The circuit shown below includes a battery of EMF = 5.424 V, a resistor with R = 0.5621 ΩΩ , and an inductor with L = 5.841 H. If the switch S has been in position a for a very long time and is then flipped to position b, what is the current in the inductor at t = 2.318 s ?

Answers

Answer 1

The current in the inductor at t = 2.318 s after the switch is flipped to position b is approximately 52.758 amperes (A).

To determine the current in the inductor at t = 2.318 s after the switch is flipped to position b, we can use the formula for the current in an RL circuit with a battery:

I(t) = (ε/R) * (1 - e^(-Rt/L))

Where:

I(t) is the current at time t,

ε is the EMF of the battery,

R is the resistance,

L is the inductance, and

e is the base of the natural logarithm.

Given that ε = 5.424 V, R = 0.5621 Ω, L = 5.841 H, and t = 2.318 s, we can substitute these values into the formula:

I(t) = (5.424 V / 0.5621 Ω) * (1 - e^(-0.5621 Ω * 2.318 s / 5.841 H))

Calculating the exponent:

e^(-0.5621 Ω * 2.318 s / 5.841 H) ≈ 0.501

Substituting the values into the equation:

I(t) ≈ (5.424 V / 0.5621 Ω) * (1 - 0.501)

I(t) ≈ 52.758 A

Therefore, the current in the inductor at t = 2.318 s after the switch is flipped to position b is approximately 52.758 amperes (A).

Learn more about current

https://brainly.com/question/31853499

#SPJ11


Related Questions

You hang from a tree branch, then let go and fall toward the Earth. As you fall, the y component of your momentum, which was originally zero, becomes large and negative. (a) Choose yourself as the system. There must be an object in the surroundings whose y momentum must become equally large, and positive. What object is this? (b) Choose yourself and the Earth as the system. The y component of your momentum is changing. Does the total momentum of the system change? Why or why not?

Answers

(a) The object in the surroundings whose y momentum becomes equally large and positive is the Earth.

(b) When you choose yourself and the Earth as the system, the total momentum of the system does not change. According to the law of conservation of momentum, the total momentum of an isolated system remains constant if no external forces are acting on it.

According to Newton's third law of motion, for every action, there is an equal and opposite reaction. As you fall towards the Earth, your momentum in the downward direction (negative y component) increases. To satisfy the conservation of momentum, the Earth must experience an equal and opposite change in momentum in the upward direction (positive y component).

In this case, the gravitational force between you and the Earth is an internal force within the system. As you fall towards the Earth, your momentum increases in the downward direction, but an equal and opposite change in momentum occurs for the Earth in the upward direction, keeping the total momentum of the system constant.

To know more about Newton's third law of motion

https://brainly.com/question/974124

#SPJ11

A student wears eyeglasses that are positioned 1.20 cm from his eyes. The exact prescription for the eyeglasses should be 2.11 diopters. What is the closest distance (near point) that he can see clearly without vision correction? (State answer in centimeters with 1 digit right of decimal. Do not include unit.)

Answers

The closest distance that the student can see clearly without vision correction is approximately 47.2 cm.

The prescription for the eyeglasses is given in diopters, which represents the optical power of the lenses. The formula relating the optical power (P) to the distance of closest clear vision (D) is D = 1/P, where D is measured in meters. To convert the prescription from diopters to meters, we divide 1 by the prescription value: D = 1/2.11 = 0.4739 meters.

Since the question asks for the answer in centimeters, we need to convert the distance from meters to centimeters. There are 100 centimeters in a meter, so multiplying the distance by 100 gives us: D = 0.4739 x 100 = 47.39 cm.

However, the question asks for the closest distance with only one digit to the right of the decimal point. To round the answer to the nearest tenth, we get the final result of approximately 47.2 cm. Therefore, the student can see clearly without vision correction up to a distance of about 47.2 cm.

Learn more about lenses here:

https://brainly.com/question/29834071

#SPJ11

A vector a has the value (-7.7, 8.2, 0). Calculate the angle in degrees of this vector measured from the +xaxis and from the + y axis: Part 1 angle in degrees from the + x axis = Part 2 angle in degrees from the + y axis =

Answers

The angles in degrees are: Part 1 angle from +x-axis = -47.24 degrees

Part 2 angle from +y-axis = -42.60 degrees. To calculate the angles of the vector a measured from the +x-axis and +y-axis, we can use trigonometry. The angle measured from the +x-axis is given by:

Part 1: angle from +x-axis = arctan(y/x)

where x and y are the components of the vector a. Plugging in the values, we have:

Part 1: angle from +x-axis = arctan(8.2/(-7.7))

Using a calculator, we find that the angle from the +x-axis is approximately -47.24 degrees.

The angle measured from the +y-axis is given by:

Part 2: angle from +y-axis = arctan(x/y)

Plugging in the values, we have:

Part 2: angle from +y-axis = arctan((-7.7)/8.2)

Using a calculator, we find that the angle from the +y-axis is approximately -42.60 degrees.

Therefore, the angles in degrees are:

Part 1 angle from +x-axis = -47.24 degrees

Part 2 angle from +y-axis = -42.60 degrees

To know more about the angles of the vector

brainly.com/question/28529274

#SPJ11

A large wind turbine has a hub height of 135 m and a rotor radius of 63 m. How much average power is contained in wind blowing at 10.0 m/s across the rotor of this wind turbine?

Answers

The average power contained in the wind blowing across the rotor of the wind turbine is approximately 1,227,554.71π (or approximately 3,858,406.71) units of power.

To calculate the average power contained in the wind blowing across the rotor of a wind turbine, we can use the formula:

Power = 0.5 * density * area * velocity^3

where:

density is the air density,

area is the cross-sectional area of the rotor,

velocity is the wind speed.

First, let's calculate the cross-sectional area of the rotor.

The area of a circle is given by the formula A = π * [tex]r^2[/tex], where r is the radius.

In this case, the rotor radius is 63 m, so the area is:

Area = π * [tex](63)^2[/tex] = 3969π square meters.

Next, we need to determine the air density.

The air density can vary depending on various factors such as altitude and temperature.

However, a typical value for air density at sea level and standard conditions is approximately 1.225 kg/[tex]m^3[/tex].

Now we can calculate the average power.

Given that the wind speed is 10.0 m/s, the formula becomes:

Power = 0.5 * 1.225 * 3969π * [tex](10.0)^3[/tex]

Calculating this expression gives us:

Power ≈ 0.5 * 1.225 * 3969π * 1000

≈ 1,227,554.71π

Therefore, the average power contained in the wind blowing across the rotor of the wind turbine is approximately 1,227,554.71π (or approximately 3,858,406.71) units of power, depending on the specific units used in the calculation.

Learn more about average power here:

https://brainly.com/question/17008088

#SPJ11

A 3.9-m-diameter merry-go-round is rotating freely with an angular velocity of 0.70 rad/s. Its total moment of inertia is 1320 kg.m. Four people standing on the ground, each of mass 70 kg suddenly step onto the edge of the merry-go-round. What is the angular velocity of the merry-go-round now? What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?

Answers

The angular velocity of the merry-go-round after the people jump off in a radial direction relative to the merry-go-round is approximately 3.67 rad/s.

To solve this problem, we can use the principle of conservation of angular momentum. The initial angular momentum of the merry-go-round is equal to the final angular momentum after the people step onto it.

Let's calculate the initial angular momentum of the merry-go-round. The moment of inertia of a rotating object can be calculated using the formula:

I = m * r²

where I is the moment of inertia, m is the mass of the object, and r is the radius of rotation.

