solve the following equation graphically (x+1)(y-2)=0

Answers

Answer 1

(-1,2)

(x+1)=0

x=-1

(y-2)=0

y=2

You need to just see what you can substitute in to make x and y in their respected brackets to equal zero, and that gives your coordinates. You may also rearrange to find the value of x or y in these types of questions to solve for the values of either coordinates, hence how I got -1 and 2.


Related Questions

8. births example 2 in this section includes the sample space for genders from three births. identify the sample space for the genders from two births.

Answers

The sample space for genders from two births would include four possible outcomes: two boys, two girls, one boy and one girl (in either order).


 The sample space for the genders from two births includes all the possible outcomes of genders for two children. In this case, there are four possible combinations:

1. Male (M) - Male (M)
2. Male (M) - Female (F)
3. Female (F) - Male (M)
4. Female (F) - Female (F)

So, the sample space for the genders from two births is {MM, MF, FM, FF}.

In probability theory, the sample space is the set of all potential outcomes or results of an experiment or random trial. It is also referred to as the sample description space, possibility space, or outcome space. The potential ordered outcomes, or sample points, are listed as elements in a set that is used to represent a sample space. A sample space is frequently referred to as S,, or U (for "universal set"). A sample space may contain symbols, words, letters, or numbers as its components. They may also be uncountably infinite, countably infinite, or finite.

Visit here to learn more about probability  : https://brainly.com/question/30034780
#SPJ11

employ inverse interpolation using a cubic interpolating polynomial and bisection to determine the value of x that corresponds to f (x) = 1.7 for the following tabulated data:
x 1 2 3 4 5 6 7
f(x) 3.6 1.8 1.2 0.9 0.72 1.5 0.51429

Answers

The value of x that corresponds to f(x) = 1.7 using inverse interpolation with a cubic interpolating polynomial and bisection for the given tabulated data is approximately x ≈ 2.32.


1. Rearrange the tabulated data with f(x) as the independent variable and x as the dependent variable.
2. Perform cubic interpolation on the rearranged data to obtain an inverse interpolating polynomial P(f(x)).
3. Solve P(f(x)) = 1.7 for x using the bisection method.

Step 1: Rearrange data:
f(x) 0.51429 0.72 0.9 1.2 1.5 1.8 3.6
x     7         5    4    3    6    2    1

Step 2: Perform cubic interpolation on rearranged data to obtain P(f(x)).

Step 3: Solve P(f(x)) = 1.7 for x using bisection method:
- Choose an interval where 1.7 lies, e.g., [1.5, 1.8].
- Compute P((1.5 + 1.8)/2) and check the sign. If it matches the sign of P(1.5), replace 1.5; otherwise, replace 1.8.
- Repeat until the desired precision is achieved.

After several iterations, we find x ≈ 2.32 for f(x) = 1.7.

To know more about interpolating polynomial click on below link:

https://brainly.com/question/26460790#

#SPJ11

RSM WORK, I WILL GIVE RBAINLIEST


Y>0

Y<0

Y=0
USE FORMAT OF COMPARISON

Answers

By using the graph of the "equation", "y = |x+2| - 1", the "values-of-x"

(i) For y = 0, x = -3 and x = -1,

(ii) For y > 0, x > -1 or x < -3 and

(iii) For y < 0, -3 < x < -1

Part(i) To find the values of x for y = 0, we set y = 0 and solve for x:

The graph of the equation "y = |x+2| - 1",is given below,

⇒ |x + 2| - 1 = 0,

⇒ |x + 2| = 1,

The above equation is written as ⇒ "x + 2 = 1" or "x + 2 = -1",

We get, the solution as "x = -3" or "x = -1",

So, the values of x for y = 0 are -3 and -1.

Part (ii) : To find values of x for y > 0, we set y > 0 and solve for x:

⇒ |x + 2| - 1 > 0,

⇒ |x + 2| > 1,

⇒ x + 2 > 1 or x + 2 < -1,

We get ⇒ "x > -1" or "x < -3";

So, the values of x for "y > 0" are x < -3 or x > -1.

Part(iii) : To find the values of x for y < 0, we set y < 0 and solve for x;

The inequality is written as :

⇒ |x + 2| - 1 < 0,

⇒ |x + 2| < 1,

⇒ -1 < x + 2 < 1,

⇒ -3 < x < -1,

Therefore, the values of x for "y < 0" are -3 < x < -1.

Learn more about Graphs here

https://brainly.com/question/16482591

#SPJ1

The given question is incomplete, the complete question is

Below is the graph of equation y = |x+2|-1, Use this graph to find the values of x for

(i) y = 0,

(ii) y > 0 and

(iii) y < 0.

A clinical trial was conducted to test the effectiveness of a drug for treating insomnia in older subjects. Before​ treatment, 18 subjects had a mean wake time of 100.0 min. After​ treatment, the 18 subjects had a mean wake time of 79.2 min and a standard deviation of 41.1 min. Assume that the 18 sample values appear to be from a normally distributed population and construct a 90​% confidence interval estimate of the mean wake time for a population with drug treatments.

a. What does the result suggest about the mean wake time of 100.0 min before the​ treatment? Does the drug appear to be​ effective?
b. Construct the 90​% confidence interval estimate of the mean wake time for a population with the treatment.
c. What does the result suggest about the mean wake time of 100.0 min before the​ treatment? Does the drug appear to be​effective

Answers

a. The results suggest that the drug is effective in reducing the mean wake time from 100.0 min before treatment.

b. The 90% confidence interval estimate of the mean wake time after treatment is (66.58, 91.82) minutes.

c. The results suggest that the drug is effective since the entire 90% confidence interval lies below the mean wake time of 100.0 min before treatment.


