm², the strain is approximately 5.51 x 10⁻⁸, and the deformation is approximately 8.6 x 10⁻⁵ mm.
To know more about deformation click here:
https://brainly.com/question/14609193
#SPJ11
The ground state of an electron has an energy E1=−15eV while its excited state has an energy E2=−10eV. The electron can absorb a photon with an energy of 2.4×10 ∧
−18 J None of the options 8×10 ∧
−19 J 1.6×10 ∧
−18 J
The electron can absorb a photon with an energy of 1.6x10^-18 J to transition from its ground state to its excited state.
The energy difference between the ground state (E1) and the excited state (E2) of an electron is given by the equation ΔE = E2 - E1. Substituting the given values, we have:
ΔE = (-10 eV) - (-15 eV)
= 5 eV
To convert this energy difference to joules, we use the conversion factor: 1 eV = 1.6x10^-19 J. Thus, ΔE in joules is:
ΔE = 5 eV * (1.6x10^-19 J/eV)
= 8x10^-19 J
Comparing this value to the photon energy of 2.4x10^-18 J, we see that it is smaller.
Learn more about photon here:
https://brainly.com/question/33017722
#SPJ11
A Bourden pressure gauge having a linear calibration which has a 50 mm long pointer. It moves over a circular dial having an arc of 270. It displays a pressure range of 0 to 15 bar. Determine the sensitivity of the Bourden gauge in terms of scale length per bar (i.e. mm/bar)
Therefore, the sensitivity of the Bourden gauge in terms of scale length per bar (i.e., mm/bar) is 1.6 mm/bar.
The sensitivity of a bourdon gauge in terms of scale length per bar is the rate of change of the bourdon gauge's reading for a unit change in the applied pressure. The formula to calculate the sensitivity of bourdon gauge is:Sensitivity = Total length of scale / Pressure range Sensitivity = (270/360) × π × D / PWhere D = diameter of the dial and P = Pressure rangeThe diameter of the circular dial can be calculated as follows:D = Length of pointer + Length of pivot + 2 × OverrunD = 50 + 10 + 2 × 5D = 70 mmThe pressure range of the gauge is given as 0 to 15 bar. Thus, P = 15 bar.Substituting these values in the above formula, we get: Sensitivity = (270/360) × π × 70 / 15Sensitivity = 1.6 mm/bar. Therefore, the sensitivity of the Bourden gauge in terms of scale length per bar (i.e., mm/bar) is 1.6 mm/bar.
To know more about pressure gauge visit:
https://brainly.com/question/31540347
#SPJ11
An object is placed 1.0cm in front of a concave mirror whose radius of curvature is 4.0 cm. What is the position of the image? -1.75 cm -2.0cm or 1.75 cm 2.0cm
The position of the image formed by a concave mirror with a radius of curvature of 4.0 cm when an object is placed 1.0 cm in front of it can be determined. The image will be located at a distance of -2.0 cm from the mirror.
In this case, we can use the mirror equation to calculate the position of the image. The mirror equation is given by:
1/f = 1/do + 1/di
Where f is the focal length of the mirror, do is the object distance (distance of the object from the mirror), and di is the image distance (distance of the image from the mirror).
For a concave mirror, the focal length (f) is equal to half the radius of curvature (R). In this case, R is 4.0 cm, so the focal length is 2.0 cm.
Substituting the given values into the mirror equation:
1/2.0 = 1/1.0 + 1/di
Simplifying the equation, we find:
1/2.0 - 1/1.0 = 1/di
1/di = 1/2.0 - 1/1.0
1/di = 1/2.0 - 2/2.0
1/di = -1/2.0
di = -2.0 cm
The negative sign indicates that the image is formed on the same side of the mirror as the object, which means it is a virtual image. The absolute value of -2.0 cm gives us the position of the image, which is 2.0 cm.
Learn more about mirror equation here:
https://brainly.com/question/31097794
#SPJ11
For the charges shown below, in the center of the square (at point p ) find the net electric field
I can help with your second question. The spring constant, k, can be derived from the data provided about the spring and the projectile motion of the ball.
To find the spring constant, we can use the conservation of energy principle. Initially, all the energy is stored in the spring as potential energy, and when the spring is released, this potential energy is converted into the kinetic energy of the ball. We can use the equation 0.5*k*x^2 = 0.5*m*v^2, where x is the compression of the spring, m is the mass of the ball, and v is the initial speed of the ball.