Given that the total moment of inertia of the merry-go-round is 1320 kg.m, we can find the initial moment of inertia:

1320 kg.m = m_merry-go-round * r²

where m_merry-go-round is the mass of the merry-go-round. Since we only have the diameter (3.9 m) and not the mass, we cannot directly calculate it. However, we don't need the actual value of m_merry-go-round to solve the problem.

Next, let's calculate the initial angular momentum of the merry-go-round using the formula:

L_initial = I_initial * ω_initial

where L_initial is the initial angular momentum, I_initial is the initial moment of inertia, and ω_initial is the initial angular velocity.

Now, when the four people step onto the merry-go-round, their angular momentum will contribute to the total angular momentum of the system. The mass of the four people is 70 kg each, so the total mass added to the system is:

m_people = 4 * 70 kg = 280 kg

The radius of rotation remains the same, which is half the diameter of the merry-go-round:

r = 3.9 m / 2 = 1.95 m

Now, let's calculate the final moment of inertia of the system, considering the added mass of the people:

I_final = I_initial + m_people * r²

Finally, we can calculate the final angular velocity using the conservation of angular momentum:

L_initial = L_final

I_initial * ω_initial = I_final * ω_final

Solving for ω_final:

ω_final = (I_initial * ω_initial) / I_final

Now, let's calculate the values:

I_initial = 1320 kg.m (given)

ω_initial = 0.70 rad/s (given)

m_people = 280 kg

r = 1.95 m

I_final = I_initial + m_people * r²

I_final = 1320 kg.m + 280 kg * (1.95 m)²

ω_final = (I_initial * ω_initial) / I_final

Calculate I_final:

I_final = 1320 kg.m + 280 kg * (1.95 m)²

I_final = 1320 kg.m + 280 kg * 3.8025 m²

I_final = 1320 kg.m + 1069.7 kg.m

I_final = 2389.7 kg.m

Calculate ω_final:

ω_final = (1320 kg.m * 0.70 rad/s) / 2389.7 kg.m

ω_final = 924 rad/(s * kg)

Therefore, the angular velocity of the merry-go-round after the people step onto it is approximately 924 rad/(s * kg).

Now, let's consider the scenario where the people were initially on the merry-go-round and then jumped off in a radial direction relative to the merry-go-round.

When the people jump off in a radial direction, the system loses mass. The final moment of inertia will be different from the initial moment of inertia because the mass of the people is no longer contributing to the rotation. The angular momentum will be conserved again.

In this case, the final moment of inertia will be the initial moment of inertia minus the mass of the people:

I_final_jump = I_initial - m_people * r²

And the final angular velocity can be calculated in the same way:

ω_final_jump = (I_initial * ω_initial) / I_final_jump

Let's calculate the values:

I_final_jump = I_initial - m_people * r²

I_final_jump = 1320 kg.m - 280 kg * (1.95 m)²

ω_final_jump = (1320 kg.m * 0.70 rad/s) / I_final_jump

Calculate I_final_jump:

I_final_jump = 1320 kg.m - 280 kg * (1.95 m)²

I_final_jump = 1320 kg.m - 280 kg * 3.8025 m²

I_final_jump = 1320 kg.m - 1069.7 kg.m

I_final_jump = 250.3 kg.m

Calculate ω_final_jump:

ω_final_jump = (1320 kg.m * 0.70 rad/s) / 250.3 kg.m

ω_final_jump = 3.67 rad/s

Therefore, the angular velocity of the merry-go-round after the people jump off in a radial direction relative to the merry-go-round is approximately 3.67 rad/s.

To learn more about angular velocity visit:

brainly.com/question/30237820

#SPJ11

A car, initially at rest, accelerates at a constant rate, 3.56 m/s2 for 37.1 seconds in a straight line. At this time, the car decelerates at a constant rate of -2.00 m/s2, eventually coming to rest. How much distance (in meters) did the car travel during the deceleration portion of the trip?

Answers

The distance can't be negative, the car traveled a distance of 2766.18 m during the deceleration portion of the trip. Hence, the correct answer is 2766.18 meters.

Given that a car initially at rest, accelerates at a constant rate of 3.56 m/s2 for 37.1 seconds and then decelerates at a constant rate of -2.00 m/s2 until it comes to rest. We are to find out the distance (in meters) the car traveled during the deceleration portion of the trip.As we know, acceleration (a) is given asa= (v-u)/tWhere, v= final velocity, u= initial velocity, and t= time takenAlso, distance (s) can be calculated as:s= ut + 1/2 at²Where, u= initial velocity, t= time taken, and a= acceleration. Now, let's calculate the distance traveled during the first part of the trip when the car accelerated:a= 3.56 m/s²t= 37.1 sInitial velocity, u = 0 m/s

Using the formula above, distance traveled (s) during the acceleration part can be calculated as:s = 0 + 1/2 × 3.56 × (37.1)² = 24090.38 mNow, let's calculate the distance traveled during the deceleration part of the trip when the car eventually comes to rest:a= -2.00 m/s²u= 0 m/sThe final velocity is 0 since the car eventually comes to rest.

We can use the formula above to calculate the distance traveled during the deceleration part of the trip as:s = 0 + 1/2 × (-2.00) × (t²)Since we know that the car accelerated for 37.1 s, we can calculate the time taken to decelerate as:time taken for deceleration = 37.1 sThus, distance traveled during deceleration part of the trip is given by:s = 0 + 1/2 × (-2.00) × (37.1)²= -2766.18 mSince the distance can't be negative, the car traveled a distance of 2766.18 m during the deceleration portion of the trip. Hence, the correct answer is 2766.18 meters.

Learn more about Distance here,

https://brainly.com/question/26550516

#SPJ11

Adjust the focal length, play around with the image distance, even change the lens from converging to diverging. Pay attention to how the red, blue, and green rays are formed. Does changing any of the parameters affect the way in which the rays are constructed? Hint: The ray might change its position, but we are paying attention to the way it is constructed (not where it is). Yes. The rules for ray tracing change when you change the focal length of a lens. Yes. If you change either the object distance or the object height, the rules for ray tracing change. Yes. Changing the lens from converging to diverging results in a completely different set of rules for ray tracing. No. The rules for ray tracing remain the same, no matter which parameter you change. 1/1 submissions remaining

Answers

Changing the focal length, image distance, and lens type in ray tracing affects the construction of red, blue, and green rays, altering the rules for ray tracing.

When adjusting the focal length of a lens, the rules for ray tracing change. The position of the rays may shift, but the crucial aspect is how the rays are constructed. The focal length determines the convergence or divergence of the rays. A converging lens brings parallel rays to a focus, while a diverging lens causes them to spread apart. This alteration in the lens's properties affects the construction of the rays, resulting in different paths and intersections.

Similarly, modifying the object distance or object height also changes the rules for ray tracing. These parameters determine the angle and position of the incident rays. Adjusting them affects the refraction and bending of the rays as they pass through the lens, ultimately impacting the construction of the rays in the image formation process.

Changing the lens type from converging to diverging, or vice versa, introduces an entirely different set of rules for ray tracing. Converging lenses converge incident rays, whereas diverging lenses cause them to diverge further. This fundamental difference in behavior alters the construction of the rays and subsequently influences the image formation process.

Therefore, changing the focal length, image distance, or lens type in ray tracing does affect the construction of red, blue, and green rays, resulting in a shift in the rules for ray tracing.

Learn About Focal Here:

https://brainly.com/question/2194024

#SPJ11

a 2.0 kg book sits on a table. a) the net vertical force on the book is

Answers

Since the book is at rest on the table, its acceleration is zero, so the net force on the book must be zero. Therefore, the magnitude of the support force must be equal to the magnitude of the book's weight, which is Fw=mg=(2kg)(10m/s2)=20N.

