the set is linearly dependent, and it can be written as follows:
[tex]s1 = 2/5 (−1,1) − 9/5 (2,0)[/tex]
Given: Set of vectors as follows: S = [tex]{(5,2), (−1,1), (2,0)}(0, 0)[/tex]= Express the vector s1 in the set as a linear combination of the vectors s2 and s3.s1 = We know that the linear combination of vectors is defined as follows.a1 s1 + a2 s2 + a3 s3
Here, a1, a2 and a3 are the scalars.
Substituting the values in the above formula, we get; [tex](5,2) = a1 (−1,1) + a2 (2,0[/tex])
Here, the values of a1 and a2 are to be calculated. So, solving the above equations, we get:a1 = −2/5 a2 = 9/5
Now, we know that a set of vectors is linearly dependent if any of the vectors can be represented as a linear combination of other vectors. Here, we have[tex];5(−1,1) + (2,0) = (0,0[/tex])
Therefore,
Given:[tex]S = {(1,2,3,4),(1,0,1,2),(3,8,11,14)}(0, 0, 0, 0) =[/tex] Express the combination s3 in the set as a linear combination of the vectors s1 and s2.s3 = We know that the linear combination of vectors is defined as follows.a1 s1 + a2 s2
To know more about combination visit:
https://brainly.com/question/31586670
#SPJ11
For some painkillers, the size of the dose, D, given depends on the weight of the patient, W. Thus, D = f(W), where D is in milligrams and W is in pounds. (a) Interpret the statements f(130) = 123 and f'(130) = 3 in terms of this painkiller. f(130) = 123 means f'(130) = 3 means (b) Use the information in the statements in part (a) to estimate f(136). f(136) = i mg
(a) The statement f(130) = 123 means that for a patient weighing 130 pounds, the prescribed dose of the painkiller is 123 milligrams.
This indicates that the function f(W) provides the dosage recommendation based on the weight of the patient.
The statement f'(130) = 3 means that the derivative of the function f(W) with respect to weight, evaluated at 130 pounds, is 3.
This indicates that for every additional pound in weight, the recommended dosage increases by 3 milligrams.
(b) To estimate f(136), we can use the information given in part (a). Since f'(130) = 3, we can approximate the change in dosage per pound as a constant rate of 3 milligrams.
From 130 to 136 pounds, there is an increase of 6 pounds.
Therefore, we can estimate f(136) by adding 6 times the rate of change to the initial dosage of f(130). Thus, f(136) ≈ 123 + (6 × 3) = 141 mg.
Based on this estimation, the recommended dose for a patient weighing 136 pounds would be approximately 141 milligrams.
Learn more about prescribed dose here: brainly.com/question/14710829
#SPJ11
(a) The statement f(130) = 123 means that for a patient weighing 130 pounds, the prescribed dose of the painkiller is 123 milligrams.
(b) The recommended dose for a patient weighing 136 pounds would be approximately 141 milligrams.
(a) This indicates that the function f(W) provides the dosage recommendation based on the weight of the patient.
The statement f'(130) = 3 means that the derivative of the function f(W) with respect to weight, evaluated at 130 pounds, is 3.
This indicates that for every additional pound in weight, the recommended dosage increases by 3 milligrams.
The statement f(130) = 123 means that for a patient weighing 130 pounds, the prescribed dose of the painkiller is 123 milligrams.
(b) To estimate f(136), we can use the information given in part (a). Since f'(130) = 3, we can approximate the change in dosage per pound as a constant rate of 3 milligrams.
From 130 to 136 pounds, there is an increase of 6 pounds.
Therefore, we can estimate f(136) by adding 6 times the rate of change to the initial dosage of f(130). Thus, f(136) ≈ 123 + (6 × 3) = 141 mg.
Based on this estimation, the recommended dose for a patient weighing 136 pounds would be approximately 141 milligrams.
Learn more about prescribed dose here: brainly.com/question/14710829
#SPJ11
What is the purpose of: directional control valve? check valve? pressure relief valve? sequence valve?
The purpose of a directional control valve is to control the direction of fluid flow in a hydraulic system. It allows the operator to determine which path the fluid should take, such as in which direction it should flow or which actuator it should activate.
A check valve, also known as a non-return valve or one-way valve, is designed to allow fluid to flow in only one direction. It prevents backflow, ensuring that the fluid can only move in the desired direction.