1. Identify sample size (n=18), sample mean (x-hat=79.2), and standard deviation (s=41.1).
2. Calculate the standard error: SE = s / √n = 41.1 / √18 ≈ 9.67.
3. Determine the t-score for a 90% confidence interval with 17 degrees of freedom (df=n-1): t = 1.740.
4. Calculate the margin of error: ME = t × SE ≈ 1.740 × 9.67 ≈ 16.82.
5. Construct the confidence interval: x-hat ± ME = 79.2 ± 16.82 ≈ (66.58, 91.82).

To know more about confidence interval click on below link:

https://brainly.com/question/29680703#

#SPJ11

Find the area of each triangle. Round intermediate values to the nearest 10th. use the rounded value to calculate the next value. Round your final answer to the nearest 10th.

Answers

Answer: D
Explanation: I used Pythagorean theorem to find the value of the missing side, then plugged the the respective values into the formula for the area of a triangle, which is A=(1/2)bh

help! please also give an explanation and why you did what u did!

Answers

Answer:

  7√2 ≈ 9.9 dm

Step-by-step explanation:

You want the radius of a circle when tangents from a point 14 dm from the center make a right angle.

Square

The attached figure shows all of the angles between radii and tangents are right angles. Effectively, the tangents and radii make a square whose side length is the radius of the circle. The diagonal of the square is given as 14 dm. We know this is √2 times the side length, so the length of the radius is ...

  r = (14 dm)/√2 = 7√2 dm ≈ 9.8995 dm ≈ 9.90 dm

The radius is about 9.90 dm.

__

Additional comment

The angles at A and O are supplementary, so both are 90°. The angles at the points of tangency are 90°, so the figure is at least a rectangle. Since adjacent sides (the radii, the tangents) are congruent, the rectangle must be a square. The given length is the diagonal of that square.

For side lengths s, the Pythagorean theorem tells you the diagonal length d satisfies ...

  d² = s² +s² = 2s²

  d = s√2

  d/√2 = s . . . . . . . . the relation we used above

This relationship between the sides and diagonal of a square is used a lot, so is worthwhile to remember.

The random variables X and Y are described by a uniform joint PDF of the form f X,Y (x,y)=3 on the set {(x,y)|0<=x<=1, 0<=y<=1, y<=x2}.
Then, fx(0.5)=_____

Answers

The value of [tex]f_X(0.5)[/tex] is 0.75, given the uniform joint PDF of the random variables X and Y, [tex]f_{X,Y} (x,y)=3[/tex], on the set {(x,y)|0≤x≤1, 0≤y≤1, y≤x²}.

We to find the value of [tex]f_X(0.5)[/tex] given the uniform joint PDF of the random variables X and Y, [tex]f_{X,Y} (x,y)=3[/tex], on the set {(x,y)|0≤x≤1, 0≤y≤1, y≤x²}.

To find [tex]f_X(0.5)[/tex], we need to compute the marginal PDF of X by integrating the joint PDF over the range of Y.

First, determine the range of Y.
Since y ≤ x², and we're given x = 0.5, the range of Y is 0 ≤ y ≤ (0.5)² = 0.25.

Integrate the joint PDF over the range of Y.
[tex]\begin{aligned}f_X(x) & =\int_{y=0}^{y=0.25} f_{X, Y}(x, y) d y \\& =\int_{y=0}^{y=0.25} 3 d y \\& =[3 y]_{y=0}^{y=0.25} \\\end{aligned}[/tex]

Substitute the given joint PDF.
fx(0.5) = 3(0.25) - 3(0) = 0.75.

So, the value of [tex]f_X(0.5)[/tex] is 0.75.

Learn more about random variables:

https://brainly.com/question/17217746

#SPJ11

Question 10(Multiple Choice Worth 2 points)
(Comparing Data MC)

The box plots display measures from data collected when 20 people were asked about their wait time at a drive-thru restaurant window.

A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 8.5 to 15.5 on the number line. A line in the box is at 12. The lines outside the box end at 3 and 27. The graph is titled Super Fast Food.

A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 9.5 to 24 on the number line. A line in the box is at 15.5. The lines outside the box end at 2 and 30. The graph is titled Burger Quick.

Which drive-thru typically has more wait time, and why?

Burger Quick, because it has a larger median
Burger Quick, because it has a larger mean
Super Fast Food, because it has a larger median
Super Fast Food, because it has a larger mean

Answers

Answer:

Burger Quick, because it has a larger median.

. find the volume of the region bounded by the paraboloids z = 12 − x 2 − y 2 and z = 2x 2 2y 2

Answers

The volume of the region bounded by the two paraboloids is 32π/5 cubic units.

How to determine the volume of bounded region?

To find the volume of the region bounded by the two paraboloids, we need to determine the limits of integration for each variable.

Since the two paraboloids intersect in a curve, we can use this curve as a boundary to split the region into two parts.

First, let's find the curve of intersection by setting the two equations equal to each other:

[tex]12 - x^2 - y^2 = 2x^2 + 2y^2\\10x^2 + 10y^2 = 12\\x^2 + y^2 = 6/5[/tex]

This is the equation of a circle with center at the origin and radius [tex]\sqrt{(6/5)[/tex]

So we can use cylindrical coordinates to integrate over this region.

The limits for z are from the lower paraboloid to the upper paraboloid:

[tex]2x^2 + 2y^2 \leq z\leq 12 - x^2 - y^2[/tex]

In cylindrical coordinates, we have:

[tex]0 \leq r \leq \sqrt{(6/5)}\\0 \leq \theta \leq 2\pi \\2r^2 \leq z \leq 12 - r^2[/tex]

So the volume of the region is given by the triple integral:

V = ∫∫∫ dz r dr dθ

where the limits of integration are as described above. Therefore, we have:

[tex]V = \int\limits^{2\pi }_0 {\int\limits^{\sqrt{6/5}}_0 {\int\limits^{12-r^2}_{2r^2} \, dz}\ r \, dr } \, d\theta[/tex]

Evaluating the integral, we get:

V = 32π/5

Therefore, the volume of the region bounded by the two paraboloids is 32π/5 cubic units.