How much larger is the dameter of the sun compared to the
diameter of jupiter?

Answers

The diameter of the sun is about 109 times larger than the diameter of Jupiter.

How much larger is the diameter of the sun compared to the diameter of Jupiter?The diameter of the sun is about 109 times larger than the diameter of Jupiter. The diameter of the sun is approximately 1.39 million kilometers (864,938 miles), while the diameter of Jupiter is around 139,822 kilometers (86,881 miles).

Therefore, the difference between the diameter of the sun and the diameter of Jupiter is about 1,390,178 kilometers (864,938 - 86,881 x 2), which is over one million kilometers. Jupiter is the largest planet in our solar system, but it's still small compared to the sun. Jupiter has a diameter that is roughly 11 times greater than the diameter of Earth.

The sun and Jupiter are both celestial objects in our solar system. While they share certain characteristics, such as their spherical shape and their immense size, they also differ in many ways. One significant difference between the sun and Jupiter is their size, as evidenced by their diameters. The diameter of the sun is around 109 times greater than the diameter of Jupiter, which means that the sun is much larger than Jupiter. The diameter of the sun is roughly 1.39 million kilometers (864,938 miles), while the diameter of Jupiter is about 139,822 kilometers (86,881 miles). The difference between the two is over 1,390,000 kilometers (864,938 - 86,881 x 2), which is a difference of over one million kilometers. As the largest planet in our solar system, Jupiter is still quite small when compared to the sun.

The diameter of the sun is about 109 times larger than the diameter of Jupiter, making it much larger than Jupiter.

To know more about solar system visit:

brainly.com/question/32240766

#SPJ11

Calculations Since the stirrer and calorimeter are also of aluminum , C = Co = Ca with Cv = 1.00 cal/( gram Cº) equation (1) becomes M2 Ca(Ta-T) = (Mw + McCa+MsCa )(T-T.) (2) + а a Solve this equation for Ca, the specific heat of aluminum for each trial and compare your result with the standard value of 0.22 cal( gram C°) by determining the % discrepancy.

Answers

Once we have the experimental value for Ca, we can calculate the % discrepancy using the formula:

% discrepancy = (|Ca - Standard value| / Standard value) * 100

The equation (1) given is M2 Ca(Ta-T) = (Mw + McCa+MsCa)(T-T.) where Ca represents the specific heat of aluminum. By solving this equation for Ca, we can determine the specific heat of aluminum for each trial and compare it with the standard value of 0.22 cal/(gram°C). The % discrepancy will indicate how much the experimental value differs from the standard value.

In order to calculate Ca, we need to rearrange the equation (2) and isolate Ca on one side:

Ca = ((M2(Ta-T)) - (w(T-T.) + McCa(T-T.) + MsCa(T-T.))) / (T-T.)

Once we have the experimental value for Ca, we can calculate the % discrepancy using the formula:

% discrepancy = (|Ca - Standard value| / Standard value) * 100

By substituting the experimental value of Ca and the standard value of 0.22 cal/(gram°C) into this formula, we can determine the % discrepancy, which indicates the difference between the experimental and standard values of specific heat for aluminum.

To know more about experimental value here https://brainly.com/question/28347059

#SPJ4

A 38.4-pound block sits on a level surface, and a horizontal 21.3-pound force is applied to the block. If the coefficient of static friction between the block and the surface is 0.75, does the block start to move? Hint: it may help to draw a force diagram to visualize where everything is happening. What is known? What is unknown? What is the basic equation? What is the working equation? Plug in your values. What is the answer? 1. Find the mass of a 745 N person and find the weight of an 8.20 kg mass. Use metric units! What is known? What is unknown? What is the basic equation? What is the working equation? Plug in your values.

Answers

The maximum force of static friction is:fs ≤ µsNfs ≤ (0.75)(167.9 N)fs ≤ 125.9 NSince the force being applied to the block (21.3 lb) is less than the maximum force of static friction (125.9 N), the block does not start to move.

To determine if the block moves, we need to calculate the maximum force of static friction. We can do this by using the formula:fs ≤ µsNwherefs = force of static frictionµs = coefficient of static frictionN = normal force

The normal force is equal to the force of gravity acting on the object, which is given by:N = mgwhereg = acceleration due to gravitym = mass of the objectIn this case, the force of gravity acting on the block is:N = (38.4 lb)(1 kg/2.205 lb)(9.81 m/s²)N = 167.9 N (to convert from pounds to kilograms, we used the conversion factor 1 kg/2.205 lb).

Therefore, the maximum force of static friction is:fs ≤ µsNfs ≤ (0.75)(167.9 N)fs ≤ 125.9 NSince the force being applied to the block (21.3 lb) is less than the maximum force of static friction (125.9 N), the block does not start to move.

Use metric units!To find the mass of a 745 N person, we can use the formula:w = mgwhere w = weight and m = mass.

Therefore:m = w/gwhere g = acceleration due to gravityg = 9.81 m/s²m = 745 N/9.81 m/s²m ≈ 75.8 kg.

To find the weight of an 8.20 kg mass, we can use the formula:w = mgwhere w = weight and m = mass.

Therefore:w = (8.20 kg)(9.81 m/s²)w ≈ 80.4 N (to convert from newtons to pounds, we could use the conversion factor 1 N/0.2248 lb)

Learn more about Static friction here,

https://brainly.com/question/13680415

#SPJ11

What is the radius (in fm) of a beryllium-9 nucleus?

Answers

The radius of a beryllium-9 nucleus is approximately 2.28 fm. The word "radius" is derived from Latin and means "ray" as well as "the spoke of a chariot wheel."

The radius of a nucleus can be estimated using the empirical formula for nuclear radius:

r = r0 * A^(1/3)

where r is the radius of the nucleus, r0 is a constant (approximately 1.2 fm), and A is the mass number of the nucleus.

For a beryllium-9 nucleus (with A = 9), the radius would be:

r = 1.2 fm * 9^(1/3) ≈ 2.28 fm

In classical geometry, a circle's or sphere's radius (plural: radii) is any line segment that connects the object's centre to its perimeter; in more contemporary usage, it also refers to the length of those line segments.

To know more about radius

https://brainly.com/question/13449316

#SPJ11

For the following inductors, find the energy stored in the magnetic field.
a) A 10.0cm long solenoid with 4 turns/cm, a 1.0cm radius, and a current of 4.0 A.
b) A rectangular toroid with inner radius 10.0 cm, outer radius 14.0cm, and a height of 2.0cm. It is comprised of a total of 1000 windings and has a current of 1.25 A.
c) An inductor with a potential difference of 55mV after 1.5s with a current that varies as I(t) =I0 − Ct. I0 = 10.0A, and C = 3A/s.

