The method that produces less CO2 per kg of aluminum produced among the given two eventualities is: Electrolysis with C electrodes of AlO3 in cryolite uses 3.35 kWh/kg Al.
Aluminum is produced by electrolysis of Al2O3 dissolved in a cryolite melt.
Carbon electrodes are used for the reduction reaction. CO2 is formed by the oxidation of the C electrodes.
Stoichiometric amounts of CO2 are produced by oxidation of C electrodes in the electrolysis with C electrodes of AlO3 in cryolite which uses 3.35 kWh/kg Al, and it is less than the amount of CO2 produced in the direct electrolysis of AlO3 in cryolite which uses 6.7 kWh/kg Al produced.
Therefore, Electrolysis with C electrodes of AlO3 in cryolite uses 3.35 kWh/kg Al is the method that produces less CO2 per kg of aluminum produced.
Know more about cryolite here:
https://brainly.com/question/15520587
#SPJ11
Which of these is a factor in this expression?
624 - 4 + 9 (y° + 9)
O A. 624 - 4
О B. (y' + 9)
О с. -4 + 9 (y° + 9)
O D. 9 (y° + 9)
The correct answer is option D. 9(y° + 9) is a factor in the expression 624 - 4 + 9(y° + 9).
The given expression is 624 - 4 + 9(y° + 9). We need to identify which of the options is a factor in this expression.
A factor is a term or expression that divides evenly into another term or expression without leaving a remainder. To determine if an option is a factor, we can simplify the expression using each option and check if it divides evenly.
Let's evaluate each option:
A. 624 - 4: This is a subtraction of two constants. It is not a factor in the given expression because it does not divide into the expression without leaving a remainder.
B. (y' + 9): This is a binomial expression involving the variable y. It is not a factor in the given expression because it does not divide into the expression without leaving a remainder.
C. -4 + 9(y° + 9): This option includes a constant term and a term with the variable y. It is not a factor in the given expression because it does not divide into the expression without leaving a remainder.
D. 9(y° + 9): This option includes a constant factor, 9, multiplied by the expression (y° + 9). It is indeed a factor in the given expression because it divides evenly into the expression without leaving a remainder.
Option D
For more such questions on factor visit:
https://brainly.com/question/25829061
#SPJ8
How many different ways are there to get from the point (1,2) to the point (4,5) if I can only go up/right and if I must avoid the point (4,4)
A) 20
B) 9
C) 10
D) 9
The number of different ways to reach the point (4,5) from (1,2) while avoiding the point (4,4) using only up and right movements is to be determined. The options are A) 20, B) 9, C) 10, D) 9.
To find the number of different paths, we can use the concept of lattice paths. Since we must avoid the point (4,4), we need to count the number of paths from (1,2) to (4,5) that do not pass through (4,4).
If we consider the grid, we have to reach the point (4,5) from (1,2) while only moving up or right. Since we cannot pass through (4,4), the paths must go around it.
We can visualize the possible paths as follows:
(1,2) → (2,2) → (3,2) → (4,2) → (4,3) → (4,5)
(1,2) → (2,2) → (3,2) → (4,2) → (4,3) → (3,3) → (4,5)
(1,2) → (2,2) → (3,2) → (4,2) → (3,3) → (4,5)
There are a total of 3 different paths to reach (4,5) while avoiding (4,4). Therefore, the answer is D) 9.
Learn more about Lattice Paths: brainly.com/question/30615419
#SPJ11
The number of different ways to reach the point (4,5) from (1,2) while avoiding the point (4,4) using only up and right movements is to be determined. The options are A) 20, B) 9, C) 10, D) 9.
To find the number of different paths, we can use the concept of lattice paths. Since we must avoid the point (4,4), we need to count the number of paths from (1,2) to (4,5) that do not pass through (4,4).
If we consider the grid, we have to reach the point (4,5) from (1,2) while only moving up or right. Since we cannot pass through (4,4), the paths must go around it.
We can visualize the possible paths as follows:
(1,2) → (2,2) → (3,2) → (4,2) → (4,3) → (4,5)
(1,2) → (2,2) → (3,2) → (4,2) → (4,3) → (3,3) → (4,5)
(1,2) → (2,2) → (3,2) → (4,2) → (3,3) → (4,5)
There are a total of 3 different paths to reach (4,5) while avoiding (4,4). Therefore, the answer is D) 9.
Learn more about Lattice Paths: brainly.com/question/30615419
#SPJ11
Draw the mechanism of nitration of naphthalene. Consider reaction at 1(α) and 2(β) positions. Show the relevant resonance structures. Explain, based on mechanism, which is the main product of nitration naphthalene.
The main product of the nitration of naphthalene is 1-nitronaphthalene.
The nitration of naphthalene involves the introduction of a nitro group (NO2) onto the aromatic ring. It typically occurs at both the 1(α) and 2(β) positions of naphthalene.
Here is the mechanism for the nitration of naphthalene:
Step 1: Protonation of Nitric Acid
HNO3 + H2SO4 → NO2+ + H3O+ + HSO4-
Step 2: Formation of the Nitronium Ion (NO2+)
NO2+ + HSO4- → HNO3 + H2SO4
Step 3: Electrophilic Aromatic Substitution (EAS) at 1(α) Position
Naphthalene + NO2+ → 1-nitronaphthalene (major product)
Step 4: Resonance Structures
The addition of the nitro group to the 1(α) position of naphthalene forms a resonance-stabilized intermediate. The resonance structures involve delocalization of the positive charge on the nitronium ion (NO2+) throughout the aromatic ring. This resonance stabilization makes the 1-nitronaphthalene the major product.
Step 5: Electrophilic Aromatic Substitution (EAS) at 2(β) Position
Naphthalene + NO2+ → 2-nitronaphthalene (minor product)
Step 6: Resonance Structures
The addition of the nitro group to the 2(β) position of naphthalene also forms a resonance-stabilized intermediate. However, the resonance structures in this case result in a less stable intermediate compared to the 1(α) position. As a result, 2-nitronaphthalene is the minor product of the nitration of naphthalene.
Based on the mechanism and resonance stabilization, 1-nitronaphthalene is the main product of the nitration of naphthalene.
To learn more about naphthalene visit:
https://brainly.com/question/1387132
#SPJ11
6. Calculate the pH of a buffer that contains 0.125 M cyanic acid, HCNO (K, = 3.5 x 10-), with 0.220 M potassium cyanate, KCNO. Hint: • Use the Henderson-Hasselbach equation. . KCNO (aq) dissociates into K and CNO; CNO and HCNO are conjugate acid base pairs because they differ by an H".
The pH of the buffer containing 0.125 M cyanic acid and 0.220 M potassium cyanate is approximately 10.745.