A pressure relief valve is used to protect hydraulic systems from excessive pressure. It is designed to open when the pressure exceeds a certain limit, allowing the excess fluid to escape and preventing damage to the system. Once the pressure returns to a safe level, the valve closes again.
A sequence valve is used to ensure that a specific order of operations is followed in a hydraulic system. It opens when the pressure reaches a set level, allowing fluid to flow to a secondary actuator or circuit. This is useful in applications where a certain actuator or operation needs to occur before another one can be activated.
To summarize:
1. A directional control valve controls the flow direction in a hydraulic system.
2. A check valve allows fluid flow in only one direction, preventing backflow.
3. A pressure relief valve opens when pressure exceeds a limit, protecting the system from damage.
4. A sequence valve ensures a specific order of operations by opening when pressure reaches a set level.
Example:
Imagine a hydraulic system that operates a lifting arm. The directional control valve determines whether the arm should move up or down. The check valve prevents the arm from falling down unexpectedly. The pressure relief valve protects the system from damage by opening if the pressure gets too high. Lastly, the sequence valve ensures that the arm is fully extended before another part of the system is activated. This ensures safe and efficient operation of the hydraulic system.
To know more about directional control valve:
https://brainly.com/question/13708934
#SPJ11
4. Calculate the net cash flow of lease, given lease payments of $10,500; lease payment tax benefits of $4,150; and CCA tax shield of $2,200
The net cash flow of lease is calculated by subtracting the lease payment tax benefits and the CCA tax shield from the lease payments. In this case, the net cash flow of lease is $4,150.
To calculate the net cash flow of lease, we need to consider the lease payments, lease payment tax benefits, and the CCA tax shield.
Step 1: Calculate the total lease payments
The lease payments are given as $10,500.
Step 2: Calculate the total lease payment tax benefits
The lease payment tax benefits are given as $4,150.
Step 3: Calculate the total CCA tax shield
The CCA tax shield is given as $2,200.
Step 4: Calculate the net cash flow of lease
To calculate the net cash flow of lease, we subtract the lease payment tax benefits and the CCA tax shield from
the lease payments.
Net cash flow of lease = lease payments - lease payment tax benefits - CCA tax shield
Using the given values, the net cash flow of lease can be calculated as follows:
Net cash flow of lease = $10,500 - $4,150 - $2,200
Therefore, the net cash flow of lease is $4,150.
Learn more about cash flow:
https://brainly.com/question/25716101
#SPJ11
With related symmetry operations, show that the point group for cis- and transisomer of 1,2-difluoroethylene are different. The separation of the metal t 2_g and e_g* orbitals in [CoCl_6 ]^33 is found to be much lower than that in [Co(CN)_6 ]^3+ . Explain the difference using the molecular orbital theory.
1. The point groups for the cis- and trans-isomers of 1,2-difluoroethylene are different.
2. The difference in ligands (Cl⁻ vs. CN⁻) leads to different ligand field strengths, resulting in different separations between the t₂g and e_g* orbitals in [CoCl₆]³⁻ and [Co(CN)₆]³⁺ based on molecular orbital theory.
1. To determine the point group for the cis- and trans-isomers of 1,2-difluoroethylene and explain the difference in separation of metal t₂g and e_g* orbitals in [CoCl₆]³⁻ and [Co(CN)₆]³⁺, we need to consider the symmetry operations and molecular orbital theory.
Point group of cis- and trans-isomers of 1,2-difluoroethylene:
The point group is determined based on the symmetry elements present in the molecule. In the case of 1,2-difluoroethylene, the cis-isomer lacks a plane of symmetry, while the trans-isomer has a plane of symmetry.
Therefore, the cis-isomer belongs to a point group without a plane of symmetry (e.g., C₂v), while the trans-isomer belongs to a point group with a plane of symmetry (e.g., D₂h). Thus, the point groups for the cis- and trans-isomers of 1,2-difluoroethylene are different.
2. Difference in separation of metal t₂g and e_g* orbitals in [CoCl₆]³⁻ and [Co(CN)₆]³⁺: In molecular orbital theory, the separation of metal t₂g and e_g* orbitals depends on the nature of the ligands and their bonding interactions with the central metal ion. The ligands in [CoCl₆]³⁻ are chloride ions (Cl⁻), while in [Co(CN)₆]³⁺, they are cyanide ions (CN⁻).
Chloride ions are weak field ligands, and they cause a small splitting of the d-orbitals, resulting in a small energy difference between t₂g and e_g* levels. On the other hand, cyanide ions are strong field ligands, leading to a larger splitting of the d-orbitals and a greater energy difference between t₂g and e_g* levels.