Answers

The energy stored in the magnetic field of the solenoid is [tex]2.02 * 10^-^5 J[/tex]. The energy stored in the magnetic field of the toroid is [tex]2.93 * 10^-^3 J[/tex]. The energy stored in the magnetic field of the inductor is [tex]1.12 * 10^-^4 J[/tex]

a) The inductance of the solenoid can be calculated using the formula:[tex]L = \mu 0n^2A/l[/tex], where [tex]\mu 0[/tex] is the permeability of free space[tex](4\pi * 10^-^7 Tm/A)[/tex], n is the number of turns per unit length, A is the cross-sectional area of the solenoid, and l is its length.
[tex]n = 4 turns/cm = 40 turns/m\\A = \pi r^2 = \pi(0.01 m)^2 = 3.14 * 10^-^4 m^2\\l = 0.1 m\\L = \mu 0n^2A/l = (4\pi * 10^-^7 Tm/A)(40^2 turns/m^2)(3.14 * 10^-^4 m^2)/(0.1 m) \\= 1.26 * 10^-^3 H[/tex]
The energy stored in the magnetic field of the solenoid can be calculated using the formula: [tex]U = 1/2LI^2[/tex].
[tex]I = 4 A\\U = 1/2LI^2 = (1/2)(1.26 * 10^-^3 H)(4 A)^2 = 2.02 * 10^-^5 J[/tex]
b) The inductance of the toroid can be calculated using the formula: [tex]L = \mu 0N^2A/(2\pi l)[/tex], where N is the total number of windings, A is the cross-sectional area of the toroid, and l is its average circumference.
[tex]N = 1000\\A = \pi(R2 - R1)h = \pi((0.14 m)^2 - (0.1 m)^2)(0.02 m) = 1.47 * 10^-^2 m^2\\l = \pi(R1 + R2) = \pi(0.1 m + 0.14 m) = 0.942 m\\L = \mu 0N^2A/(2\pi l) = (4\pi * 10^-^7 Tm/A)(1000^2 turns^2)(1.47 * 10^-^2m^2)/(2\pi(0.942 m)) = 3.14 * 10^-^3 H[/tex]
The energy stored in the magnetic field of the toroid can be calculated using the formula: [tex]U = 1/2LI^2.\\I = 1.25 A\\U = 1/2LI^2 = (1/2)(3.14 * 10^-^3 H)(1.25 A)^2 = 2.93 * 10^-^3 J[/tex]
c) The inductance of the inductor can be calculated using the formula: L = ΔV/Δt * (I0 - I(∞)[tex])^-^1[/tex], where ΔV is the change in potential difference, Δt is the time interval, I0 is the initial current, and I(∞) is the current when the inductor has reached steady state.
ΔV = 55 mV = [tex]55 * 10^-^3 V[/tex]
Δt = 1.5 s
I0 = 10 A
C = 3 A/s
I(∞) = 0
L = ΔV/Δt * (I0 - I(∞)[tex])^-^1[/tex] = [tex](55 * 10^-^3 V)/(1.5 s) * (10 A)^-^1 = 3.67 * 10^-^3 H[/tex]
The energy stored in the magnetic field of the inductor can be calculated using the formula: [tex]U = 1/2LI^2[/tex].
[tex]I(t) = I0 - Ct\\t = 1.5 s\\I(t) = I0 - Ct = 10 A - (3 A/s)(1.5 s) = 5.5 A\\U = 1/2LI^2 = (1/2)(3.67 * 10^-^3 H)(5.5 A)^2 = 1.12 * 10^-^4 J[/tex]

Learn more about  magnetic field here:

https://brainly.com/question/30331791

#SPJ11

Perform the following calculation and express your answer using the correct number of significant digits. If a wagon with mass 13.9 kg accelerates at a rate of 0.0360 m/s2, what is the force on the wagon in N?

Answers

The force on the wagon is F = 0.500 N (correct to three significant digits).Note: In scientific notation, the answer can be written as F = 5.00 × 10⁻¹ N (correct to three significant digits).

Given information:Mass of the wagon (m) = 13.9 kgAcceleration (a) = 0.0360 m/s²To find:Force (F) = ?Formula:F = ma,whereF = Force (N)m = Mass (kg)a = Acceleration (m/s²)Substituting the given values in the above formula:F = ma = 13.9 kg × 0.0360 m/s² = 0.5004 NIt is important to express the answer using the correct number of significant digits. In this case, the acceleration has four significant digits and the mass has three significant digits. So, the answer must have three significant digits.Therefore, the force on the wagon is F = 0.500 N (correct to three significant digits).Note: In scientific notation, the answer can be written as F = 5.00 × 10⁻¹ N (correct to three significant digits).

Learn more about Acceleration here,

https://brainly.com/question/460763

#SPJ11

A solenoid of radius 3.10 cm has 720 turns and a length of 15.0 cm. (a) Find its inductance. mH (b) Find the rate at which current must change through it to produce an emf of 90.0 mV. (Enter the magnitude.) A/S

Answers

(a) The inductance of the solenoid is approximately 3.42 mH. (b) The magnitude of the rate at which the current must change through the solenoid is approximately 26.3 A/s.

To find the inductance of the solenoid, we can use the formula for the inductance of a solenoid:

L = (μ₀ * N² * A) / l

where:

L is the inductance,

μ₀ is the permeability of free space (4π × [tex]10^{-7}[/tex] T·m/A),

N is the number of turns,

A is the cross-sectional area of the solenoid, and

l is the length of the solenoid.

(a) Finding the inductance:

Given:

Radius (r) = 3.10 cm = 0.0310 m

Number of turns (N) = 720

Length (l) = 15.0 cm = 0.150 m

The cross-sectional area (A) of a solenoid can be calculated using the formula:

A = π * r²

Substituting the given values:

A = π * (0.0310 m)²

A = 0.00302 m²

Now, we can calculate the inductance:

L = (4π × [tex]10^{-7}[/tex] T·m/A) * (720² turns²) * (0.00302 m²) / (0.150 m)

L ≈ 3.42 mH

Therefore, the inductance of the solenoid is approximately 3.42 mH.

(b) To find the rate at which the current must change to produce an electromotive force (emf) of 90.0 mV, we can use Faraday's law of electromagnetic induction:

emf = -L * (dI / dt)

Where:

emf is the electromotive force,

L is the inductance, and

(dI / dt) is the rate of change of current.

Rearranging the equation, we can solve for (dI / dt):

(dI / dt) = -emf / L

Given:

emf = 90.0 mV = 90.0 × [tex]10^{-3}[/tex] V

L = 3.42 mH = 3.42 × [tex]10^{-3}[/tex] H

Substituting the values:

(dI / dt) = -(90.0 × [tex]10^{-3}[/tex] V) / (3.42 × [tex]10^{-3}[/tex] H)

(dI / dt) ≈ -26.3 A/s (approximated to two decimal places)

Therefore, the magnitude of the rate at which the current must change through the solenoid is approximately 26.3 A/s.

To learn more about solenoid visit:

brainly.com/question/15576393

#SPJ11

In a photoelectric effect experiment, if the frequency of the photons are held the same while the intensity of the photons are increased, the work function decreases. the maximum kinetic energy of the photoelectrons decreases. the stopping potential remains the same. the maximum current remains the same.

Answers

when the frequency of the photons is held constant while the intensity is increased, the work function and stopping potential remain unchanged, while the maximum kinetic energy of the photoelectrons remains the same, resulting in a higher photocurrent due to the increased number of emitted electrons.

In a photoelectric effect experiment, the interaction between photons and a metal surface leads to the ejection of electrons. The observed phenomena are influenced by the frequency and intensity of the incident photons, as well as the properties of the metal, such as the work function.When the frequency of the photons is held constant but the intensity is increased, it means that more photons per unit time are incident on the metal surface. In this case, the number of photoelectrons emitted per unit time increases, resulting in a higher photocurrent. However, the maximum kinetic energy of the photoelectrons remains the same because it is determined solely by the frequency of the photons.

The work function of a metal is the minimum amount of energy required to remove an electron from its surface. It is a characteristic property of the metal and is unaffected by the intensity of the incident light. Therefore, as the intensity is increased, the work function remains the same. The stopping potential is the minimum potential required to stop the flow of photoelectrons. It depends on the maximum kinetic energy of the photoelectrons, which remains constant as the frequency of the photons is held constant. Hence, the stopping potential also remains the same.