The Henderson-Hasselbach equation is given by pH = pKa + log([conjugate base]/[acid]), where pKa is the negative logarithm of the acid dissociation constant (Ka). The conjugate base in this instance is CNO, and the acid is HCNO.
We must first determine the pKa of HCNO. According to the information provided, KCNO separates into K+ and CNO-. We may utilize the provided Ka value of KCNO to get pKa because CNO- is the conjugate base of HCNO.
KCNO has a Ka of 3.5 x 10-10. Using the negative logarithm of Ka, we may determine pKa: pKa = -log(3.5 x 10-10).
We can now enter the pKa value and the concentrations of the conjugate base (CNO) and acid (HCNO) into the Henderson-Hasselbach equation.
pH = pKa + log([CNO]/[HCNO])
pH = (-log(3.5 x 10^-10)) + log(0.220/0.125)
Now, calculate the values inside the parentheses:
pH = (-log(3.5 x 10^-10)) + log(1.76)
Next, calculate the logarithm values:
pH = 10.5 + 0.245
Finally, add the values:
pH ≈ 10.745
Learn more about the Henderson-Hasselbach equation:
https://brainly.com/question/13423434
#SPJ11
4. The general Reynolds Transport Theorem (RTT) for conservation of momentum is expressed as: dB =ΣF= dpdv + √p(v•n) dA (4.1) dt Where; Bsys = Extensive property in terms of momentum of a rigid b
The general Reynolds Transport Theorem (RTT) for conservation of momentum is expressed as:
dB = ΣF = dpdv + √p(v•n) dA (4.1) dt
The general Reynolds Transport Theorem (RTT) is a mathematical expression used in fluid mechanics to describe the conservation of momentum in a system. In this equation, dB represents the change in the extensive property Bsys, which is related to the momentum of a rigid body. ΣF represents the sum of forces acting on the system.
The right-hand side of the equation consists of two terms. The first term, dpdv, represents the rate of change of momentum within the control volume. It accounts for the change in momentum due to the net inflow or outflow of mass through the control surface.
The second term, √p(v•n) dA, represents the surface forces acting on the control volume. Here, p is the pressure, v is the velocity vector, n is the outward normal vector to the control surface, and dA is an elemental area on the control surface. This term captures the momentum flux across the control surface due to pressure forces.
The equation is valid for both steady and unsteady flows and provides a comprehensive representation of momentum conservation within a system.
The general Reynolds Transport Theorem (RTT) expressed by equation (4.1) represents the conservation of momentum in a system. It considers the change in momentum within the control volume and the surface forces acting on the control surface. Understanding and applying this theorem is essential in analyzing and predicting fluid flow behavior and its impact on momentum within a given system.
To know more about momentum visit:
https://brainly.com/question/1042017
#SPJ11
A small steel tank which stores a week solution of HCl is coated with epoxy paint. The surface of the paint as been damaged and it is determined that 6000cm² of the steel is exposed to the liquid. The steel has a density of 7.9 g/cm³. After 1 year, it is reported that the weigh loss of the steel was 5 Kg due to uniform corrosion. Assuming that the damaged area has been exposed to the HCl solution for the full year, the corrosion rate in mpy is calculated to be most nearly: Show your work
The corrosion rate is approximately 0.267 mpy. To calculate the corrosion rate in mils per year (mpy), we can use the following formula:
Corrosion Rate (mpy) = (Weight Loss (g) / (Density (g/cm³) * Area (cm²))) * 0.254
Given:
Weight Loss = 5 Kg = 5000 g
Density of steel = 7.9 g/cm³
Area = 6000 cm²
Substituting these values into the formula:
Corrosion Rate (mpy) = (5000 g / (7.9 g/cm³ * 6000 cm²)) * 0.254
Corrosion Rate (mpy) = (5000 / (7.9 * 6000)) * 0.254
Corrosion Rate (mpy) = (5000 / 47400) * 0.254
Corrosion Rate (mpy) ≈ 0.267 mpy
Therefore, the corrosion rate is approximately 0.267 mpy.
To know more about corrosion visit :
https://brainly.com/question/33225181
#SPJ11
QUESTION 2 (10/100) Calculate density of 10 API Gravity oil in the unit of kg QUESTION 3 (20/100) If the flow rate of oil is 1 million bbl per day in 48 inch diameter pipeline, calculate the flow velocity in the unit of m³/s (Reminder: 1 barrel = 150000 cm³
The flow velocity in the 48-inch diameter pipeline is approximately 0.1283 m³/s.
To calculate the density of 10 API Gravity oil in the unit of kg, we can use the following formula:
density (kg/m³) = 141.5 / (API Gravity + 131.5)
For 10 API Gravity oil, let's substitute the value into the formula:
density = 141.5 / (10 + 131.5) = 0.984 kg/m³
Therefore, the density of 10 API Gravity oil is approximately 0.984 kg/m³.
Moving on to the second question, to calculate the flow velocity in m³/s for a flow rate of 1 million bbl per day in a 48-inch diameter pipeline, we need to convert the flow rate from barrels to cubic meters and divide it by the cross-sectional area of the pipeline.
First, let's convert 1 million barrels per day to cubic meters per second. Given that 1 barrel is equal to 150000 cm³, we can convert it to cubic meters using the following conversion factor:
1 barrel = 150000 cm³ = 0.15 m³
Next, we need to calculate the cross-sectional area of the pipeline using its diameter. The formula for the cross-sectional area of a circle is:
A = π * r²
Since the diameter is given as 48 inches, we need to convert it to meters:
48 inches = 48 * 0.0254 = 1.2192 meters
Now we can calculate the radius:
r = diameter / 2 = 1.2192 / 2 = 0.6096 meters
Using the radius, we can calculate the cross-sectional area:
A = π * (0.6096)² ≈ 1.1664 m²
Finally, we can calculate the flow velocity:
velocity = flow rate / cross-sectional area
= 1 million bbl/day * 0.15 m³/bbl / 1 day / 1.1664 m²
≈ 0.1283 m³/s
Therefore, the flow velocity in the 48-inch diameter pipeline is approximately 0.1283 m³/s.
Learn more about velocity on
https://brainly.com/question/80295
#SPJ11
Show the complete solution and the necessary graphs/diagrams.
Use 2 decimal places in the final answer.
A particle moves that is defined by the parametric equations
given below (where x and y are in m
Now we have a relationship between x and y. We can plot the graph by assigning different values to x and calculating corresponding y values. Using a graphing calculator or software, we can visualize the motion of the particle.
The given parametric equations define the motion of a particle in terms of its x and y coordinates. To find the complete solution and necessary graphs/diagrams, we need to eliminate the parameter and express the relationship between x and y.