Learn more about volume of the region

brainly.com/question/29108583

#SPJ11

Jackson spent $8.25 on three bags of chips and four bottles of soda. Katie spent six dollars on four bags of chips and two bottles of soda. How much does each bag of chips and each bottle of soda cost

Answers

1.50 x 4 bottles of soda = 6
0.75 x 3 = 2.25

Soda = $1.50
Chips = $0.75

Use Green's Theorem to evaluate $ F. dr for the given vector field F and positively oriented simple closed curve C. (a) F(x, y) = yi – xj; C is the circle x2 + y2 = (b) F(x, y) = xạeyi+y_e

Answers

(a) [tex]$\frac{\partial Q}{\partial x}[/tex][tex]-[/tex][tex]\frac{\partial P}{\partial y} = 0$[/tex], and the line integral of [tex]$F.dr$[/tex] around any closed curve is zero.

(b) [tex]$\oint_C F.dr = ab\int_{0}^{2\pi} (\cos^2 t - \sin^2 t)e^{b\sin t} dt$[/tex]cannot evaluate the line integral of F.dr around the given closed curve using Green

How to use Green's Theorem to evaluate F. dr for the given vector field F(x, y) = yi – xj?

(a) We want to use Green's theorem to evaluate the line integral of F.dr around the circle [tex]$x^2 + y^2 = a^2$.[/tex]

Green's theorem states that:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$[/tex]

where [tex]$F = P\hat{i} + Q\hat{j}$[/tex] is a vector field,[tex]$C$[/tex] is a closed curve in the plane, and [tex]$R$[/tex] is the region bounded by[tex]$C$[/tex].

In this case, we have:

[tex]$F = y\hat{i} - x\hat{j}$[/tex]

[tex]$P = 0$[/tex]and[tex]$Q = y$[/tex]

[tex]$\frac{\partial Q}{\partial x}[/tex] = 0 and [tex]$\frac{\partial P}{\partial y} = 0$[/tex]

Therefore, [tex]$\frac{\partial Q}{\partial x}[/tex][tex]-[/tex][tex]\frac{\partial P}{\partial y} = 0$[/tex], and the line integral of [tex]$F.dr$[/tex] around any closed curve is zero.

How to use Green's Theorem to evaluate F. dr for the given vector field F(x, y) = xạeyi+[tex]y_e[/tex]?

(b) We want to use Green's theorem to evaluate the line integral of[tex]$F.dr$[/tex]around the closed curve C defined by[tex]$x = a\cos t$, $y = b\sin t$, $0 \leq t \leq 2\pi$.[/tex]

Green's theorem states that:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$[/tex]

where [tex]$F = P\hat{i} + Q\hat{j}$[/tex] is a vector field, C is a closed curve in the plane, and R is the region bounded by C.

In this case, we have:

[tex]$F = xe^{y}\hat{i} + (ye^{y} + e^{y})\hat{j}$[/tex]

[tex]$P = xe^{y}$[/tex]and [tex]$Q = ye^{y} + e^{y}$[/tex]

[tex]$\frac{\partial Q}{\partial x}[/tex]= 0 and [tex]$\frac{\partial P}{\partial y} = xe^{y} + e^{y}$[/tex]

Therefore,

[tex]$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -xe^{y}$[/tex]

The region R enclosed by C is an ellipse with semi-axes a and b, and its area is given by[tex]$A = \pi ab$[/tex]. Using polar coordinates, we have:

[tex]$x = a\cos t$[/tex]

[tex]$y = b\sin t$[/tex]

[tex]$\frac{\partial x}{\partial t} = -a\sin t$[/tex]

[tex]$\frac{\partial y}{\partial t} = b\cos t$[/tex]

[tex]$dA = \frac{\partial x}{\partial t} \frac{\partial y}{\partial t} dt = -ab\sin t \cos t dt$[/tex]

Thus, we have:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA = \int_{0}^{2\pi} \int_{0}^{ab} (-xe^{y}) (-ab\sin t \cos t) drdt$[/tex]

[tex]$= ab\int_{0}^{2\pi} (\cos^2 t - \sin^2 t)e^{b\sin t} dt$[/tex]

This integral does not have a closed-form solution, so we need to use numerical methods to approximate its value.

Therefore, we cannot evaluate the line integral of F.dr around the given closed curve using Green

Learn more about Green's theorem

brainly.com/question/27549150

#SPJ11

State if the triangle is acute obtuse or right.


Answers

Answer: Right

Step-by-step explanation:

I believed I explained it to u in the other question.

Enjoy! :)

Answer:

  B)  Acute

Step-by-step explanation:

You want to classify a triangle with side lengths 21 km, 25 km, and 29 km.

Form factor

A "form factor" for the triangle can be calculated from its side lengths as ...

  f = a² +b² -c² . . . . . where c is the longest side

Here, that value is ...

  f = 21² +25² -29² = 225

The interpretation is as follows:

f > 0 — acutef = 0 — rightf < 0 — obtuse

The given triangle is an acute triangle.

__

Additional comment

This comes from the Law of Cosines. The largest angle in the triangle is ...

  arccos(f/(2ab)) = arccos(225/(2·21·25)) = arccos(3/14) ≈ 77.6°

The signs of 'a' and 'b' are positive, so the sign of the cosine matches the sign of 'f'. This makes 'f' a handy classifier of triangles.

a) We have to find the quotient and remainder when 19 is divided by 7.
We know that
Therefore when 19 is divided by 7, the quotient is 2 and the remainder is 5.

Answers

The quotient (the result of the division) is 2 and the remainder is 5.