Learn more about photoelectric effect here:

https://brainly.com/question/9260704

#SPJ11

An electromagnetic wave in the visible spectrum has a wavelength of 675 nm and a frequency of 5.0×10 15
Hz
4.4×10 14
Hz
4.4×10 6
Hz
1.2×10 5
Hz
1.2×10 14
Hz

Answers

The only valid representation of an electromagnetic wave in the visible spectrum among the given options is a wavelength of 675 nm and a frequency of 4.4×10^14 Hz. So, the correct answer is  4.4×10^14 Hz.  

1. A wavelength of 675 nm and a frequency of 5.0×10^15 Hz:

  This combination is not valid because the speed of light is approximately 3.0×10^8 m/s, which is a constant in a vacuum. If we calculate the speed of light using the equation v = λf, where v is the speed of light, λ is the wavelength, and f is the frequency, we get a speed of light much higher than the actual value. Therefore, this option is incorrect.

2. A wavelength of 675 nm and a frequency of 4.4×10^14 Hz:

  This combination is valid and falls within the visible spectrum. The given wavelength corresponds to a color between red and orange. The frequency represents the number of oscillations per second for the electromagnetic wave. Therefore, this option is a valid representation of an electromagnetic wave in the visible spectrum.

3. A wavelength of 675 nm and a frequency of 4.4×10^6 Hz:

  This combination is not valid because the frequency is extremely low for visible light. Visible light waves have frequencies typically ranging from 4.3×10^14 Hz (violet) to 7.5×10^14 Hz (red). Therefore, this option is incorrect.

4. A wavelength of 675 nm and a frequency of 1.2×10^5 Hz:

  This combination is not valid because the frequency is extremely low for visible light. As mentioned earlier, visible light waves have frequencies typically ranging from 4.3×10^14 Hz (violet) to 7.5×10^14 Hz (red). Therefore, this option is incorrect.

5. A wavelength of 675 nm and a frequency of 1.2×10^14 Hz:

  This combination is not valid because the frequency is still too low for visible light. As mentioned earlier, visible light waves have frequencies typically ranging from 4.3×10^14 Hz (violet) to 7.5×10^14 Hz (red). Therefore, this option is incorrect.

In summary, the only valid representation of an electromagnetic wave in the visible spectrum among the given options is a wavelength of 675 nm and a frequency of 4.4×10^14 Hz.

Learn more about electromagnetic wave            

https://brainly.com/question/22058311

#SPJ11

A sailboat heads out on the Pacific Ocean at 22.0 m/s [N 77.5° W]. Use a mathematical approach to find the north and the west components of the boat's velocity.

Answers

To find the north and west components of the boat's velocity, we can use trigonometry. The north component of the boat's velocity is approximately 21.52 m/s, and the west component is approximately 5.01 m/s.

Magnitude of velocity (speed): 22.0 m/s

Direction: N 77.5° W. To determine the north and west components, we can use the trigonometric relationships between angles and sides in a right triangle. Since the given direction is with respect to the west, we can consider the west component as the adjacent side and the north component as the opposite side.

Using trigonometric functions, we can calculate the north and west components as follows:

North component = magnitude of velocity * sin(angle)

North component = 22.0 m/s * sin(77.5°)

North component ≈ 21.52 m/s

West component = magnitude of velocity * cos(angle)

West component = 22.0 m/s * cos(77.5°)

West component ≈ 5.01 m/s

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

TRUE / FALSE.
"The resistance of a wire, made of a homogenous material with a
uniform diameter, is inversely proportional to its length.

Answers

Answer: The statement "The resistance of a wire, made of a homogenous material with a uniform diameter, is inversely proportional to its length" is FALSE.

Resistance is a measure of the degree to which an object opposes the passage of an electric current. The unit of electrical resistance is the ohm (Ω). The resistance (R) of an object is determined by the voltage (V) divided by the current (I)

Ohm's law states that the current in a conductor between two points is directly proportional to the voltage across the two points.  The mathematical expression for Ohm's law is I = V/R, where I is the current flowing through a conductor, V is the voltage drop across the conductor, and R is the resistance of the conductor.

Learn more about resistance : https://brainly.com/question/17563681

#SPJ11

Describe in your own words: what is the procedure to solve the Schrödinger equation for
a. A ID potential barrier of height Vo. Discuss what is the difference in the resulting wave function for E>Vo compared to E {V0 for x≥0 c. The Harmonic oscillator (you do not have to solve the differential equation, just write it down and discuss the solutions and the energy levels)

Answers

The solutions to the Schrödinger equation for a one-dimensional potential barrier and the harmonic oscillator yield different forms of wave functions and energy quantization. For the potential barrier, the wave function consists of incident, reflected, and transmitted waves, while for the harmonic oscillator, the wave functions are given by Hermite polynomials multiplied by a Gaussian factor, and the energy levels are quantized.

To solve the Schrödinger equation for different potential systems, let's consider the two cases mentioned: a one-dimensional (ID) potential barrier of height Vo and the harmonic oscillator.

a. ID Potential Barrier of Height Vo:

For an ID potential barrier, the Schrödinger equation is a second-order partial differential equation. We can divide the system into three regions: x < 0, 0 ≤ x ≤ L, and x > L. Assuming the potential barrier exists between 0 ≤ x ≤ L with a height Vo, we can write the Schrödinger equation in each region and match the solutions at the boundaries.

   Region I (x < 0) and Region III (x > L):

   In these regions, the potential energy is zero (V = 0). The general solution to the Schrödinger equation in these regions is a linear combination of a left-moving wave (incident wave) and a right-moving wave (reflected wave):

   Ψ_I(x) = Ae^{ikx} + Be^{-ikx} and Ψ_III(x) = Fe^{ikx} + Ge^{-ikx}

   Region II (0 ≤ x ≤ L):

   In this region, the potential energy is Vo, and the Schrödinger equation becomes:

   (d^2Ψ_II(x)/dx^2) + (2m/ħ^2)(E - Vo)Ψ_II(x) = 0

Solving this differential equation, we obtain the general solution as:

Ψ_II(x) = Ce^{qx} + De^{-qx}

Here, q = sqrt(2m(Vo - E))/ħ, and m represents the mass of the particle.

To determine the specific form of the wave function for E > Vo (particle with energy greater than the barrier height), we need to consider the behavior at the boundaries. As x → ±∞, the wave function should approach the same form as the incident wave in Region I and the transmitted wave in Region III. Therefore, we have:

Ψ_I(x) = Ae^{ikx} + Be^{-ikx} and Ψ_III(x) = Te^{ikx}

Here, k = sqrt(2mE)/ħ, and T represents the transmission coefficient.

By matching the wave function and its derivative at the boundaries, we can determine the coefficients A, B, F, G, C, D, and the transmission coefficient T.

In summary, for E > Vo, the wave function consists of a combination of an incident wave, a reflected wave, and a transmitted wave. The transmitted wave accounts for the particle passing through the potential barrier.

b. Harmonic Oscillator:

The harmonic oscillator potential represents a system where the potential energy is proportional to the square of the distance from the equilibrium position. The Schrödinger equation for a harmonic oscillator is a second-order differential equation:

-(ħ^2/2m)(d^2Ψ(x)/dx^2) + (1/2)kx^2Ψ(x) = EΨ(x)

Here, k is the force constant associated with the harmonic potential, and E represents the energy of the particle.

The solutions to this equation are given by the Hermite polynomials multiplied by a Gaussian factor. The energy levels of the harmonic oscillator are quantized, meaning they can only take on specific discrete values. The energy eigenstates (wave functions) of the harmonic oscillator are given by:

Ψ_n(x) = (1/√(2^n n!))(mω/πħ)^(1/4) × e^(-mωx^2/2ħ) × H_n(√(mω/ħ)x)

Here, n is the principal quantum number representing the energy level, ω is the angular frequency of the oscillator (related to the force constant k and mass m as ω = sqrt(k/m)), and H_n(x) is the nth Hermite polynomial.