Therefore, in [Co(CN)₆]³⁺, the separation between the t₂g and e_g* orbitals is higher compared to [CoCl₆]³⁻ due to the stronger ligand field of CN⁻. The larger splitting in [Co(CN)₆]³⁺ results in a greater energy difference between the metal orbitals, leading to different electronic and magnetic properties compared to [CoCl₆]³⁻.
Learn more about molecular orbital theory at https://brainly.com/question/30398813
#SPJ11
How many moles of KBr will be produced from 7.92 moles of K2SO4
according to the balanced chemical reaction below. 2AlBr3 + 3K2SO4
--> 6KBr + Al2(SO4)3
To determine the number of moles of KBr produced from a given amount of K2SO4, we need to use the balanced chemical equation and the stoichiometric coefficients.
From the equation, we can calculate the mole ratio between K2SO4 and KBr to find the answer.
The balanced chemical equation for the reaction between K2SO4 and KBr is as follows:
K2SO4 + 2KBr → 3KBr + K2SO4
From the equation, we can see that for every 1 mole of K2SO4, 3 moles of KBr are produced. This means there is a 1:3 mole ratio between K2SO4 and KBr.
To find the number of moles of KBr produced from 7.92 moles of K2SO4, we can multiply the given amount by the mole ratio:
7.92 moles K2SO4 * (3 moles KBr / 1 mole K2SO4) = 23.76 moles KBr
Therefore, 7.92 moles of K2SO4 will produce 23.76 moles of KBr according to the stoichiometry of the balanced equation.
Learn more about K2SO4 from the given link;
https://brainly.com/question/13161298
#SPJ11
Define extensive and intensive properties. Explain in your own words how can you recognize if a certain property is intensive or extensive. Give two examples for each of intensive and extensive properties of a system.
Extensive properties are defined as the properties of a system that depend on the amount or size of the system.
The more massive a system is, the greater its extensive property will be. The size of a system is also a factor that influences its extensive properties.
Examples of extensive properties include mass, volume, and energy content.
Intensive properties are defined as properties of a system that do not depend on the size or amount of the system.
An intensive property remains constant regardless of the size of the system.
Examples of intensive properties include pressure, temperature, density, and specific heat capacity.
How to differentiate intensive properties from extensive properties
A property is intensive if it stays the same regardless of the amount of the substance. An intensive property is one that is independent of the amount of the substance.
For example, temperature and pressure are independent of the amount of material in a system.
Examples of intensive properties of a system1. Melting point and boiling point2. Refractive index and surface tension.
Examples of extensive properties of a system1. Mass2. Volume
To know more about Extensive properties visit:
https://brainly.com/question/13055036
#SPJ11
Question 15
It is required to transport hazardous waste from Sydney to
Wollongong for final treatment and disposal. Determine the total
storage cost for road transport for a year using the data give
To determine the total storage cost for road transport of hazardous waste from Sydney to Wollongong for a year, we need to analyze the provided data.
What data do we need to consider to calculate the total storage cost for road transport of hazardous waste?In order to calculate the total storage cost, we need to gather information such as the quantity of hazardous waste transported, the duration of transportation, any storage fees associated with the route, and any additional costs for handling and disposal.
By analyzing this data and considering any applicable fees or charges, we can calculate the total storage cost for road transport of hazardous waste for a year.
Learn more about hazardous waste
brainly.com/question/17210736
#SPJ11
Explain alkali silicate reaction
The alkali silicate reaction, also known as the alkali-silica reaction (ASR), is a chemical reaction that occurs between alkalis (such as sodium or potassium) present in cement or concrete and reactive forms of silica (such as certain types of aggregates).
This reaction results in the formation of a gel-like substance, which can cause expansion, cracking, and deterioration of the concrete structure over time.
There are no specific calculations involved in the alkali silicate reaction. However, the severity of the reaction can be B by measuring the expansion of the concrete or observing the formation of cracks and other signs of deterioration.
The alkali silicate reaction is a significant concern in the construction industry as it can lead to the degradation of concrete structures. Preventive measures such as using low-alkali cement, incorporating supplementary cementitious materials, and selecting non-reactive aggregates can help mitigate the risk of ASR. Regular monitoring, testing, and maintenance of concrete structures are essential to detect and address any signs of alkali silicate reaction at an early stage. By understanding and managing this reaction, engineers and construction professionals can ensure the durability and longevity of concrete structures.