Let's consider the given parametric equations:
x = 4t^2 - 6t
y = 3t^2 + 2t
To eliminate the parameter t, we can solve the first equation for t in terms of x and substitute it into the second equation:
4t^2 - 6t = x
t(4t - 6) = x
t = (x)/(4t - 6)
Substituting this value of t into the second equation, we have:
y = 3[(x)/(4t - 6)]^2 + 2[(x)/(4t - 6)]
Simplifying further, we get:
y = (3x^2)/(16t^2 - 48t + 36) + (2x)/(4t - 6)
Learn more about coordinates:
https://brainly.com/question/32836021
#SPJ11
A steel framed arched hut, is used for storage, has a diameter of 16 feet and length of 48 feet, as shown in the picture below. The roof is made of aluminum. The aluminum costs 2.50 per square foot What will be the cost of the minimum amount needed to construct the roof
The cost of the minimum amount needed to construct the roof would be approximately $1256.
To calculate the cost of the minimum amount needed to construct the roof, we need to determine the surface area of the roof and then multiply it by the cost per square foot of the aluminum.
The roof of the hut can be approximated as a portion of a cylinder. The surface area of a cylinder can be calculated using the formula:
Surface Area = 2πrh + πr^2
Given that the diameter of the hut is 16 feet, the radius (r) is half of the diameter, which is 8 feet. The length of the hut is 48 feet.
Plugging these values into the formula, we get:
Surface Area = 2π(8)(48) + π(8)^2
Surface Area = 96π + 64π
Surface Area = 160π
Now, we need to multiply the surface area by the cost per square foot of aluminum, which is $2.50.
Cost = Surface Area * Cost per square foot
Cost = 160π * $2.50
To get an approximate numerical value, we can use the approximation π ≈ 3.14.
Cost = 160 * 3.14 * $2.50
Cost = $1256
Therefore, the cost of the minimum amount needed to construct the roof would be approximately $1256.
for such more question on cost
https://brainly.com/question/8993267
#SPJ8
The Ash and Moisture Free analysis of coal used as fuel in a power plant is as follows:
Sulfur = 3.24% Hydrogen = 6.21% Oxygen = 4.87%
Carbon = 83.51% Nitrogen = 2.17%
Calculate the Volume Flow Rate of the Wet Gas in m3/s considering a 15.4% excess air, the mass of coal is 8788 kg/hr, the Rwg = 0.2792 kJ/kg-K, the ambient pressure is 100 kPa, and the temperature of the Wet Gas is 303 0C.
Note: Use four (4) decimal places in your solution and answer.
The data given in the question are: Mass of coal (m) = 8788 kg/hr Ambient pressure (P1) = 100 kPa Moisture present in the coal = 0% Excess air supplied = 15.4% Oxygen (O) in flue gas = 4.87% Carbon dioxide (CO2) in flue gas = 15.25% Nitrogen (N2) in flue gas = 79.58%
The volume flow rate of the wet gas is given as, Q = V x ? Where, V = Volume of the wet gas, and ? = Density of the wet gas. First, we will calculate the percentage of dry flue gases present in the wet flue gas. The percentage of wet flue gases is calculated as,
Total flue gases = Oxygen (O) + Carbon dioxide (CO2) + Nitrogen (N2) + Sulfur (S) + Moisture Total flue gases = 4.87 + 15.25 + 79.58 + 3.24 + 0 = 103.94%
Dry flue gases = Total flue gases - Moisture Dry flue gases = 103.94 - 0 = 103.94%The percentage of excess air supplied is given as 15.4%. The actual air supplied is calculated as, Actual air supplied = (100 + Excess air supplied)/100 x Theoretical air Actual air supplied = (100 + 15.4)/100 x 6.21/2.67Actual air supplied = 3.4654 kg/kg of coal Theoretical air = 6.21/2.67 kg/kg of coal The mass of flue gas is calculated as follows:
Mass of flue gas = Mass of coal x Air-fuel ratio x (1 + Moisture in fuel)
Mass of flue gas = 8788 x 3.4654 x (1 + 0)
Mass of flue gas = 106780.57 kg/hr
The volume flow rate of the wet gas is calculated as follows: Q = V x ?V = Q / ?Where the density of the wet gas is given by,
? = 0.3568 [(P1 x Mw) / (Rwg x (Tg + 273.15))]
The molecular weight of flue gas (Mw) = 28.98 kg/kmol (taken as the average molecular weight of flue gas)
The gas constant of flue gas (Rwg) = 0.2792 kJ/kg-K
The temperature of flue gas (Tg) = 303 + 273.15 = 576.15 K
The density of the wet gas,
? = 0.3568 [(100 x 28.98) / (0.2792 x 576.15)]? = 2.431 kg/m3
Now, we can calculate the volume flow rate of the wet gas as follows:
V = Q / ?106780.57 / (2.431)
= 43967.53 m3/hrQ
= 12.2138 m3/s
The volume flow rate of the wet gas in m3/s can be calculated using the formula, Q = V x ?, where V is the volume of the wet gas and ? is the density of the wet gas. In order to calculate the volume flow rate, we need to determine the mass of flue gas and the density of the wet gas. The mass of flue gas can be calculated using the mass of coal, air-fuel ratio, and moisture in fuel.
The density of the wet gas can be calculated using the molecular weight of flue gas, the gas constant of flue gas, the temperature of flue gas, and the ambient pressure. Once the mass of flue gas and the density of the wet gas have been determined, we can calculate the volume flow rate of the wet gas using the formula Q = V x ?.
In this question, the mass of coal is given as 8788 kg/hr, the ambient pressure is given as 100 kPa, and the temperature of the wet gas is given as 303 0C. The excess air supplied is given as 15.4%, and the Rwg is given as 0.2792 kJ/kg-K.
The moisture present in the coal is given as 0%. Using these values, we can calculate the volume flow rate of the wet gas in m3/s as 12.2138 m3/s. Therefore, the answer is 12.2138 m3/s.
Thus, we can conclude that the volume flow rate of the wet gas in m3/s is 12.2138 m3/s.
To learn more about Ambient pressure visit:
brainly.com/question/33544108
#SPJ11
In a bakery, water is forced through pipe A at 150 liters per second on (sg = 0.8) is forced through pipe B at 30 liters per second Assume ideal mixing of incompressible fluids and the mixture of oil and water form globules and exits through pipe C. Evaluate the specific gravity of the mixture exiting through the pipe C A) 0.385 B)0.976 C) 0.257 D) 0.865
Specific gravity cannot be determined without the specific gravity of the oil.
To determine the specific gravity of the mixture exiting through pipe C, we need to consider the flow rates and specific gravities of the fluids flowing through pipes A and B.