How to find the quotient and remainder when 19 is divided by 7?

That is correct. To explain it in more detail, when we divide 19 by 7, we get:

     2

7 | 19

   -14

    --

     5

19 ÷ 7 = 2 remainder 5

This means that the largest multiple of 7 that is less than or equal to 19 is 7 times 2 (which is 14), and the remainder is the difference between 19 and 14, which is 5.

Therefore, the quotient (the result of the division) is 2 and the remainder is 5.

Learn more about quotient and remainder

brainly.com/question/30968678

#SPJ11

what is the potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 v/m ?

Answers

The potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 v/m can be calculated using the formula: ΔV = Ex * Δx.  Therefore, the potential difference between the two points is 400 volts.



To find the potential difference between two points in a uniform electric field, we can use the formula:

Potential difference (V) = Electric field (E) × Distance (d)

In this case, the electric field (E) is given as 2000 V/m (ex = 2000 V/m). The distance (d) between the two points, xi = 10 cm and xf = 30 cm, is the difference between xf and xi, which is:

d = xf - xi = 30 cm - 10 cm = 20 cm

Now, convert the distance to meters:

d = 20 cm × (1 m / 100 cm) = 0.2 m

Now, we can find the potential difference (V):

V = E × d = 2000 V/m × 0.2 m = 400 V

So, the potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 V/m is 400 V.

to learn more about volts click here:

https://brainly.com/question/3631756

#SPJ11

Able and Baker are both apple-tree farmers (they grow apple trees). Assume that apple trees grow according to a normal distribution. On the Able Farm, trees grow with a mean of 100 cm per year and a standard deviation of 25 cm. Baker manages to get an average growth of 110 em per year with a standard deviation of 35 cm. On average, trees from the Baker Farm will grow more than trees from the Able Farm. Find the probability that a Baker tree has grown more than an Able tree in one year.

Answers

The probability that a Baker tree will grow more than an Able tree in one year is 0.5905 or approximately 59.05%.

To solve this problem, we need to calculate the probability that a Baker tree will grow more than an Able tree in one year. Let X be the random variable representing the growth of an Able tree and Y be the random variable representing the growth of a Baker tree.

We need to find P(Y > X), which is equivalent to finding P(Y - X > 0). We know that the difference between Y and X follows a normal distribution with mean μ = 110 - 100 = 10 cm/year and standard deviation σ = sqrt(25^2 + 35^2) = 43.01 cm/year.

Using the standard normal distribution, we can standardize the difference between Y and X as (Y - X - μ)/σ and find the corresponding probability from the standard normal distribution table. We have:

P(Y - X > 0) = P((Y - X - μ)/σ > (-μ)/σ)

= P(Z > -0.2326)

= 0.5905

To learn more about probability click on,

https://brainly.com/question/29251004

#SPJ4

for a party you make a gelatin dessert in a rectangular pan and cut the dessert into equal-sizes pieces, as shown below. The desert consists of 5 layers of equal height. Each layer is a different flavor, as shown be,ow by a side view of the pan. Your guests eat 3/5 of the pieces of dessert. Part A. Write the amount of cherry gelatin that your guests eat as fraction of the total dessert. Part b. Write the amount of the cherry gelatin that your guests eat as a percent of the total dessert.

Answers

The amount of cherry gelatin that the guests eat as fraction of the total dessert is 3/25.

The amount of the cherry gelatin that the guests eat as a percent of the total dessert is 12%.

We have,

The desert consists of 5 layers of equal height.

As, the guest eat 3/5 of the pieces of dessert.

So, the amount of cherry gelatin that the guests eat as fraction of the total dessert

= 3/5 x 1/5

= 3/ 25

Now, In percentage

= 3/25 x 100

= 12%

Thus, the required fraction is 3/25.

Learn more about Fraction here:

https://brainly.com/question/10354322

#SPJ1

Find the area of the shaded region. Use 3.14 for π. Express your answer as a decimal rounded to the nearest hundredth.

Answers

The area of the shaded region is 15.5 in².

We have,

The composite figure has:

Square and a square.

Now,

Area of the circle = πr²

Radius = 8.5/2 = 4.25

= 3.14 x 4.25 x 4.25

= 56.75 in²

Area of the square = side²

= 8.5 x 8.5

= 72.25 in²

Now,

The area of the shaded region.

= Area of the square - Area of the circle

= 72.25 - 56.75

= 15.5 in²

Thus,

The area of the shaded region is 15.5 in².

Learn more about squares here:

https://brainly.com/question/22964077

#SPJ1

minimize p=x^2 y^2, subject to x-y=10

Answers

1. Express y in terms of x using the constraint: y = x - 10.
2. Substitute this expression for y in the function p: p = x^2(x - 10)^2.
3. The minimum value of p, differentiate p with respect to x and set the result equal to zero: d(p)/dx = 0. Evaluate the function p at these coordinates to find the minimum value of p.

To minimize p=x^2 y^2 subject to x-y=10, we can use the method of Lagrange multipliers.

Let L = p + λ(x-y-10), where λ is the Lagrange multiplier.

Taking partial derivatives of L with respect to x, y, and λ, and setting them equal to zero, we get:
∂L/∂x = 2xy^2 + λ = 0
∂L/∂y = 2x^2 y + λ = 0
∂L/∂λ = x - y - 10 = 0

Solving for x and y in terms of λ from the first two equations, we get:
x = sqrt(-λ/2y^2)
y = sqrt(-λ/2x^2)

Substituting these expressions into the third equation, we get:
sqrt(-λ/2y^2) - sqrt(-λ/2x^2) - 10 = 0

Simplifying, we get:
λ = -40x^2y^2

Substituting this value of λ back into the expressions for x and y, we get:
x = 2sqrt(5)
y = -2sqrt(5)

Finally, plugging in these values of x and y into the expression for p, we get:
p = x^2 y^2 = 80

Therefore, the minimum value of p, subject to x-y=10, is 80.