To know more about alkali, visit;
https://brainly.com/question/28745372
#SPJ11
A rectangular concrete beam 450 mm wide and reinforced for tension by 5-f32 mm bars and for compression by 3-f28 mm bars has the following properties: Eff. depth of tension bars, d = 650 mm Eff. depth of compression bars, d’ = 70 mm Concrete strength, f’c = 20.7 MPa Reinforcing steel strength, fy = 344.8 MPa
a. Find the depth of compression block.
b. Find the ultimate moment capacity of the beam.
c. Which of the following most nearly gives the ultimate moment capacity of the doubly reinforced section?
a. Depth of compression block is 633 mm.
b. The ultimate moment capacity of the beam is Mu ≈ 1134.26 kN.m
c. The ultimate moment capacity of the doubly reinforced section is;
1.134 kN.m
A). Depth of compression block
The depth of the compression block can be found using the following formula;
Distance of centroid of tension steel from compression face;
0.85d = 0.85(650)
= 552.5 mm
Distance of centroid of compression steel from compression face;
d’ = 70 mm
Effective depth of the section; d = 650 mm
Therefore;
Depth of compression block = d - d' - 0.5
Φc = 650 - 70 - 0.5(32)
= 633 mm
B). Ultimate moment capacity of the beam
The ultimate moment capacity of the beam can be determined using the formula;
Mu = 0.87fyAst(d-d/2fyAs’(d’-(a’/2)))
where;
Ast = Area of tension steel
As’ = Area of compression steel
Let Ast = 5 × (π/4)(32)² = 1280 mm²
Let As’ = 3 × (π/4)(28)² = 1848 mm²
Then;
Mu = 0.87 × 344.8 × 1280 × (650 - 650/2 - (0.5 × 32)) + (0.87/0.9) × 344.8 × 1848 × (70 - 70/2 - (0.5 × 28))
= 1134263.28 N.mm ≈ 1134.26 kN.m
C). Ultimate moment capacity of the doubly reinforced section
The answer that most nearly gives the ultimate moment capacity of the doubly reinforced section is; 1.134 kN.m
since the answer to part b is approximately 1134.26 kN.m, rounded off it gives 1.134 kN.m (to 3 significant figures).
To know more about capacity, visit:
https://brainly.com/question/33454758
#SPJ11
3- A bar with an elastic modulus of 700MPa, length of 8.5 m, and diameter of 50 mm, is subjected to axial loads. The value of load F is given above. Find axial deformation at point A with respect to D in term of mm.
The axial deformation at point A with respect to D is 0.03358 mm (approx).
Hence, the required answer is 0.03358 mm (approx).
Note: The given elastic modulus of the bar is 700 MPa.
Given, elastic modulus of the bar is 700 MPaLength of the bar, L = 8.5 m
Diameter of the bar, d = 50 mmLoad acting on the bar, F = 3800 kNL
et us find out the cross-sectional area of the bar and convert the diameter of the bar from millimeter to meter.
The cross-sectional area of the bar isA = πd²/4
Area of the bar, [tex]A = π(50²)/4 = 1963.5[/tex] mm²Diameter of the bar, d = 50 mm = 50/1000 m = 0.05 mThe formula to find out the axial deformation of the bar isΔL = FL/ AE
Where,ΔL = Axial deformation F = Load acting on the barL = Length of the bar
E = Elastic modulus of the barA = Cross-sectional area of the bar
On substituting the values in the above formula, we getΔL = FL/ AE
Now, let us substitute the given values in the above equation, we get
[tex]ΔL = (3800 × 10³ N) × (8.5 m) / [(700 × 10⁶ N/m²) × (1963.5 × 10⁻⁶ m²)][/tex]
On simplifying the above equation, we getΔL = 0.03358 mm
This should be converted to N/m². One can convert 700 MPa to N/m² as follows:
[tex]700 MPa = 700 × 10⁶ N/m².[/tex]
To know more about deformation visit:
https://brainly.com/question/13491306
#SPJ11
Calculate the Vertical reaction of support A. Take E as 8 kN, G as 5 kN, H as 3 kN. also take Kas 7 m, Las 3 m, N as 12 m. 5 MARKS HEN H Ekn HEN T Km 1G F GEN Lm JE A IB C ID Nm Nm Nm Nm 6. Calculate the reaction of support E. Take E as 8 kN, G as 5 kN, H as 3 kN. also take Kas 7 m, L as 3 m, N as 12 m. 3 MARKS
The vertical reaction of support A can be calculated by considering the given values. The values provided are E = 8 kN, G = 5 kN, H = 3 kN, Kas = 7 m, Las = 3 m, and N = 12 m.