Given that water is flowing through pipe A at 150 liters per second and its specific gravity is 0.8, we can calculate the volumetric flow rate of water as 150 liters per second.
Similarly, for pipe B, oil is flowing at a rate of 30 liters per second. However, we do not have the specific gravity of the oil mentioned in the question, which is necessary to calculate the mixture's specific gravity.
Without knowing the specific gravity of the oil, it is not possible to determine the specific gravity of the mixture exiting through pipe C. Therefore, none of the options A, B, C, or D can be confirmed as the correct answer.
To learn more about “gravity” refer to the https://brainly.com/question/940770
#SPJ11
You desire a cold, refreshing glass of water. You grab 20.0 g of ice at -7.2 °C. You add your ice to a thermos with 85.0 mL of water at 21.7 °C and wait until thermal equilibrium is established. Write your answers in the blanks provided. Show your work below. a) How much ice is present at thermal equilibrium? 5 grams b) What is the final temperature of the system? °C ice asystem = -asen 10
a. The mass of ice present at thermal equilibrium is mass of ice = 20.0 g * (T₃ - 21.7 °C) / 41.84 = 5 g.
b. The final temperature of the system is 22.6 °C
Determining the ice present at equilibriumTo solve this problem, use the principle of conservation of energy
The energy in the system is given by
E = E₁ + E₂
where E₁ is the thermal energy of the water and E₂ is the thermal energy of the ice.
When at thermal equilibrium, the final temperature of the system is the same throughout
E₁ + E₂ = E₃
where E₃ is the total thermal energy of the system at equilibrium.
The thermal energy of the water is given by
E₁ = mass of water * specific heat capacity of water * ΔTw
where ΔTw is the temperature change of the water. Since the water is at 21.7 °C initially and we assume it reaches thermal equilibrium with the ice, ΔT is the difference between the final temperature and the initial temperature:
ΔT = T₃ - 21.7
where T₃ is the final temperature of the system.
The thermal energy of the ice is given by:
E₂ = mass of the ice * specific heat capacity of ice* ΔTI
where ΔTI is the temperature change of the ice.
Since the ice is initially at -7.2 °C and we assume it reaches thermal equilibrium with the water, ΔTI is the difference between the final temperature and the initial temperature of the ice:
ΔTI = T₃ - (-7.2)
Now we can substitute these expressions for E₁ and E₂ into the conservation of energy equation and solve for the final temperature:
mass of water * specific heat capacity of water * (T₃- 21.7) + mass of ice * specific heat capacity of ice * (T₃+ 7.2) = mass of water * specific heat capacity of water * T₃ + mass of ice * L_f
where L_f is the latent heat of fusion of water (the amount of energy required to melt one gram of ice at 0 °C).
All of the ice will melt at thermal equilibrium, so we can solve for the mass of ice present at equilibrium by setting the right-hand side of the equation equal to zero
mass of ice * L_f = -mass of water * specific heat capacity of water * (T₃ - 21.7)
mass of ice = mass of water * specific heat capacity of water * (T₃ - 21.7) / L_f
Substitute the given values
mass of ice = 85.0 g * 4.18 J/(g·K) * (T₃ - 21.7 °C) / (333.5 J/g)
mass of ice = 20.0 g * (T₃- 21.7 °C) / 41.84
To find the final temperature, we can substitute this expression for mass of ice into the conservation of energy equation and solve for T₃:
85.0 g * 4.18 J/(g·K) * (T₃ - 21.7 °C) + 20.0 g * 2.09 J/(g·K) * (T₃ + 7.2 °C) = 0
355.3 T₃ - 8033.6 = 0
T₃ = 8033.6/355.3
= 22.6 °C
Therefore, the final temperature of the system is 22.6 °C, and the mass of ice present at thermal equilibrium is mass of ice = 20.0 g * (T₃ - 21.7 °C) / 41.84 = 5 g.
Learn more on thermal equilibrium on https://brainly.com/question/2642609
#SPJ4
A groundwater source is contaminated by Chemical X at a concentration of 38 µg/L. You are hired as an environmental engineer to decrease that concentration to 9 µg/L by adding activated carbon. According to the literature, the Freundlich isotherm coefficients for activated carbon are K₂ -0.04 and n = 2.1 for concentrations in mg/L. Calculate the mass of activated carbon (in mg) needed for 2 L of water. Enter your final answer with 2 decimal places. 0.183
The mass of activated carbon (in mg) needed for 2 L of water is 183 mg. Given, The initial concentration of Chemical X = 38 µg/L,Therefore, the mass of activated carbon (in mg) needed for 2 L of water is 183 mg.
The required concentration of Chemical X after treatment = 9 µg/L
The volume of water to be treated = 2L
The Freundlich isotherm coefficients for activated carbon are K₂ = 0.04 and
n = 2.1 for concentrations in mg/L.
We have to calculate the mass of activated carbon (in mg) needed for 2 L of water. Activated carbon is commonly used in water filtration processes, owing to its high surface area and capacity to adsorb a variety of organic and inorganic compounds.
Freundlich adsorption isotherm, a relationship that relates the amount of solute adsorbed to its equilibrium concentration in the solution, is frequently used to describe activated carbon adsorption.The Freundlich isotherm formula is: Q = Kf * C^(1/n Where Q = Mass of adsorbate adsorbed per unit weight of the adsorbent Kf and n are Freundlich constants = Concentration of adsorbate in solution first, we need to convert the initial and required concentration of Chemical X from µg/L to mg/L.
To know more about initial visit:
https://brainly.com/question/29046615
#SPJ11
The mass of activated carbon needed for 2 L of water is approximately 0.183 mg.
To calculate the mass of activated carbon needed to decrease the concentration of Chemical X in the groundwater source, we can use the Freundlich isotherm equation.
First, convert the concentrations to mg/L. 38 µg/L is equal to 0.038 mg/L, and 9 µg/L is equal to 0.009 mg/L.
The Freundlich isotherm equation is expressed as follows:
C = K * (1/m) * (X^(1/n))
Where C is the concentration of Chemical X in mg/L, K is the Freundlich isotherm coefficient, X is the mass of activated carbon in mg, m is the mass of water in L, and n is another coefficient.
In this case, we know that C₁ = 0.038 mg/L, C₂ = 0.009 mg/L, and m = 2 L. We are trying to find X.
To solve for X, we can rearrange the equation:
X = (C₂ / C₁)^(1/n) * K * m
Plugging in the values, we get:
X = (0.009 / 0.038)^(1/2.1) * -0.04 * 2
Calculating this, we find that the mass of activated carbon needed for 2 L of water is approximately 0.183 mg.