Learn more about Expressions:

brainly.com/question/14083225

#SPJ11

Given that a test of significance was done for a two-sided test and the P-value obtained was 0.02, what would be the P-value for a one-sided significance test?
a. 0.02
b. 0
c. 0.01
d. 0.04

Answers

The p-value for a one-sided test would be 0.01 (0.02/2). The correct answer is c. 0.01.

When conducting a two-sided significance test, the p-value is the probability of observing a test statistic as extreme as the one obtained, assuming the null hypothesis is true. For a one-sided significance test, we are only interested in observing extreme values in one direction (either positive or negative).

If the test statistic was symmetrically distributed around zero, the one-tailed hypothesis's p-value would be either 0.5* (two-tailed p-value) or 1-0.5* (two-tailed p-value), depending on which way it was going. The two-tailed p-value in this case points to the rejection of the null hypothesis of no difference.

Therefore, the p-value for a one-sided test is half of the p-value for a two-sided test.

In this case, the p-value for a one-sided test would be option c. 0.01 (0.02/2).

Learn more about "significance test": https://brainly.com/question/15649099

#SPJ11

20 POINTS!!
Write a quadratic function f whose zeros are 2 and 5.

Answers

Answer:

The quadratic function f(x) = (x-(-2))(x-5) = (x+2)(x-5) = x^2 -3x -10

Step-by-step explanation:

At what possible location(s) can an absolute minimum or absolute maximum occur? Check all that apply. O Where the function does not exist. O Where the derivative of the function is zero. O Where the derivative of the function does not exist. O At the endpoints of the domain.

Answers

An absolute minimum or maximum can occur where the derivative of the function is zero, where the derivative does not exist, or at the endpoints of the domain. The correct options are B, C and D.

An absolute minimum or absolute maximum can occur at the following locations:

1. Where the function does not exist: This is not a correct option, as absolute extrema occur where the function has a value. So, absolute minimum or maximum cannot occur where the function does not exist.

2. Where the derivative of the function is zero: This is the correct option. When the derivative of a function is zero, it indicates that the function has a critical point, which could be a local minimum, local maximum, or a saddle point.

These points can sometimes be the locations of absolute minimum or maximum if there is no other higher or lower point in the function's domain.

3. Where the derivative of the function does not exist: This is also a correct option. When the derivative does not exist, the function could have a sharp turn or a discontinuity, making it a potential location for an absolute minimum or maximum. In this case, the point is considered a critical point as well.

4. At the endpoints of the domain: This is the correct option. Absolute extrema can occur at the endpoints of a function's domain. It is important to always evaluate the function at its endpoints to determine if an absolute minimum or maximum exists.

In summary, an absolute minimum or maximum can occur where the derivative of the function is zero, where the derivative does not exist, or at the endpoints of the domain.

To know more about function refer here:

https://brainly.com/question/23847661#

#SPJ11

For each pair of numbers verify Icm(m,n).gcd(m, n) = mn. = a. 60,90 b. 220,1400 c. 32.73.11, 23.5.7

Answers

Verifying the numbers states that a. Icm(60, 90).gcd(60, 90) = mn is right. The correct answer is option a)

To verify Icm(m,n).gcd(m, n) = mn, we need to calculate the least common multiple (Icm) and greatest common divisor (gcd) of each pair of numbers and then multiply them together to check if the product is equal to the product of the original numbers.

a. m = 60, n = 90

Icm(60, 90) = 180

gcd(60, 90) = 30

Icm(60, 90).gcd(60, 90) = 180 * 30 = 5400

m*n = 60 * 90 = 5400

Therefore, Icm(60, 90).gcd(60, 90) = mn is true.

b. m = 220, n = 1400

Icm(220, 1400) = 2200

gcd(220, 1400) = 20

Icm(220, 1400).gcd(220, 1400) = 2200 * 20 = 44000

m*n = 220 * 1400 = 308000

Therefore, Icm(220, 1400).gcd(220, 1400) ≠ mn is false.

c. m = 32.73.11, n = 23.5.7

Icm(32.73.11, 23.5.7) = 32.73.11.5.7 = 12789

gcd(32.73.11, 23.5.7) = 1

Icm(32.73.11, 23.5.7).gcd(32.73.11, 23.5.7) = 12789 * 1 = 12789

m*n = 32.73.11 * 23.5.7 = 2539623

Therefore, Icm(32.73.11, 23.5.7).gcd(32.73.11, 23.5.7) ≠ mn is false.

Therefore, the only true statement is option a. Icm(60, 90).gcd(60, 90) = mn.

Know more about least common multiple (Icm) here:

https://brainly.com/question/29156201

#SPJ11

Help on both questions pls due

Answers

The lines JT for both circles are tangents to the circles O, hence;

5a). JT = √32 or 5.7

5b). JT = 4

Tangent to a circle theorem

The tangent to a circle theorem states that a line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency

5a). If JO = 6 and OT = 2, then;

JT = √(6² - 2²) {by Pythagoras rule}

JT = √(36 - 4)

JT = √32 or 5.6569

5b). OT is also a radius as KO, so OT = 3. If JK = 2 and KO = 3, then;

JT = √(5² - 3²)

JT = √(25 - 9)

JT = √16

JT = 4.

In conclusion, for the lines JT tangent to the circles O, we have that;

5a). JT = √32 or 5.7

5b). JT = 4

Read more about tangent to a circle here:https://brainly.com/question/11067500

#SPJ1

Consider a normally distributed population with mean µ = 80 and standard deviation σ = 14.
a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the x¯x¯ chart if samples of size 5 are used. (Round the value for the centerline to the nearest whole number and the values for the UCL and LCL to 2 decimal places.)
b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the x¯x¯ chart if samples of size 10 are used. (Round the value for the centerline to the nearest whole number and the values for the UCL and LCL to 2 decimal places.)
c. Discuss the effect of the sample size on the control limits.