The energy levels of the harmonic oscillator are quantized and given by:

E_n = (n + 1/2)ħω

The solutions to the harmonic oscillator equation are discrete and form a ladder of energy levels, where each level is equally spaced by ħω. The corresponding wave functions become more spread out as the energy level increases.

In conclusion, the solutions to the Schrödinger equation for a one-dimensional potential barrier and the harmonic oscillator yield different forms of wave functions and energy quantization. For the potential barrier, the wave function consists of incident, reflected, and transmitted waves, while for the harmonic oscillator, the wave functions are given by Hermite polynomials multiplied by a Gaussian factor, and the energy levels are quantized.

To learn more about Schrödinger equation visit: https://brainly.com/question/17750570

#SPJ11

For the unity feedback system shown in Figure P7.1, where G(s) = 450(s+8)(s+12)(s +15) s(s+38)(s² +2s+28) find the steady-state errors for the following test inputs: 25u(t), 37tu(t), 471²u(t). [Section: 7.2] R(s) + E(s) G(s) FIGURE P7.1 C(s)

Answers

The steady-state error for the test input 471^2u(t) is 471^2.

To find the steady-state errors for the given unity feedback system, we can use the final value theorem. The steady-state error is given by the formula:

E_ss = lim_(s->0) s * R(s) * G(s) / (1 + G(s) * C(s))

Given that G(s) = 450(s+8)(s+12)(s+15) / [s(s+38)(s^2+2s+28)] and C(s) = 1, we can substitute these values into the steady-state error formula and calculate the steady-state errors for the given test inputs.

For the test input 25u(t):

R(s) = 25/s

E_ss = lim_(s->0) s * (25/s) * G(s) / (1 + G(s) * 1)

= lim_(s->0) 25 * G(s) / (s + G(s))

To find the limit as s approaches 0, we substitute s = 0 into the expression:

E_ss = 25 * G(0) / (0 + G(0))

Evaluating G(0):

G(0) = 450(0+8)(0+12)(0+15) / [0(0+38)(0^2+2*0+28)]

= 450 * 8 * 12 * 15 / (38 * 28)

= 7200

Substituting G(0) back into the expression:

E_ss = 25 * 7200 / (0 + 7200)

= 25

Therefore, the steady-state error for the test input 25u(t) is 25.

For the test input 37tu(t):

R(s) = 37/s^2

E_ss = lim_(s->0) s * (37/s^2) * G(s) / (1 + G(s) * 1)

= lim_(s->0) 37 * G(s) / (s^2 + G(s))

Evaluating G(0):

G(0) = 7200

Substituting G(0) back into the expression:

E_ss = 37 * 7200 / (0^2 + 7200)

= 37

Therefore, the steady-state error for the test input 37tu(t) is 37.

For the test input 471^2u(t):

R(s) = 471^2/s^3

E_ss = lim_(s->0) s * (471^2/s^3) * G(s) / (1 + G(s) * 1)

= lim_(s->0) 471^2 * G(s) / (s^3 + G(s))

Evaluating G(0):

G(0) = 7200

Substituting G(0) back into the expression:

E_ss = 471^2 * 7200 / (0^3 + 7200)

= 471^2

Therefore, the steady-state error for the test input 471^2u(t) is 471^2.

Learn more about steady-state error at: https://brainly.com/question/15831208

#SPJ11

A device with a wire coal that is mechanically rotated through a

Answers

Answer:

A generator is a device that converts mechanical energy into electrical energy by rotating a coil of wire in a magnetic field.

A balancing machine apparatus in a service station spins a tire to check it spins smoothly. The tire starts from rest and turns through 4.73 revin 1.78 s before reaching its final angular speed Find its angular acceleration Answer in units of rad/s? Answer in units of rad/s2 1. 40.104726 2. 331914518 3. 31.14749 4. 196.894956 5. 18.759921 6. 32 366038 7. 309.070405 8.35 882879 9. 84381621 10. 17.866388

Answers

The correct option is option 3.

To find the angular acceleration of the tire, we can use the formula:

angular acceleration (α) = (final angular speed - initial angular speed) / time

Given:

Number of revolutions (n) = 4.73 rev

Time (t) = 1.78 s

First, let's convert the number of revolutions to radians:

Angle (θ) = n * 2π

Substituting the values:

θ = (4.73 rev) * (2π rad/rev)

Now, we can calculate the initial angular speed (ω_initial) using the formula:

ω_initial = 0 rad/s (as the tire starts from rest)

Next, let's calculate the final angular speed (ω_final) using the formula:

ω_final = θ / t

Now, we can calculate the angular acceleration (α) using the formula:

α = (ω_final - ω_initial) / t

Substituting the values:

α = (ω_final - 0 rad/s) / t

Now, let's calculate the angular acceleration:

α = ω_final / t

Substituting the values:

α = (θ / t) / t

Calculating the result:

α ≈ 31.14749 rad/s²

Therefore, the angular acceleration of the tire is approximately 31.14749 rad/s².

To know more about angular acceleration.

https://brainly.com/question/30237820

#SPJ11

Perpetual motion machines are theoretical devices that, once in motion do not stop, and continue on without the addition of any extra energy source (often by alternating energy between kinetic and gravitational potential).
a) Why are these not possible?
b) Some people claim that a true perpetual motion machine would be able to produce infinite energy. Why does this not make sense?

Answers

Perpetual motion machines, which operate without the need for additional energy input, are not possible due to the fundamental principles of thermodynamics. Such machines would violate the laws of thermodynamics, specifically the first and second laws.

Claims of producing infinite energy through perpetual motion machines do not make sense because they disregard the conservation of energy and overlook the limitations imposed by the laws of thermodynamics.

Perpetual motion machines violate the first law of thermodynamics, also known as the law of energy conservation, which states that energy cannot be created or destroyed, only transferred or transformed from one form to another.

In a closed system, such as a perpetual motion machine, the total amount of energy remains constant. Without an external energy source, the machine would eventually come to a halt due to energy loss through various factors like friction, air resistance, and mechanical inefficiencies.

The second law of thermodynamics, known as the law of entropy, states that in a closed system, the entropy (or disorder) tends to increase over time.

This implies that energy will always tend to disperse and spread out, resulting in a loss of useful energy for performing work. Perpetual motion machines would defy this law by maintaining a perpetual cycle of energy conversion without any losses, which is not possible.

The claim that a perpetual motion machine could produce infinite energy is flawed because it disregards the fact that energy cannot be created from nothing.

The laws of thermodynamics dictate that the total energy within a closed system is conserved. Even if a perpetual motion machine were to function indefinitely, it would not generate additional energy beyond what was initially provided.

Energy would be continuously transformed, but not created or increased, making the concept of infinite energy generation impossible within the confines of known physical laws.

In conclusion, perpetual motion machines are not possible because they violate the laws of thermodynamics. These machines cannot sustain continuous motion without an external energy source and are subject to energy losses and the inevitable increase in entropy.

Claims of infinite energy generation through perpetual motion machines are unfounded as they contradict the principles of energy conservation and the limitations imposed by the laws of thermodynamics.

Learn more about motion here ;

https://brainly.com/question/12640444

#SPJ11

An ac generator has a frequency of 1170 Hz and a constant rms voltage. When a 489−Ω resistor is connected between the terminals of the generator, an average power of 0.240 W is consumed by the resistor. Then, a 0.0780−H inductor is connected in series with the resistor, and the combination is connected between the generator terminals. What is the average power consumed in the inductorresistor series circuit?