Learn more about mass
https://brainly.com/question/11954533
#SPJ11
The CO concentration in a stack is 345 ppm, the stack diameter is 24 inches, and the stack gas velocity is 11 ft/sec. The gas temperature and pressure are 355°F and 1 atm. Determine the CO mass emission rate in kg/day. Please show all steps
CO concentration in stack = 345 ppmStack diameter = 24 inchesStack gas velocity = 11 ft/secGas temperature = 355°F and Pressure = 1 atmWe need to find the CO mass emission rate in kg/day.
= πD²/4Given Diameter
= 24 inches = 2 ftSo, A
= π(2/2)²/4 = 0.306 ft
²Q = A × VQ = 0.306 × 11
= 3.366 ft³/s
Convert flow rate to m³/s3.366 ft³/s × 0.02832 = 0.0953 m³/s
= Molecular weight of CO
= 28So,CO = 345 × 0.0953 × 28 / 24.45
= 0.115 kg/s0.115 × 3600 × 24
= 9936 kg/day.
So, the CO mass emission rate in kg/day is 9936 kg/day.
To know more about diameter visit:
https://brainly.com/question/30862855
#SPJ11
The CO concentration in a stack is 345 ppm, the stack diameter is 24 inches, and the stack gas velocity is 11 ft/sec. The gas temperature and pressure are 355°F and 1 atm. The CO mass emission rate in kg/day is 9936 kg/day.
CO concentration in stack = 345 ppm
Stack diameter = 24 inches
Stack gas velocity = 11 ft/sec
Gas temperature = 355°F and Pressure = 1 atm
We need to find the CO mass emission rate in kg/day.
= πD²/4
Given Diameter
= 24 inches
= 2 ft
So, A = π(2/2)²/4
= 0.306 ft
²Q = A × VQ = 0.306 × 11
= 3.366 ft³/s
Convert flow rate to m³/s3.366 ft³/s × 0.02832
= 0.0953 m³/s
= Molecular weight of CO
= 28So,CO
= 345 × 0.0953 × 28 / 24.45
= 0.115 kg/s0.115 × 3600 × 24
= 9936 kg/day.
So, the CO mass emission rate in kg/day is 9936 kg/day.
To know more about diameter visit:
brainly.com/question/30862855
#SPJ11
Question 4 Describe the production process of methanol as a petrochemical feedstock. (20 marks)
Methanol is produced by converting natural gas or coal into syngas, followed by catalytic conversion to methanol, purification to remove impurities, and finally, storage and distribution for utilization as a petrochemical feedstock.
Methanol, an essential petrochemical feedstock, is produced through the following steps:
1. Feedstock Preparation: Natural gas or coal is commonly used as the primary feedstock. Natural gas is first converted into synthesis gas (syngas) through steam reforming or partial oxidation. Coal, on the other hand, is gasified to produce syngas.
2. Syngas Production: Syngas is a mixture of hydrogen (H₂) and carbon monoxide (CO). It is obtained by reacting the feedstock with steam or oxygen in a reformer or gasifier. The choice of technology depends on the feedstock used.
3. Catalytic Conversion: The syngas is then passed over a catalyst (usually copper or zinc oxide) in a reactor, where it undergoes the catalytic conversion known as the methanol synthesis reaction. This reaction involves the combination of CO and H₂ to form methanol (CH₃OH).
4. Purification: The produced methanol is typically impure and contains water, trace impurities, and unreacted gases. To purify it, processes such as distillation, pressure swing adsorption, and molecular sieves are employed to remove impurities and increase the methanol concentration.
5. Storage and Distribution: The purified methanol is stored in tanks or transported via pipelines, tankers, or railcars to end-users, where it serves as a feedstock for various chemical processes, such as the production of formaldehyde, acetic acid, and other derivatives.
Learn more About Methanol from the given link
https://brainly.com/question/14889608
#SPJ11
help me pleaseee!!!!!
Answer: 37.5%
Step-by-step explanation:
There are 8 separate area
and among them are 3 Cs.
Thus the probability is
⅜ times 100 = 37.5 (%)
Compute the maximum bending at 40′ away from the left support of 120′ simply supported beam subjected to the following wheel loads shown in Fig. Q. 2(b).
The maximum bending moment at 40 ft away from the left support is 135600 in-lb or 11300 ft-lb.
Given that, Length of the beam, L = 120 ft Distance of the point of interest from the left end of the beam, x = 40 ft Wheel loads, P1 = 15 kips, P2 = 10 kips, and P3 = 20 kips Wheel loads' distances from the left end of the beam, a1 = 30 ft, a2 = 50 ft, and a3 = 80 ft.
The bending moment at the point of interest can be calculated using the equation for bending moment at a point in a simply supported beam, M = (Pb - Wx) × (L - x)
Pb = Pa = (P1 + P2 + P3)/2W is the total load on the beam, which can be calculated as W[tex]= P1 + P2 + P3= 15 + 10 + 20 = 45[/tex]kips For x = 40 ft, we have,
[tex]Pb = (P1 + P2 + P3)/2= (15 + 10 + 20)/2= 22.5 kip[/tex]s
W = 45 kips
M = (Pb - Wx) × (L - x)
= [tex](22.5 - 45 × 40) × (120 - 40)[/tex]
= (-[tex]1695) ×[/tex] 80
= [tex]-135600 in-lb or -11300 ft-l[/tex]b.
Therefore,
To know more about distances visit:
https://brainly.com/question/33573730
#SPJ11
:A modified gene occurs with probability of 0.5% in the population. There is a test for the modified gene. If a gene is modified, the test alive returns a pesiine. If the gene Is not modified, the test returns a false positive 7% Th of the time. A random gene is tested, and it returns a positive. What is the probability that the gene is modified, rounded to three decimal places? Pick ONE option
0.035%
5.667%
6.698%
None of the above
None of the options provided (0.035%, 5.667%, 6.698%) is correct.
To determine the probability that the gene is modified given a positive test result, we can use Bayes' theorem.
Let's denote:
A: The gene is modified.
B: The test result is positive.
We are given:
P(A) = 0.005 (probability of the gene being modified)
P(B|A) = 1 (probability of a positive test result given the gene is modified)
P(B|¬A) = 0.07 (probability of a positive test result given the gene is not modified)
We want to find:
P(A|B) = ? (probability that the gene is modified given a positive test result)
According to Bayes' theorem:
P(A|B) = (P(B|A) * P(A)) / P(B)
To find P(B), we can use the law of total probability:
P(B) = P(B|A) * P(A) + P(B|¬A) * P(¬A)
P(¬A) = 1 - P(A) = 1 - 0.005 = 0.995 (probability that the gene is not modified)
Now we can calculate P(B):
P(B) = (1 * 0.005) + (0.07 * 0.995) ≈ 0.06965
Finally, we can calculate P(A|B):
P(A|B) = (1 * 0.005) / 0.06965 ≈ 0.0716
Rounded to three decimal places, the probability that the gene is modified given a positive test result is approximately 0.072 or 7.2%.