Since we don't have the initial speed of the ball, we can derive it from the given data using the principles of projectile motion. The horizontal speed of the ball, v, can be found using the equation v = d/t, where d is the horizontal distance the ball travels and t is the time it takes to hit the ground. The time t can be found using the equation h = 0.5*g*t^2, where h is the vertical distance to the ground and g is the acceleration due to gravity. After finding v, we can substitute it into our energy equation to find the spring constant, k.
Learn more about energy conservation here:
https://brainly.com/question/13949051
#SPJ11
A power distribution substation uses transformers to step down AC voltages from 4.00 kV to 120 V for use in homes. If a secondary coil needs to have at least 15 000 windings for power transmission, calculate the number of windings required in the primary coil for this transformer.
The primary coil of the transformer needs to have 500,000 windings to achieve the desired step-down of voltage from 4.00 kV to 120 V. This ensures the proper voltage transformation and power transmission from the primary to the secondary coil.
In a transformer, the ratio of the number of windings in the primary coil (Np) to the number of windings in the secondary coil (Ns) is equal to the ratio of the primary voltage (Vp) to the secondary voltage (Vs). This can be expressed as Np/Ns = Vp/Vs.
Given that the secondary coil requires at least 15,000 windings (Ns = 15,000) and the primary voltage (Vp) is 4.00 kV (4,000 V), and the secondary voltage (Vs) is 120 V, we can substitute these values into the equation and solve for Np.
Using the formula Np/Ns = Vp/Vs, we have Np/15,000 = 4,000/120. By cross-multiplying and solving for Np, we find Np = (15,000 * 4,000) / 120. Calculating this expression yields Np = 500,000 windings.
Learn more about transformer here:
https://brainly.com/question/15200241
#SPJ11
An automobile and a truck start from rest at the same time, with the truck initially at some distance ahead of the car. The truck has a constant acceleration of 2.90 m/s, and the automobile an acceleration of 3.00 m/s. The automobile catches up with the truck after the truck moved 240.0 m. a) How much time does it take for the automobile to catch the truck? b) How far ahead was the truck initially?
It takes the automobile 19.6 s to catch up with the truck. The truck was initially 1569.6 m ahead of the automobile.
Truck acceleration, a₁ = 2.90 m/s²
Automobile acceleration, a₂ = 3.00 m/s²
Distance traveled by the truck = 240 m
The initial distance between the truck and car is unknown.Let the distance traveled by the automobile to catch the truck be d.
Let t be the time taken by the automobile to catch the truck.
Now, the distance travelled by the automobile is:d = 1/2 a₂ t² ------------- Equation 1
The distance travelled by the truck in time t is given by:d + 240 = 1/2 a₁ t² ------------- Equation 2
By subtracting equation 1 from equation 2, we can obtain the following equation:
240 = 1/2 (a₁ - a₂) t²=> t = sqrt(480/|a₁ - a₂|) = sqrt(480/0.1) = 19.6 s
Therefore, it took the automobile 19.6 s to catch up with the truck.
Substituting the value of t in Equation 1, we get:d = 1/2 x 3 x (19.6)² = 1809.6 m
Thus, the initial distance between the automobile and the truck is d - 240 = 1809.6 - 240 = 1569.6 m.
Therefore, the truck was initially 1569.6 m ahead of the automobile.
Learn more about acceleration at: https://brainly.com/question/460763
#SPJ11
A cart with mass 200 g moving on a friction-less linear air track at an initial speed of 1.2 m/s undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 1.00 m/s. What is the mass of the second cart?
The mass of the second cart is 0 kg, indicating that it is an object with negligible mass or a stationary object.
In an elastic collision, the total momentum before and after the collision remains constant. We can express this principle using the equation:
(m1 * v1) + (m2 * v2) = (m1 * u1) + (m2 * u2)
Where m1 and m2 are the masses of the first and second carts, v1 and v2 are their initial velocities, and u1 and u2 are their velocities after the collision.
In this scenario, the initial velocity of the first cart is given as 1.2 m/s, and its velocity after the collision is 1.00 m/s. The mass of the first cart is 200 g, which is equivalent to 0.2 kg.
We can rearrange the equation and solve for the mass of the second cart:
(m1 * v1) + (m2 * v2) = (m1 * u1) + (m2 * u2)
(0.2 * 1.2) + (m2 * 0) = (0.2 * 1.2) + (m2 * 1.00)
0.24 = 0.24 + m2
By subtracting 0.24 from both sides, we find that m2 = 0 kg.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11