Answers

The average power consumed in the inductor resistor series circuit with an AC generator with a frequency of 1170 Hz and a constant rms voltage is 0.120 W.

The average power in an inductor-resistor series circuit is given as P=I2R, where R is the resistance of the resistor in ohms and I is the rms current through the resistor and the inductor, as the resistor and the inductor are connected in series.

Let's use Ohm's Law, V = IR, to determine the rms current through the resistor. V = IR, soI = V/R, where V is the rms voltage across the resistor and R is the resistance of the resistor in ohms.

Using the formula for the power, P = I²R, the average power consumed in the circuit is given as: P = I²R = (V²/R²)RA 0.0780-H inductor is connected in series with the resistor, and the combination is connected between the generator terminals.

Therefore, the equivalent resistance of the circuit is given as:R(eq) = R + X(L), where X(L) is the inductive reactance of the inductor.

Inductive reactance, X(L) = ωL, where ω is the angular frequency and L is the inductance of the inductor.

X(L) = ωL = 2πfL,

where f is the frequency of the generator.

The current flowing through the circuit is given as: I = V/R(eq)

Therefore, the average power consumed in the circuit is: P = I²R(eq)

Substituting the values of R, L, and P in the above formula, we get:P = 0.12 W

Hence, the average power consumed in the inductor resistor series circuit with an AC generator with a frequency of 1170 Hz and a constant rms voltage is 0.120 W.

Learn more about resistor series  here:

https://brainly.com/question/32613410

#SPJ11

In a piston-cylinder arrangement air initially at V=2 m3, T=27°C, and P=2 atm, undergoes an isothermal expansion process where the air pressure becomes 1 atm. How much is the heat transfer in kj? O 277 0 288 0 268 O 252

Answers

Given the

initial volume V = 2 m³,

initial temperature T = 27°C,

initial pressure P = 2 atm and

final pressure P₁ = 1 atm.

Now, according to the first law of thermodynamics:

ΔU = Q - Where, ΔU = change in internal energy

Q = heat transfer

W = work done

So, we can write as

Q = ΔU + Where, ΔU = nCVΔT (For an isothermal process, ΔT = 0)ΔU = 0

So,Q = W

Now, for an isothermal process of an ideal gas:

PV = nRT

We know that

T = P.V/n.R = 2 × 2 / (n × 0.0821) = 48.8/n...…(1)

For initial state:

PV = nRT2 × P × V = n × R × T

For final state:

PV₁ = nRTV/V₁ = P₁/P = 2/1 = 2n = (2 × P × V) / RTn = (2 × 2 × 2) / (0.0821 × 300) = 19.92 moles

So, the heat transfer for the given isothermal process will be

Q = W = -nRT ln (P₁/P) = -19.92 × 0.0821 × 300 ln (1/2) = 273.2 J= 0.2732 kJ

Therefore, the correct option is 0.2732.

Learn more about isothermal process here

https://brainly.com/question/12023162

#SPJ11

An MRI technician moves his hand from a regiot of very low magnetic field strength into an MRI seanner's 2.00 T field with his fingers pointing in the direction of the field. His wedding ring has a diaimeter of 2.15 cm and it takes 0.325 s to move it into the field. Randomized Variables d=2.15 cmt=0.325 s A 33% Part (a) What average current is induced in the ring in A if its resistance is 0.0100 Ω? Part (b) What average power is dissipated in mW ? Part (c) What magnetic field is induced at the ceater of the ring in T?

Answers

Part (a) The average current is induced in the ring is 0.443 A

Part (b) Average power dissipated in the ring is 1.96 mW

Part (c) The magnetic field induced at the center of the ring is 2.45 x 10^-6 T

Diameter of the ring, d = 2.15 cm = 0.0215 m

Time taken to move the ring into the field, t = 0.325 s

Magnetic field strength, B = 2.00 T

Resistance of the ring, R = 0.0100 Ω

Part (a)

The magnetic flux through the ring, Φ = Bπr²

Where,

r = radius of the ring = d/2 = 0.01075 m

Magnetic flux changes in the ring, ∆Φ = Φfinal - Φinitial

Let, the final position of the ring in the magnetic field be x metres from the initial position, then, the final flux through the ring is,

Φfinal = Bπr²cosθ

where, θ = angle between the direction of magnetic field and the normal to the plane of the ring.

θ = 0⁰ as the fingers of the technician point in the direction of the magnetic field.

Φfinal = Bπr² = 1.443 x 10^-3 Wb

The initial flux through the ring is zero as the ring was outside the magnetic field,

Φinitial = 0Wb

Thus, the flux changes in the ring is, ∆Φ = 1.443 x 10^-3 Wb

Average emf induced in the ring, E = ∆Φ/∆t

where, ∆t = time interval for which the flux changes in the ring= time taken to move the ring into the field= t = 0.325 s

Average current induced in the ring,

I = E/R

 = (∆Φ/∆t)/R

 = (1.443 x 10^-3 Wb/0.325 s)/0.0100 Ω

 = 0.443 A

Part (b)

Average power dissipated in the ring,

P = I²R

  = (0.443 A)² x 0.0100 Ω

  = 0.00196 W= 1.96 mW

Part (c)

The magnetic field at the center of the ring,

B' = µ₀I(R² + (d/2)²)^(-3/2)

where, µ₀ = magnetic constant = 4π x 10^-7 TmA⁻¹

B' = µ₀I(R² + (d/2)²)^(-3/2)

   = (4π x 10^-7 TmA⁻¹) (0.443 A) {(0.0100 m)² + (0.01075 m)²}^(-3/2)

  = 2.45 x 10^-6 T

Therefore, the magnetic field induced at the center of the ring is 2.45 x 10^-6 T.

Learn more about the magnetic field:

brainly.com/question/14411049

#SPJ11

A 56.0 kgkg ice skater spins about a vertical axis through her body with her arms horizontally outstretched, making 1.50 turns each second. The distance from one hand to the other is 1.5 mm. Biometric measurements indicate that each hand typically makes up about 1.25 % of body weight.
a) What horizontal force must her wrist exert on her hand? Express your answer in newtons.
b) Express the force in part (a) as a multiple of the weight of her hand. Express your answer as a multiple of weight.

Answers

A ice skater making 1.50 turns per second with her arms horizontally outstretched exerts a horizontal force on her hand through her wrist. The force required was calculated to be approximately 667 N. This force is equivalent to about 156.9 times the weight of one hand.

a) The force required to maintain circular motion is given by:

F = mv²/r

where m is the mass of the ice skater, v is the speed of the ice skater, and r is the radius of the circular path. In this case, the radius is half the distance between the hands, or 0.75 m. The speed of the ice skater is equal to the circumference of the circular path divided by the period of one revolution:

v = 2πr/T = 2π(0.75 m)/(1.5 s) ≈ 9.42 m/s

The force required is therefore:

F = (56.0 kg)(9.42 m/s)²/(0.75 m) ≈ 667 N

b) To express the force in terms of the weight of her hand, we first need to calculate the weight of one hand:

weight of one hand = (1.25/100)(56.0 kg)/2 ≈ 0.4375 kg

Then, we can express the force as a multiple of the weight of one hand:

F = 667 N ÷ (0.4375 kg x 9.81 m/s²) ≈ 156.9 weight of one hand

Therefore, the horizontal force exerted by her wrist on her hand is approximately 667 N, and this force is equivalent to about 156.9 times the weight of one hand.

To know more about force, visit:
brainly.com/question/31046192
#SPJ11

An RL circuit is comprised of an emf source with E = 22V , resistance R = 15Ω, and inductor L =0.5H.
a) What is the inductive time constant?
b) What is the maximum value of current? How long does it take to reach 90% of this value? How many time constants is this?
c) After a long enough time for current to reach its peak, the battery is disconnected without
breaking the circuit. How long does it take to reach 1% of the maximum current? How many time constants is this?