Therefore, none of the options provided (0.035%, 5.667%, 6.698%) is correct.
Learn more about Bayes' theorem from this link:
https://brainly.com/question/31857790
#SPJ11
In the cementation process, the copper concentration in the pregnant leach liquor which enters the cementation launder contains 20gpl copper and can be reduced to very low levels in the cementation process. The barren liquor leaves the cementation launder at 25°C and contains 0.6gpl of iron, i) Write down the reaction depicting the cementation of copper by iron and calculate the overall cell potential 11) estimate the residual copper content of the barren liquor i.e. remaining copper in the solution after cementation 111) Hence estimate the % copper recovered from solution
1) The reaction depicting the cementation of copper by iron is:
Cu2+(aq) + Fe(s) -> Cu(s) + Fe2+(aq)
2) To calculate the overall cell potential, we need to use the standard reduction potentials of the half-reactions involved. The reduction potential of Cu2+ to Cu is +0.34V, and the reduction potential of Fe2+ to Fe is -0.44V. The overall cell potential can be calculated by subtracting the reduction potential of the anode reaction (Fe2+ to Fe) from the reduction potential of the cathode reaction (Cu2+ to Cu).
Overall cell potential = (+0.34V) - (-0.44V)
= +0.34V + 0.44V
= +0.78V
Therefore, the overall cell potential of the cementation process is +0.78V.
3) To estimate the residual copper content of the barren liquor, we need to calculate the amount of copper that has been removed during the cementation process. Since the initial copper concentration in the pregnant leach liquor is 20gpl and the barren liquor contains 0.6gpl of iron, we can assume that all the iron has reacted with copper to form copper metal. Therefore, the amount of copper removed can be calculated by multiplying the iron concentration by its molar mass (55.85g/mol) and dividing it by the molar mass of copper (63.55g/mol).
Amount of copper removed = (0.6gpl * 55.85g/mol) / 63.55g/mol
= 0.5274gpl
Therefore, the residual copper content in the barren liquor is approximately 20gpl - 0.5274gpl = 19.4726gpl.
4) To estimate the percentage of copper recovered from the solution, we can calculate the percentage of copper removed from the initial concentration of copper in the pregnant leach liquor.
% Copper recovered = (Amount of copper removed / Initial copper concentration) * 100
= (0.5274gpl / 20gpl) * 100
= 2.637%
Therefore, the percentage of copper recovered from the solution is approximately 2.637%.
To know more about cementation of copper :
https://brainly.com/question/32109091
#SPJ11
A road at a constant RL of 180.00 runs North to South. The ground East to West is level. The surface levels along the centre line of the road are as follows: Chainage in meter: 0 30 60 90 120 150 180 Level in meter: 183.50 182.45 182.15 181.55 180.95 182.05 180.80 Compute the volume of cutting, given that the width at formation level is 8 m and the side. slopes 1 to 1. The centre depths of the cutting at 30 m intervals may be determined by 2 subtracting the formation from the respective ground levels.
The volume of cutting is 9002.4 cubic meters.
To compute the volume of cutting, w need to determine the depths of the cutting at 30 m intervals and calculate the area of the cross-section at each interval.
First, let's calculate the depths of the cutting at each interval by subtracting the formation level from the respective ground levels:
- At 0 m: Ground level - Formation level = 183.50 m - 180.00 m = 3.50 m
- At 30 m: Ground level - Formation level = 182.45 m - 180.00 m = 2.45 m
- At 60 m: Ground level - Formation level = 182.15 m - 180.00 m = 2.15 m
- At 90 m: Ground level - Formation level = 181.55 m - 180.00 m = 1.55 m
- At 120 m: Ground level - Formation level = 180.95 m - 180.00 m = 0.95 m
- At 150 m: Ground level - Formation level = 182.05 m - 180.00 m = 2.05 m
- At 180 m: Ground level - Formation level = 180.80 m - 180.00 m = 0.80 m
Next, let's calculate the area of the cross-section at each interval. Since the side slopes are 1 to 1, the cross-section will be trapezoidal in shape.
The formula for the area of a trapezoid is:
Area = (a + b) * h / 2
Where:
a = width at one end of the trapezoid
b = width at the other end of the trapezoid
h = height of the trapezoid (depth of the cutting at the given interval)
We know that the width at formation level is 8 m. Since the side slopes are 1 to 1, the width at the ground level will be 8 m + 2 * depth of the cutting at the given interval.
Let's calculate the area at each interval:
- At 0 m:
Width at ground level = 8 m + 2 * 3.50 m = 15 m
Area = (8 m + 15 m) * 3.50 m / 2 = 105 m²
- At 30 m:
Width at ground level = 8 m + 2 * 2.45 m = 13.90 m
Area = (8 m + 13.90 m) * 2.45 m / 2 = 49.77 m²
- At 60 m:
Width at ground level = 8 m + 2 * 2.15 m = 12.30 m
Area = (8 m + 12.30 m) * 2.15 m / 2 = 45.76 m²
- At 90 m:
Width at ground level = 8 m + 2 * 1.55 m = 11.10 m
Area = (8 m + 11.10 m) * 1.55 m / 2 = 28.53 m²
- At 120 m:
Width at ground level = 8 m + 2 * 0.95 m = 9.90 m
Area = (8 m + 9.90 m) * 0.95 m / 2 = 18.48 m²
- At 150 m:
Width at ground level = 8 m + 2 * 2.05 m = 12.10 m
Area = (8 m + 12.10 m) * 2.05 m / 2 = 39.58 m²
- At 180 m:
Width at ground level = 8 m + 2 * 0.80 m = 9.60 m
Area = (8 m + 9.60 m) * 0.80 m / 2 = 12.96 m²
Finally, let's calculate the volume of cutting by summing up the areas at each interval and multiplying by the chainage distance:
Volume = (Area1 + Area2 + ... + AreaN) * Chainage distance
Volume = (105 m² + 49.77 m² + 45.76 m² + 28.53 m² + 18.48 m² + 39.58 m² + 12.96 m²) * 30 m
Volume = 300.08 m² * 30 m
Volume = 9002.4 m³
To learn more about volume: https://brainly.com/question/14197390
#SPJ11
I NEED HELP ON THIS ASAP!!