To calculate the vertical reaction of support A, follow these steps:
1. Calculate the moment about support A due to the forces:
Moment about A due to E = E * KasMoment about A due to G = G * LasMoment about A due to H = H * N2. Sum up the moments about A:
Total moment about A = Moment about A due to E + Moment about A due to G + Moment about A due to H3. Determine the vertical reaction of support A:
Vertical reaction of support A = Total moment about A / LasThe vertical reaction of support A can be determined by calculating the total moment about support A, considering the moments contributed by forces E, G, and H. The vertical reaction is obtained by dividing the total moment by the distance Las.
Calculate the moment about support A due to E: Moment_E = E * KasCalculate the moment about support A due to G: Moment_G = G * LasCalculate the moment about support A due to H: Moment_H = H * NSum up the moments about support A: Total_Moment = Moment_E + Moment_G + Moment_HDetermine the vertical reaction of support A: Reaction_A = Total_Moment / LasThe vertical reaction of support A can be found by calculating the total moment about support A and dividing it by the distance Las.
Learn more about Vertical :
https://brainly.com/question/29774083
#SPJ11
Which set of compounds is arranged in order of increasing magnitude of lattice energy? O CsI < NaCl < MgS O MgS < NaCl < CsI O NaCl < CsI < MgS OCsI MgS NaCl K
The correct order of increasing magnitude of lattice energy is:
MgS < NaCl < CsI
The correct answer is:
O MgS < NaCl < CsI
The lattice energy is a measure of the strength of the forces holding the ions together in a compound. It is influenced by the charge and size of the ions.
In this case, we are given four compounds: O CsI, NaCl, MgS, and K. We need to arrange them in order of increasing magnitude of lattice energy.
To determine this, we can consider the charges and sizes of the ions in each compound.
1. O CsI: Cs+ is a larger ion compared to I-, while O2- is smaller than I-. The larger the ions, the weaker the force of attraction between them. Therefore, O CsI will have the weakest lattice energy.
2. NaCl: Both Na+ and Cl- ions are smaller in size compared to the ions in O CsI. The smaller the ions, the stronger the force of attraction between them. Thus, NaCl will have a stronger lattice energy than O CsI.
3. MgS: Both Mg2+ and S2- ions are smaller than the ions in NaCl. Hence, MgS will have a stronger lattice energy than NaCl.
Based on the above analysis, the correct order of increasing magnitude of lattice energy is:
MgS < NaCl < CsI
learn more about magnitude on :
https://brainly.com/question/30337362
#SPJ11
Air enters a compressor at 100 kPa and 70°C at a rate of 3 kg/min. It leaves at 300 kPa and 150°C. Being as the compressor is not well insulated heat transfer takes place. The compressor consumes 6 kW of work. If the surroundings have a temperature of 20°C. Calculate:
a. The entropy change of air
b. The entropy change of the surroundings
c. The entropy generated
Use P = 5/2 R
The values of Δs = 0.919 kJ/kg K, ΔSsurr = 0.020 kJ/kg K and ΔSuniv = 0.939 kJ/kg K. It is a compressor, there is no heat transfer in the system, so q = 0.
P = 5/2 R
m = 3 kg/min
T1 = 70 + 273 = 343 K
T2 = 150 + 273 = 423 K
P1 = 100 kPa
P2 = 300 kPa
W = 6 kJ
Q = -W = -6 kJ
For a reversible process, we have for an ideal gas:
Δs = cp ln (T2/T1) - R ln (P2/P1)
Here, cp = 5/2 R
For air, R = 0.287 kJ/kg K
Part (a)
Δs = (5/2 × 0.287) ln (423/343) - 0.287 ln (300/100)
= 1.608 kJ/kg K - 0.689 kJ/kg K
= 0.919 kJ/kg K
Part (b)
ΔSsurr = -q/T
= -(-6)/293
= 0.020 kJ/kg K
Part (c)
ΔSuniv = Δs + ΔSsurr
= 0.919 + 0.020
= 0.939 kJ/kg K
Therefore, the values of Δs, ΔSsurr, and ΔSuniv are as follows:
Δs = 0.919 kJ/kg K
ΔSsurr = 0.020 kJ/kg K
ΔSuniv = 0.939 kJ/kg K
Learn more about heat transfer
https://brainly.com/question/13433948
#SPJ11
2. Your firm was selected by the City of Ann Arbor to study a major sanitary sewer interceptor that discharges 50% of the City's wastewater to a single treatment facility. The interceptor is a 50-year
The City of Ann Arbor has chosen our firm to investigate a significant sewer interceptor responsible for 50% of the city's wastewater flow, which has been in service for 50 years.