Answers

The inductive time constant is 0.0333 seconds. The maximum value of the current is 1.47A. This time corresponds to 1.44 time constants (t / τ). The time it takes to reach 1% of the maximum current is 0.0333s. This time corresponds to 0.1 time constants (t / τ).

a) The inductive time constant (τ) of an RL circuit can be calculated using the formula τ = L / R, where L is the inductance and R is the resistance. In this case,

τ = 0.5H / 15Ω = 0.0333 seconds.

b) For finding the maximum value of current (Imax), formula used:

Imax = E / R, where E is the emf source voltage. Therefore,

Imax = 22V / 15Ω = 1.47A.

For determining the time, it takes to reach 90% of this value, formula used:

t = τ * ln(1 / (1 - 0.9)) = 0.0333s * ln(1 / 0.1) ≈ 0.048s.

This time corresponds to approximately 1.44 time constants (t / τ).

c) After disconnecting the battery, the circuit behaves like an RL circuit with a decaying current. The time it takes to reach 1% of the maximum current, formula used:

t = τ * ln(1 / (1 - 0.01)) = 0.0333s * ln(1 / 0.99) ≈ 0.0033s.

This time corresponds to approximately 0.1 time constants (t / τ).

Learn more about voltage here:

https://brainly.com/question/12804325

#SPJ11

At higher frequencies of an LRC circuit, the capactive reactance becomes very large. True False

Answers

False. At higher frequencies of an LRC (inductor-resistor-capacitor) circuit, the capacitive reactance does not become very large.

In an LRC circuit, the reactance of the capacitor (capacitive reactance) and the reactance of the inductor (inductive reactance) both depend on the frequency of the applied alternating current. The capacitive reactance (Xc) is given by the formula Xc = 1 / (2πfC), where f is the frequency and C is the capacitance.

At higher frequencies, the capacitive reactance decreases rather than becoming very large. As the frequency increases, the capacitive reactance decreases inversely proportionally. This means that the capacitive reactance becomes smaller as the frequency increases.

On the other hand, the inductive reactance (Xl) of an inductor in the LRC circuit increases with increasing frequency. This implies that the inductive reactance becomes larger as the frequency increases.

Therefore, at higher frequencies, the capacitive reactance decreases while the inductive reactance increases. This behavior is fundamental to understanding the impedance of an LRC circuit at different frequencies.

Learn more about LRC circuit here:

https://brainly.com/question/17656439

#SPJ11

Other Questions
1. Western Digital had to integrate three companies into one information system. The three companies had __________ ERP systems; Western Digital decided to move all three companies to a (n) _______ ERP system.A) on-premise; cloud computingB) cloud computing: on-premiseC) On-premise; on-premiseD) Cloud computing cloud computing2. ERP II systems are_________ systemsA) interorganizationalB) extraorganizationalC) exterorganizationalD) intraorganizational3. The ________ process originates in the warehouse department and ends in the warehouse departmentA) FulfillmentB) ProductionC) MarketingD) Procurement An LED (Light Emitting Diode) is constructed from a p-n junction based on a certain semi-conducting material with a band gap of 1.61 eV. What is the wavelength of the emitted light? Give your answer to the closest nm (no decimal places). Do not include the units. What is the maximum height of a binary search tree with n nodes? 0 n/2 o 2an n o n^2 Question 8 1 pts All methods in a Binary Search Tree ADT are required to be recursive. True O Fals Do YOU think that environmental, social, governance (ESG) will replace Corporate Social Responsibility (CSR) and why or why not? HELP PLEASE IMAGINE SOMEONE IS ASKING THIS QUESTION TO YOU Would you be in favor of immigration caps on people entering the state of Tx? Why or why not?(THIS IS GOVERNMENT CLASS) Find the magnitude and direction of the net electric field at point A. The two particles in the diagram each have a charge of +6.5 C. The distance separating the charges is 8.0 cm. The distance between point A and B is 5.0 cm. 1.78e8 X magnitude How do we combine electric fields due to different charges at a particular observation point? What is the magnitude and direction of the field at location A, due to each charge? N/C direction 270 counterclockwise from the +x axis y *A I am writing a term paper and I need ideas on the topicWhat are the impacts of globalizations onservices ecorded the sizes of the shoes in her family's cupboathe modal size?8, 7, 8, 8.5, 7, 8.5, 7 During the electrolysis of an aqueous solution of sodium nitrate, a gas forms at the anode, what gas is it?A. SodiumB. Hydrogen Is it ethical for Wal-Mart to pay its employees minimum wage and to oppose unionization, given that the organization also works its people very hard? Are Wal-Marts employment and compensation practices for lower-level employees ethical? Add reference What technique can we use to distingue light elements and heavyelements? React Js Questions...Q2 Arun is implementing theme support for his application and is using context api. However he is facing an issue, setTheme is not a function for the code written below. Among the given modification options, select the correct option(s) which can fix the issue in below code. context.js const AppContext = React.createContext({ theme: 'light', setTheme: () => { } }); Appl.js function App1() { const [theme, setTheme] = useState("); const setNewTheme = (new Theme) => { // logic to change the theme setTheme(new Theme); } return From Appl component ) 3/1 } App2.js function App20) { const { setTheme } = useContext(AppContext); useEffect(( => { setTheme('dark'); }, 01) return ( From App2 component a) context.js: const AppContext = React.createContext({}); b) Appl.js: c) Using AppContext.Consumer in App2 instead of useContext d) None of the above The BOD: of a municipal wastewater is determined to be 168 mg/L at 15C. The BOD rate constant, k is known to be 0.18 day at 15C. Compute the BOD5 of the sample at 20C. What would be the remainin A sample of neon is at 89C and 2 atm. If the pressure changes to 5 atm. and volume remains constant, find the new temperature, in C. Explain Ciullas concept of exploitation. What might Adam Smithsay to Ciulla? Write a short dialogue between the two on work,justice, and exploitation. How would you complete this sentence...? "I want to know what brain areas or neurons are active when we perceive Why did you choose the answer you did? Is international law important to the operation of theinternational system? Why or why not? Is itenforceable? Why or why not? You are a research analyst and want to use the discounted free cash flow model to determine the enterprise value of Electrix, an electricity distribution company. You have put together the following forecast of Electrix's income statement over the next three years (all figures in $ million): Forecast income statement - ALL FIGURES IN \$ MILLION In addition, you have collected the following information: - Operating working capital (OWC) in each year will be 10% of revenue in that year - Capital expenditure (capex) will be $25 million in each year - The corporate tax rate is 28%. Electrix's free cash flow to the firm (FCF) in year 2024 is $ million. Note: Please provide your answer with two decimal points in \$ million in the format of xx.xx (for example, if the 7. The diagram below represents the construction of a model of an elliptical orbit of a planet travelingaround a star. The focal point and the center of the star represent the foci of the orbit.The eccentricity of this orbit is approximatelyA) 0.3B) 0.8C) 1.3D) 0.5 A new process has been proposed for the synthesis of Ibuprofen that uses Liquid Liquid Extraction (LLE). Within the process a solution of water and methanol infinitely miscible mixture) is fed to a stirred mixing tank at a rate of 5 lb/min. A stream of pure toluene is also fed to this stirred tank. The mixture is then fed to a decanter, where one of the product streams (i.e., phases) contains 88 wt% toluene and has a flow rate of 10 lb/min. Using the ternary diagram (last page), what is the composition and flow rate of the other product stream? What is the flow rate of the pure toluene stream?