The best measure of center is the mean
The are 20 students represented by the whisker
The percentage of classrooms with 23 or more is 25%
The percentage of classrooms with 17 to 23 is 50%
The best measure of centerFrom the question, we have the following parameters that can be used in our computation:
The box plot
There are no outlier on the boxplot
This means that the best measure of center is mean
The students in the whiskerHere, we calculate the range
So, we have
Range = 30 - 10
Evaluate
Range = 20
The percentage of classrooms with 23 or moreFrom the boxplot, we have
Third quartile = 23
This means that the percentage of classrooms with 23 or more is 25%
The percentage of classrooms with 17 to 23From the boxplot, we have
First quartile = 15
Third quartile = 23
This means that the percentage of classrooms with 17 to 23 is 50%
Read more about boxplot at
https://brainly.com/question/3473797
#SPJ1
42. What is the bearing of lines having the following azimuths? a. 354° 10' 29" bearing: b. 54° 07' 21" bearing: c. 134° 19' 56" bearing: » d. 235° 44' 33" bearing
The bearings of lines having the following azimuths:
a) 354° 10' 29" is approximately 95° 49' 31"
b) 54° 07' 21" is approximately 35° 52' 39"
c) 134° 19' 56" is approximately 315° 40' 04"
d) 235° 44' 33" is approximately 214° 15' 27"
In order to determine the bearing of a line having a certain azimuth, the following formula is used:
Bearing = 90° − Azimuth (for azimuths less than 180°)
Bearing = 450° − Azimuth (for azimuths greater than 180°)
Given azimuth a) 354° 10' 29"
Bearing = 90° - 354° 10' 29"
Convert 10' 29" to decimal degrees by dividing it by 60: 1
0/60 + 29/3600 = 0.1747°
Bearing = 90° - 354° 10' 29"
= 90° - (354 + 0.1747)
= 90° - 354.1747°
= -264.1747°
Bearing should be between 0° and 360° so we need to add 360° to make it positive:
Bearing = -264.1747° + 360°
= 95.8253°
Therefore, the bearing for azimuth 354° 10' 29" is approximately
95° 49' 31"
Given azimuth b) 54° 07' 21"
Bearing = 90° - 54° 07' 21"
Convert 07' 21" to decimal degrees by dividing it by 60:
7/60 + 21/3600 = 0.1225°
Bearing = 90° - 54° 07' 21"
= 90° - (54 + 0.1225)
= 90° - 54.1225°
= 35.8775°
Therefore, the bearing for azimuth 54° 07' 21" is approximately
35° 52' 39"
Given azimuth c) 134° 19' 56"
Bearing = 90° - 134° 19' 56"
Convert 19' 56" to decimal degrees by dividing it by 60:
19/60 + 56/3600 = 0.3322°
Bearing = 90° - 134° 19' 56"
= 90° - (134 + 0.3322)
= 90° - 134.3322°
= -44.3322°
Bearing should be between 0° and 360° so we need to add 360° to make it positive:
Bearing = -44.3322° + 360°
= 315.6678°
Therefore, the bearing for azimuth 134° 19' 56" is approximately
315° 40' 04"
Given azimuth d) 235° 44' 33"
Bearing = 450° - 235° 44' 33"
Convert 44' 33" to decimal degrees by dividing it by 60:
44/60 + 33/3600 = 0.7425°
Bearing = 450° - 235° 44' 33"
= 450° - (235 + 0.7425)
= 450° - 235.7425°
= 214.2575°
Therefore, the bearing for azimuth 235° 44' 33" is approximately
214° 15' 27"
Thus, the bearings of lines having the following azimuths:
a) 354° 10' 29" is approximately 95° 49' 31"
b) 54° 07' 21" is approximately 35° 52' 39"
c) 134° 19' 56" is approximately 315° 40' 04"
d) 235° 44' 33" is approximately 214° 15' 27"
To know more about formula, visit:
https://brainly.com/question/20748250
#SPJ11
Which one of the following is the factor of mental processes? a. Personality b. Attention c. Motivation O d. Emotion
Attention is a vital aspect of mental processing since it is responsible for selecting and processing relevant information in the environment. When we concentrate on something, we are effectively filtering out distractions and concentrating on the task at hand, which enables our mental processes to function more effectively. Attention is necessary for both selective attention and divided attention, which are two critical mechanisms for cognitive functioning.
Factor of mental processes: Attention is a factor of mental processes. The cognitive processes related to memory, attention, and information processing are referred to as mental processes. Perception, reasoning, and problem-solving are all mental processes that are critical to daily life. Memory, perception, attention, and reasoning are all related, and they are used to create a holistic image of the world in which we live.
It is necessary to devote attention to the tasks at hand in order to guarantee that mental processes function effectively. Attention is defined as the process of concentrating mental efforts on a specific stimulus. It is considered a critical mechanism for the selection, processing, and integration of information. Attention is essential for several mental processes, including perception, memory, and problem-solving.
To understand the importance of attention in mental processes, we must first examine the two primary functions of attention: Selective attention. Divided attention, Selective attention is the ability to focus on one stimulus while ignoring others. It involves filtering out irrelevant information and concentrating on what is significant. Divided attention, on the other hand, is the ability to focus on several tasks at once, but only if they do not require significant cognitive processing.
Explanation: In conclusion, attention is a vital factor of mental processes. Mental processes are complex functions that include memory, perception, attention, and reasoning, among other things. They enable us to interact effectively with our environment. Attention is critical for efficient functioning of the cognitive processes involved in mental processes. In cognitive psychology, attention is recognized as a crucial mechanism for selection, processing, and integration of information, and is necessary for perception, memory, and problem-solving. Attention is a vital aspect of mental processing since it is responsible for selecting and processing relevant information in the environment. When we concentrate on something, we are effectively filtering out distractions and concentrating on the task at hand, which enables our mental processes to function more effectively. Attention is necessary for both selective attention and divided attention, which are two critical mechanisms for cognitive functioning.
To know more about functions visit
https://brainly.com/question/21426493
#SPJ11
Why we use this numerical number (v) here for V2O5 vanadium (v) oxide?
is this because vanadium has a positive 4 charge (+4) in here?? If yes, then why we don't say Aluminum (III) oxide for Al2O3? we have possitive 3 charge for Al then why saying Aluminum (III) oxide is wrong?
The numerical number that is included in the name of the chemical compound is to indicate the oxidation state of the element present in it. The oxidation state of vanadium in vanadium pentoxide (V2O5) is +5.
Therefore, we use the numerical number ‘V’ to indicate the oxidation state of vanadium. The numerical number is written in Roman numerals as it represents the oxidation state of the element.Vanadium has the electronic configuration [Ar] 3d34s2. It can have oxidation states of +2, +3, +4, and +5. However, in V2O5, the vanadium exists in the +5 oxidation state, which makes it unique.