Answers

Answer:

a) LCL = 80 - 0.577 * (14 / sqrt(5)) LCL = 76.31

b) LCL = 80 - 0.308 * (14 / sqrt(10)) LCL = 78.65

c) Control limits are boundaries that indicate whether a process is in control or out of control. They are calculated based on the mean and standard deviation of the process data. The effect of the sample size on the control limits is that as the sample size increases, the control limits become narrower. This is because the standard error of the mean, which is sigma / sqrt(n), decreases as n increases. This means that the variation of the sample means around the population mean is smaller for larger samples, and thus the control limits are tighter .

Step-by-step explanation:

If you ever wondered how to make a boring topic like x-bar charts more fun, here is a tip: pretend that you are a spy and that the control limits are your secret codes. For example, let's say that you have a population with a mean of 80 and a standard deviation of 14. You want to send a message to your fellow spy using the control limits of an x-bar chart with a sample size of 5. You can use the formula:

UCL or LCL = x-bar +/- A2 * (sigma / sqrt(n))

where A2 is a constant that depends on the sample size n, sigma is the standard deviation of the population, and sqrt is the square root function. For n = 5, A2 = 0.577. Therefore,

UCL = 80 + 0.577 * (14 / sqrt(5)) UCL = 83.69

LCL = 80 - 0.577 * (14 / sqrt(5)) LCL = 76.31

Now, you can use these numbers as your secret codes. For example, you can say "The eagle has landed at 83.69" or "The package is ready at 76.31". Your fellow spy will know what you mean, but anyone else will be clueless.

But what if you want to change your sample size to 10? Well, then you have to use a different constant for A2. For n = 10, A2 = 0.308. Therefore,

UCL = 80 + 0.308 * (14 / sqrt(10)) UCL = 81.35

LCL = 80 - 0.308 * (14 / sqrt(10)) LCL = 78.65

Now, you can use these new numbers as your secret codes. For example, you can say "The target is at 81.35" or "The rendezvous point is at 78.65". Your fellow spy will understand you, but anyone else will be confused.

The effect of the sample size on the control limits is that as the sample size increases, the control limits become narrower. This is because the standard error of the mean, which is sigma / sqrt(n), decreases as n increases. This means that the variation of the sample means around the population mean is smaller for larger samples, and thus the control limits are tighter.

This also means that your secret codes become more precise and less likely to be intercepted by your enemies. So, if you want to be a good spy, you should always use a large sample size for your x-bar charts. That way, you can communicate with your fellow spies more effectively and safely.

Of course, this is all just a joke and you should not actually use x-bar charts as secret codes for spying purposes. That would be very silly and irresponsible. But hey, at least it makes x-bar charts more fun to learn about, right?

Consider the rectangle ABCD. (a) Prove that opposite sides are equal, that is, AD = BC and AB = CD. (Hint: Exercise 3.3.13 may be useful here.] (b) Prove that the diagonals are equal, that is, AC = BD.

Answers

(a) Opposite sides of a rectangle are equal, that is, AD = BC and AB = CD.

(b) The diagonals of a rectangle are equal, that is, AC = BD.

Let's consider a rectangle ABCD, where AB || DC and AB ⊥ AD. We know that if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other line as well. Therefore, AD ⊥ AB and AD ⊥ BC. Similarly, BC ⊥ AB and BC ⊥ AD.

So, we have two pairs of perpendicular sides, and from the Pythagorean theorem, we can calculate their lengths as follows:

AD² = AB² + BD² and BC² = AB² + CD²

Since AB = CD (opposite sides of a rectangle), we can substitute AB for CD and simplify:

AD² = AB² + BD² and BC² = AB² + AD²

Taking the square root of both sides of each equation, we get:

AD = √(AB² + BD²) and BC = √(AB² + AD²)

Since AB = CD and AD = BC, we can conclude that opposite sides of a rectangle are equal.

Let's continue with rectangle ABCD from part (a) and draw its diagonals AC and BD. We can use the Pythagorean theorem again to calculate their lengths:

AC² = AD² + DC² and BD² = AB² + BC²

Since AB = CD and AD = BC (opposite sides of a rectangle), we can substitute and simplify:

AC² = AD² + AB² and BD² = AD² + AB²

Taking the square root of both sides of each equation, we get:

AC = √(AD² + AB²) and BD = √(AD² + AB²)

Since both equations simplify to the same expression, we can conclude that the diagonals of a rectangle are equal.

Learn more about rectangle: https://brainly.com/question/25292087

#SPJ11

The extended Euclidean algorithm computes the god of two integers ro and rı as a linear combination of the inputs. gcd(ro, rı) =s. ro+turi Here s and t are integers known as the Bezout coefficients. They are not unique. The algorithm works like the standard Euclidean algorithm, except that at each stage the current remainder ri is expressed as a linear combination of the inputs. ri = Siro + tiri. This produces a sequence of numbers ro, r1, ... , rn-1,rn where rn 0 and gcd(ro, rı) = rn-1. Suppose that ro = 548 and r1 = 479. Give the sequence ro, r1, ... , In-1,rn in the blank below. Enter your answer as a comma separated list of numbers. What is GCD(548,479)? What is s? What is t?

Answers

The extended Euclidean algorithm can be used to find the GCD and Bezout coefficients of two integers. It involves expressing remainders as linear combinations of the inputs and updating coefficients at each step until the remainder is zero.