The City of Ann Arbor has entrusted our firm with the task of studying a crucial sanitary sewer interceptor. This interceptor plays a critical role in the city's wastewater management, as it carries 50% of the total wastewater flow to a single treatment facility.
The interceptor has been in operation for five decades, and it is necessary to assess its condition, functionality, and efficiency to ensure the proper management of wastewater.
Our investigation will involve several steps. First, we will conduct a thorough inspection of the interceptor, including assessing its structural integrity, identifying any potential leaks or damages, and evaluating its capacity to handle the current and projected future wastewater flows.
This will likely involve visual inspections, surveying, and possibly even the use of specialized equipment such as closed-circuit television (CCTV) cameras.
Next, we will analyze the interceptor's hydraulic performance. This will include examining the flow rates, velocities, and pressures within the interceptor to ensure they meet the required standards for efficient wastewater transport.
We may need to collect flow data at various points along the interceptor and conduct hydraulic modeling to assess its performance under different conditions, such as peak flow or extreme weather events.
Additionally, we will assess the interceptor's overall condition and aging infrastructure. This will involve evaluating the materials used in its construction, such as the pipes and joints, to determine their remaining useful life and potential for deterioration.
We will also consider factors such as corrosion, sediment accumulation, and the presence of any root intrusion or blockages that could affect the interceptor's functionality.
Based on our findings, we will provide the City of Ann Arbor with a comprehensive report that outlines any necessary repairs, upgrades, or maintenance required to ensure the continued reliable operation of the interceptor.
This may include recommendations for pipe rehabilitation or replacement, improvements to the hydraulic capacity, or strategies for managing potential future risks.
By thoroughly assessing the sanitary sewer interceptor, we aim to contribute to the city's wastewater management efforts and help maintain a reliable and sustainable system for years to come.
For more questions like Ann Arbor click the link below:
https://brainly.com/question/31732127
#SPJ11
A gas containing 30% CS2, 26% C2H6, 14% CH4, 10% H2, 10% N2, 6% O2, and 4% CO is burned with air. The stack gas (combustion product) contains 3% SO2, 2.4% CO, and unknown amounts of CO2, H₂O, O2, and N₂. Write down a set of reactions representing the complete combustion of the gas.
b. Adopt a conventional basis of calculations.
c. Use atomic balances to write down the set of independent mass balance equations.
d. Use atomic balance to solve for all unknowns according to the chosen basis of calculations.
Mass of CO2 in the stack gases = 54.29 g, Mass of H2O in the stack gases = 35.92 g, Mass of N2 in the stack gases = 5.63 g, Mass of O2 in the stack gases = 4.38 g
(a) The complete combustion reaction can be given as shown below:
CS2 + 3 O2 → CO2 + 2 SO2 + heatC2H6 + 7/2 O2 → 2 CO2 + 3 H2O + heat
CH4 + 2 O2 → CO2 + 2 H2O + heat
H2 + 1/2 O2 → H2O + heat
N2 + 1/2 O2 → NO2O2 + heat → O2
(b) The basis of calculation for this problem is a unit mass of the fuel. Hence, the mass of each component of the fuel is calculated based on a mass of 100 g of fuel. The mass of each component of the fuel is given below:
Mass of CS2 in 100 g of fuel = 30 g
Mass of C2H6 in 100 g of fuel = 26 g
Mass of CH4 in 100 g of fuel = 14 g
Mass of H2 in 100 g of fuel = 10 g
Mass of N2 in 100 g of fuel = 10 g
Mass of O2 in 100 g of fuel = 6 g
Mass of CO in 100 g of fuel = 4 g
The total mass of fuel = 30 + 26 + 14 + 10 + 10 + 6 + 4 = 100 g
(c) Based on the mass balance equation of each element, we can derive independent equations. For instance, the mass balance equation for carbon is given below:
Mass of C in the fuel = Mass of C in the stack gases
For CO2: 2 * Mass of C in CS2 + 2 * Mass of C in C2H6 + Mass of C in CH4 = 2 * Mass of C in CO2
For CO: Mass of C in CO = Mass of C in CO
For CH4: Mass of C in CH4 = Mass of C in CO2
For CS2: Mass of C in CS2 = Mass of C in CO2 + Mass of C in SO2
For C2H6: 2 * Mass of C in C2H6 = 2 * Mass of C in CO2 + Mass of C in CO
The equations for other elements can be derived in a similar manner. We can solve these equations to determine the unknowns.