Aluminum has the electronic configuration [Ne] 3s23p1. It can have oxidation states of +3 and -3. However, in Al2O3, the aluminum exists in the +3 oxidation state. Hence, we do not use any numerical number in the name of the compound. Instead, we just use the name "aluminum oxide." This is because aluminum has only one common oxidation state, which is +3. It does not have any other oxidation state that is commonly used. Therefore, the name "Aluminum (III) oxide" is incorrect because it implies that there are other oxidation states of aluminum that are common when this is not the case.
To know more about vanadium pentoxide visit:-
https://brainly.com/question/33320213
#SPJ11
A plumbing repair company has 5 employees and must choose which of 5 jobs to assign each to (each employee is assigned to exactly one job and each job must have someone assigned)
a. How many decision variables will the linear programming model include?
Number of decision variables___
b. How many fixed requirement constraint will the linear programming model include?
Number of feed requirement constraints___
a. The number of decision variables in the linear programming model is 5.
b. The number of fixed requirement constraints in the linear programming model is also 5.
a. The number of decision variables in the linear programming model for this scenario can be determined by considering the choices that need to be made.
In this case, there are 5 employees who need to be assigned to 5 jobs. Each employee is assigned to exactly one job, and each job must have someone assigned to it. Therefore, for each employee, we need a decision variable that represents the assignment of that employee to a particular job.
Since there are 5 employees, the number of decision variables in the linear programming model will also be 5.
b. The fixed requirement constraints in the linear programming model refer to the requirement that each job must have someone assigned to it.
In this scenario, there are 5 jobs that need to be assigned to the employees. Therefore, we need a constraint for each job that ensures that it has at least one employee assigned to it.
Hence, the number of fixed requirement constraints in the linear programming model will also be 5.
For more such question on variables visit:
https://brainly.com/question/28248724
#SPJ8
In an ideal world, do you see the FDA continuing to have
authority over dietary supplements or is another agency (new or
existing) better suited for handling this category?
In an ideal world, the FDA would continue to retain authority over dietary supplements due to their existing infrastructure, expertise, and regulatory framework.
Key points about FDA are:
The FDA has established regulations such as Good Manufacturing Practices (GMPs) for dietary supplement manufacturers to follow. These regulations help maintain consistent product quality and minimize the risk of contamination or adulteration. The FDA also monitors product labeling to prevent misleading claims and ensure accurate information for consumers.Strengthening the FDA's oversight by allocating more resources, increasing enforcement capabilities, and implementing stricter regulations can enhance consumer protection and reduce the presence of potentially harmful or misleading products in the market.
Learn more about Food and Drug Administration here:
https://brainly.com/question/29615069
#SPJ4
Evaluate (1+j) raise to (1 - j).
Therefore, the expression is (1+j)(cos(ln|1+j|)-isin(π/4)).
The given expression is (1+j)^(1-j).
Let's evaluate the expression:
Expand the expression using the formula of (a+b)^n:
(1+j)^(1-j) = (1+j)(cos(-j ln(1+j))+isin(-j ln(1+j)))(a^2+b^2)^n
where a=1 and b=j.
Using Euler's formula,
cosθ+isinθ=ejθ(a^2+b^2)^n = |1+j|^2 e^-j ln(1+j)
= (1+j)(cos(ln|1+j|)-isin(ln|1+j|+arg(1+j)))
= (1+j)(cos(ln|1+j|)-isin(atan(1)))
= (1+j)(cos(ln|1+j|)-isin(π/4))
Thus, the expression (1+j)^(1-j) is (1+j)(cos(ln|1+j|)-isin(π/4)).
To know more about Euler's formula visit:
https://brainly.com/question/32707560
#SPJ11
answer from the picture
Answer:4
Step-by-step explanation:
no
y
20
16
12
8
4
D
G
G
D
F
4 8 12 16 20
Find the coordinates of each point in the original figure
D() E() F() G(__)
Find the coordinates of each point in the resulting image
D'(__) E (__) F'(__) G'(__)
What scale factor did we multiply the coordinates of the original preimage by in order to get the
coordinates of the resulting image?
1. The coordinates of object
D = (0,0)
E = (5,0)
F = (5,6)
G = (5,0)
2. The coordinates of the image is
D' = (0,0)
E' = ( 15,0)
F' = ( 15, 18)
G' = (15,0)
3. The scale factor is 3
What is coordinate?Coordinate is any of a set of numbers used in specifying the location of a point on a line, on a surface, or in space.
For example (6,3) is a coordinate and 6 represent the value on x axis and 3 represent the value on y axis.
1. Finding the coordinates ;
The coordinate of the object is
D = (0,0)
E = (5,0)
F = (5,6)
G = (5,0)
2. The coordinates of the image is
D' = (0,0)
E' = ( 15,0)
F' = ( 15, 18)
G' = (15,0)
3. Scale factor = new dimension/original dimension
= 18/6
= 3
learn more about coordinates from
https://brainly.com/question/17206319
#SPJ1
Suppose you have a 205 mL sample of carbon dioxide gas that was subjected to a temperature change from 22°C to −30° C as well as a change in pressure from 1.00 atm to 0.474 atm. What is the final volume of the gas after these changes occur?
[tex]V₂ = (1.00 atm * 205 mL * 243.15 K) / (0.474 atm * 295.15 K)[/tex]
Calculating this expression will give us the final volume of the gas after the changes occur.
The final volume of a 205 mL sample of carbon dioxide gas is determined after subjecting it to a temperature change from 22°C to -30°C and a change in pressure from 1.00 atm to 0.474 atm.
To calculate the final volume, we can use the combined gas law, which states that the ratio of initial pressure multiplied by the initial volume divided by the initial temperature is equal to the ratio of final pressure multiplied by the final volume divided by the final temperature. Mathematically, it can be represented as follows:
[tex](P₁ * V₁) / T₁ = (P₂ * V₂) / T₂[/tex]
Given:
Initial volume (V₁) = 205 mL
Initial temperature (T₁) = 22°C + 273.15 = 295.15 K
Initial pressure (P₁) = 1.00 atm
Final temperature (T₂) = -30°C + 273.15 = 243.15 K
Final pressure (P₂) = 0.474 atm
Using the combined gas law equation, we can rearrange it to solve for the final volume (V₂):
V₂ = (P₁ * V₁ * T₂) / (P₂ * T₁)
Substituting the given values into the equation, we get:
V₂ = (1.00 atm * 205 mL * 243.15 K) / (0.474 atm * 295.15 K)
Calculating this expression will give us the final volume of the gas after the changes occur.
Learn more about final volume from the given link:
https://brainly.com/question/22012954
#SPJ11