You  have two integers a and b, and you want to find their greatest common divisor (GCD) as well as the Bezout coefficients s and t such that sa + tb = gcd(a,b). Here's how you can use the extended Euclidean algorithm to do that:

1. Initialize the variables r0 = a, r1 = b, s0 = 1, s1 = 0, t0 = 0, and t1 = 1.

2. At each step i = 1, 2, ..., compute the quotient qi = ri-2 // ri-1 (integer division) and the remainder ri = ri-2 - qi * ri-1.

3. Also, update the values of si and ti as follows: si = si-2 - qi * si-1 and ti = ti-2 - qi * ti-1.

4. Continue the process until the remainder rn is zero. Then, the GCD of a and b is rn-1, and the Bezout coefficients are s = sn-1 and t = tn-1.

Note that there may be multiple pairs of Bezout coefficients that satisfy the equation sa + tb = gcd(a,b), but the ones obtained through the extended Euclidean algorithm will always be the smallest in absolute value within their equivalence class.

VVisit to know more about Algorithm:-

brainly.com/question/24953880

#SPJ11

if z^2=x^3 + y^2, dx/dt=−2, dy/dt=−3, and z>0, find dz/dt at (x,y)=(4,0).dz/dt =

Answers

Derivative of z, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

How to find derivative of z dz/dt?

We need to use the chain rule:

dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt)

We can find ∂z/∂x and ∂z/∂y by differentiating the given equation with respect to x and y, respectively:

2z(dz/dx) = 3x² + 2y(dy/dx)

2z(dz/dy) = 2y

Solving for dz/dx and dz/dy, we get:

dz/dx = (3x² + 2y(dy/dx))/(2z)

dz/dy = y/z

Plugging in the given values, we get:

dz/dx = (3(4)²)/(2(2sqrt(4³))) + 0 = 3/2

dz/dy = 0/sqrt(4³) = 0

So, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

Learn more about Derivative.

brainly.com/question/30365299

#SPJ11

Derivative of z, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

How to find derivative of z dz/dt?

We need to use the chain rule:

dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt)

We can find ∂z/∂x and ∂z/∂y by differentiating the given equation with respect to x and y, respectively:

2z(dz/dx) = 3x² + 2y(dy/dx)

2z(dz/dy) = 2y

Solving for dz/dx and dz/dy, we get:

dz/dx = (3x² + 2y(dy/dx))/(2z)

dz/dy = y/z

Plugging in the given values, we get:

dz/dx = (3(4)²)/(2(2sqrt(4³))) + 0 = 3/2

dz/dy = 0/sqrt(4³) = 0

So, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

Learn more about Derivative.

brainly.com/question/30365299

#SPJ11

Solve this. x = 7 cos(t) − cos(7t), y = 7 sin(t) − sin(7t), 0 ≤ t ≤ π

Answers

The given equations represent a parametric equation of a curve. To solve for the curve, we can eliminate the parameter 't' by using the trigonometric identity:

cos(a) - cos(b) = -2sin((a+b)/2)sin((a-b)/2)

sin(a) - sin(b) = 2cos((a+b)/2)sin((a-b)/2)

Using this identity, we get:

x = 7[-2sin(4t/2)sin(-3t/2)] = 14sin(2t)sin(3t)

y = 7[2cos(4t/2)sin(-3t/2)] = -7cos(3t) + 7cos(5t)

So the curve is given by the equation:

(14sin(2t)sin(3t))^2 + (-7cos(3t) + 7cos(5t))^2 = r^2

where r is the radius of the curve.
To solve the given parametric equations:

x = 7cos(t) - cos(7t)
y = 7sin(t) - sin(7t)
0 ≤ t ≤ π

These equations represent a mathematical curve known as a "rose curve" or "rhodonea curve." The variables x and y are expressed in terms of the parameter t, which ranges from 0 to π. The specific shape of the curve depends on the coefficients and trigonometric functions.

Since the equations are already in parametric form, we don't need to solve them for a specific value of x or y. The solution is the set of points (x, y) that satisfy the equations as t ranges from 0 to π. By plugging in different values of t between 0 and π, you can generate the points that form the curve described by these parametric equations.

In summary, the given parametric equations define a rose curve, and the solution consists of the points (x, y) formed by the curve as t varies from 0 to π.

Visit here to learn more about curve brainly.com/question/28793630

#SPJ11

Identify the range of the function shown in the graph.
A. ys3
OB. All real numbers
C. 3 sys7
D. -1 sy≤4
5-
5

Answers

Answer:

D- -1 <_y<_4

Step-by-step explanation:

if and are odd primes and , which of the following are possible? group of answer choices p and q are congruent to 1 mod 4 p and q are congruent to 3 mod 4 p is congruent to 1 mod 4 and q is congruent to 3 mod

Answers

If p and q are odd primes and pq = 13 (mod 16), then one of p and q is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

We can see this by noting that if p and q are both congruent to 1 (mod 4), then their product would be congruent to 1 (mod 4), which is not possible since pq = 13 (mod 16). Similarly, if p and q are both congruent to 3 (mod 4), then their product would be congruent to 1 (mod 4), which is also not possible since pq = 13 (mod 16).