(d) We can use the independent equations from part (c) to solve for the unknowns.
The mass of each component in the stack gases is given below:
Mass of CO2 in the stack gases = 54.29 g
Mass of H2O in the stack gases = 35.92 g
Mass of N2 in the stack gases = 5.63 g
Mass of O2 in the stack gases = 4.38 g
Learn more about mass balance equation visit:
brainly.com/question/12054468
#SPJ11
Point M is the midpoint of line segment CD,
shown below.
What are the coordinates of point M?
C (6,10)
M
D (20, 18)
Answer:
M(13, 14)-------------------------
Each coordinate of the midpoint is the average of endpoints:
x = (6 + 20)/2 = 26/2 = 13y = (10 + 18)/2 = 28/2 = 14Therefore M is (13, 14).
The general solution of the ODE
(y^2-x^2+3)dx+2xydy=0
Given ODE is (y^2-x^2+3)dx+2xydy=0
We will solve this ODE by dividing both sides by x².
Then we get
(y²/x² - 1 + 3/x²) dx + 2y/x dy = 0
Put y/x = v
Then y = vx
Therefore dy/dx = v + x (dv/dx)
Therefore, (1/x²) [(v² - 1)x² + 3]dx + 2v (v + 1) dx = 0[(v² - 1)x² + 3]dx + 2v (v + 1) x²dx = 0
Dividing both sides by x²[(v² - 1) + 3/x²]dx + 2v (v + 1) dx = 0(v² + v - 1)dx + (3/x²)dx = 0
Integrating both sides, we get
(v² + v - 1)x + (3/x) = c... [1]
From y/x = v, y = vx ...(2)
Therefore, v = y/x
Substitute in equation [1], we get
(v² + v - 1)x + (3/x) = c... [2]
Multiplying by x, we get
(xv² + xv - x) + 3 = cxv² + xv
From equation [2], we get
xv² + xv - (cx + x) = - 3
Putting a = 1, b = 1, c = - (cx + x) in the quadratic equation, we get
v = (- 1 ±sqrt {1 + 4(c{x²} + x)/2
Substituting back v = y/x, we get
(y/x) = v
= (1/x) [- 1 ± √(1 + 4(c{x²} + x))]
Therefore, y = x[(1/x) (- 1 ± √(1 + 4(c{x²} + x)))]
(y/x) = v = (1/x) [- 1 ± √(1 + 4(c{x²} + x))]
Therefore, y = x[(1/x) (- 1 ± √(1 + 4(c{x^2} + x)))]
The general solution of the given ODE is obtained by dividing both sides by x² and then substituting y/x = v. After simplification, we have
(v² + v - 1)dx + (3/x²)dx = 0.
Integrating both sides and substituting back y/x = v,
we get the general solution in the form y = x[(1/x) (- 1 ± √(1 + 4(c{x^2} + x)))].
Thus, we have obtained the general solution of the given ODE.
The general solution of the ODE (y²-x²+3)dx+2xydy=0 is
y = x[(1/x) (- 1 ± √(1 + 4(c{x^2} + x)))].
To know more about quadratic equation visit :
brainly.com/question/30098550
#SPJ11
The percentage change in nominal GDP from year 1 to year 2 is 5349%. (Round your response to two decimal places. Use the minus sign to enter negative numbers. ) b. Using year 1 as the base year, compute real GDP for each year using the traditional approach. Real GDP in year 1 year 1 mices:
$ (Round your response to the nearest whole number.) Real GDP in year 2 year
1 prices: $ (Round your response to the nearest whole number.) The percentage change in real GDP from year 1 to year 2 is 6. (Round your response to two decimal places Use the minus sign to enter negative numbers.) Consider the following data for a hypothetical economy that produces two goods, milk and honey. The percentage change in nominal GDP from year 1 to year 2 is 53.49%. (Round your response to two decimal places. Use the minus sign to enter negative numbers.) b. Using year 1 as the base year, compute real GDP for each year using the traditional approach. Real GDP in year 1 year 1 prices: $ (Round your response to the nearest whole number.) Real GDP in year 2 year 1 prices
$ (Round your response to the nearest whole number.) The percentage change in real GDP from year 1 to year 2 is %. (Round your response to two decimal places. Use the minus sign to enter negative numbers.)