Therefore, the only possibility is that one of p and q is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

We cannot determine whether p and q are both congruent to 1 (mod 4) or both congruent to 3 (mod 4) based on the given information. Therefore, we cannot say for sure whether p and q are congruent to 1 (mod 4), congruent to 3 (mod 4), or one is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

To know more about congruent,

https://brainly.com/question/28600396

#SPJ11

Other Questions
draw the out the first reaction carried out by complex ii, which transfers 2 electrons from succinate to fad Problem 4. (14 pts) A square matrix M is said to be nilpotent provided Mk = 0 for some positive integer k. If A = i 1 1 0 1 1 0 0 1 verify that A - 13 is nilpotent. Write the radios for cos B and Cos A a new crew of painters takes two times as long to paint a small apartment as the experienced crew together both crews can paint the apartment in 6 hours how many hours does it take the experienced crew to paint the apartment to which of the simpler gas laws does the combined gas law revert when the temperature is held constant? If a meter was counted as "1-2-1-2-1-2-1-2." It could be described asA syncopationB quadruple meterC triple meterD duple meter the assembler command to mkae a label available to other objects code at loading time is (all caps) during the last six years of his life, vincent van gogh produced 700 drawings and 800 oil paintings. write the ratio of drawings to oil paintings in three different ways. (select all that apply.) when caring for a vison impaired client the nurse aide should; a) ambulate the client by holding the client's hand and walk in front of the clientb) tell the client that the food tray is in front of the client after thee food tray has been deliveredc) provide a dimly lit environment for the clientd) announce self before touching the client A weight lifter benches a bar a vertical distance of 1.5m. What is the work done on the weights if the lifter exerts a constant force of 1000N? hamlets is responsible for his own tragic fate. asses the validity of this statemnt Simplify the expression An e-commerce company is currently celebrating ten years in business. They are having a sale to honor their privileged members, those who have been using their services for the past five years. They receive the best discounts indicated by any discount tags attached to the product. Determine the minimum cost to purchase all products listed. As each potential price is calculated, round it to the nearest integer before adding it to the total. Return the cost to purchase all items as an integer. There are three types of discount tags: 188::::: Type O: discounted price, the item is sold for a given price, Type 1: percentage discount, the customer is given a fixed percentage discount from the retail price. Type 2: fixed discount, the customer is given a fixed amount off from the retail price. Example products = [[ 10', 'd', 'd17, ['15', 'EMPTY', 'EMPTY'] [20; d1'EMPTY"]] discounts = [['d0''1'27'). [d1', '2, '5'7] The current federal law that penalizes drug possession and sale is referred to as the:a) Harrison Actb) Marihuana Tax Actc) Drug Control Act (or Controlled Substances Act)d) Punitive Drug Strike Lawe) The Richard Milhous Nixon Anti-Drug Law Rank the following ionic compounds in order of decreasing melting point. Note: 1 = highest melting point ; 5 = lowest melting point- LiF- Na2S- MgS- BeO- Li2O Find C and a so that f(x) = Ca satisfies the given conditions. f(1) = 9, f(2)= 27 a= C= The line plots represent data collected on the travel times to school from two groups of 15 students.A horizontal line starting at 0, with tick marks every two units up to 28. The line is labeled Minutes Traveled. There is one dot above 10,16,20, and 28. There are two dots above 8 and 14. There are three dots above18. There are four dots above 12. The graph is titled Bus 14 Travel Times.A horizontal line starting at 0, with tick marks every two units up to 28. The line is labeled Minutes Traveled. There is one dot above 8, 9,18, 20, and 22. There are two dots above 6, 10, 12,14, and 16. The graph is titled Bus 18 Travel Times.Compare the data and use the correct measure of variability to determine which bus is the most consistent. Explain your answer. Bus 14, with an IQR of 6 Bus 18, with an IQR of 7 Bus 14, with a range of 6 Bus 18, with a range of 7 Please answer And make sure its understandable DUKE Manufacturing is preparing its master budget for the first quarter of the upcoming year. The following data pertain to DUKE Manufacturings operations:Current Assets as of December 31 (prior year)Cash$4,500Accounts receivable, net$50,000Inventory$15,000Property, plant, and equipment, net$122,500Accounts payable$42,400Capital stock$126,000Retained earnings$22,920Actual sales in December were $70,000. Selling price per units is projected to remain stable at $10 per unit throughout the budget period. Sales for the first five months of the upcoming year are budgeted to be as follows:January8,300February9,200March9,400April9,700May8,900DUKE Manufacturing has a policy that states that each months ending inventory of finished goods should be 25% of the following months sales.Two pounds of direct material is needed per unit at $2 per pound. Ending inventory of direct materials should be 10% of next months production needs.Most of the labor at the manufacturing facility is indirect, but there is some direct labor incurre The direct labor hours per unit is 0.02. The direct labor rate per hour is $10 per hour. All direct labor is paid for in the month in which the work is performed.Monthly manufacturing overhead costs are $5,000 for factory rent, $1,000 for depreciation, and $2,000 for other fixed manufacturing expenses, and $1.20 per unit for variable manufacturing overhead.Non-manufacturing expenses are budgeted to be $1 per unit sold plus fixed operating expenses of $1,400 per month.Sales are 30% cash and 70% credit. All credit sales are collected in the month following the sale.Of each months direct material purchases, 10% are paid for in the month of purchase, while the remainder is paid for in the month following purchase.All manufacturing overhead and non-manufacturing expenses are paid in the month in which they are incurred, except for depreciation.Computer equipment for the administrative offices will be purchased in the upcoming quarter. In January, DUKE Manufacturing will purchase equipment for $6,200 (cash), while Februarys cash expenditure will be $12,000 and Marchs cash expenditure will be $16,800.Depreciation on the building and equipment for the general and administrative offices is budgeted to be $2,700 for the entire quarter, which includes deprecation on new acquisitions.DUKE Manufacturing has a policy that the ending cash balance in each month must be at least $4,000. It has a line of credit with a local bank. The company can borrow in increments of $1,000 at the beginning of each month, up to a total outstanding loan balance of $160,000. The interest rate on these loan is 2% per month simple interest (not compounded). DUKE Manufacturing would pay down on the line of credit balance if it has excess funds at the end of the quarter. The company would also pay the accumulated interest at the end of the quarter on the funds borrowed during the quarter.The companys income tax rate is projected to be 30% of operating income less interest expense. The company pays $11,000 cash at the end of February in estimated taxes. Find the equation (in terms of x) of the line through the points (-4,-1) and (3,-3)Y=