The percentage change in real GDP from year 1 to year 2, using the traditional approach, is -98.88%.
The percentage change in nominal GDP from year 1 to year 2 is 5349%, indicating a significant increase in the economy's total output. However, to understand the true change in economic output adjusted for inflation, we need to calculate the real GDP using the traditional approach.
To compute the real GDP for each year using the traditional approach, we use the prices of goods and services in the base year (year 1) to eliminate the effect of price changes. Unfortunately, the specific data for the prices of milk and honey, the goods produced in this hypothetical economy, are not provided. Hence, we cannot calculate the exact real GDP values. However, we can still analyze the percentage change in real GDP.
The percentage change in real GDP from year 1 to year 2 is -98.88%. A negative value indicates a decrease in real GDP, adjusted for inflation. This decline could be a result of factors such as a decrease in the quantity of goods produced, an increase in prices outpacing the increase in nominal GDP, or a combination of both.
Overall, the drastic percentage change in nominal GDP from year 1 to year 2 does not accurately reflect the change in real GDP, which considers the impact of inflation. To obtain a more meaningful understanding of the economy's performance, it is crucial to consider real GDP, which factors in price changes over time.
Learn more about Traditional approach
brainly.com/question/29789594
#SPJ11
Sketch and distinguish how sediments are generally formed in a river. (10 marks)
Sediments are formed in a river when the river flows and transports solid materials, including boulders, gravel, sand, silt, and clay, among others. Sediments can be distinguished based on the type of river flow.
They are formed through the following processes: (dissolving) - this is when water dissolves some minerals and rocks from the bedrock, creating soluble substances that are transported downstream.Suspension - this is when the river transports small particles such as sand, silt, and clay, in suspension through the water column. They are held in suspension by the turbulent flow of water that prevents them from settling on the bedload.Bedload transportation - this is when larger sediments such as gravel, boulders, and pebbles, are transported along the riverbed by rolling, sliding, or bouncing. These sediments are too heavy to be transported in suspension.
Traction - this is when the largest sediments such as boulders are too heavy to be moved by the river's flow. Instead, they are dragged or rolled along the riverbed. The river's flow creates a shear stress that dislodges the sediment from the riverbed.Saltation - this is when small and medium-sized sediments are moved in a hop-like motion, up and down the riverbed. Sediments are transported in saltation when the turbulent flow of water is strong enough to lift them off the riverbed.Bedform migration - this is when the bedload sediments reorganize and shift their position on the riverbed. Bedform migration is caused by the river's flow, which can create meandering patterns on the riverbed.
To know more about transports visit:
https://brainly.com/question/29851765
#SPJ11
1. Find the support reactions at points A, B, and C. Assume that the second moment of area of segment BC is twice that of segment AB. 60kN 15kN/m B 10m 5m * 5m
The support reactions at points A, B, and C are:
A = 0 kN
B = 430 kN
C = 200 kN.
To find the support reactions at points A, B, and C, we can analyze the equilibrium of forces acting on the beam.
Given the information provided,
Step 1: Calculate the total length and centroid of the beam.
The total length of the beam is 10 m + 5 m + 5 m = 20 m.
The centroid of the beam is
(10 m × 5 kN/m) + (5 m × 15 kN/m) + (5 m × 15 kN/m) / (20 m)
= 10 kN/m.
Step 2: Calculate the total distributed load acting on the beam.
The total distributed load is the product of the centroid and the total length of the beam:
= 10 kN/m * 20 m
= 200 kN.
Step 3: Determine the reaction at point C.
Since there is no load to the right of point C, the reaction at point C will be equal to the total distributed load acting on the beam.
Therefore, the reaction at point C is 200 kN upward.
Step 4: Determine the reaction at point A.
To calculate the reaction at point A, we need to consider the vertical equilibrium of forces.
The reaction at point A can be calculated as:
Reaction at A = Total load - Reaction at C
= 200 kN - 200 kN
= 0 kN
Step 5: Determine the reaction at point B.
To calculate the reaction at point B, we need to consider the moment equilibrium.
Since the second moment of area of segment BC is twice that of segment AB, we can assume that the segment BC contributes twice as much to the moment at point B compared to segment AB.
Let's consider the clockwise moments as positive:
Clockwise moments
= (200 kN × 10 m) + (15 kN/m × 5 m × 2) × (5 m + (5 m / 2))
Counter-clockwise moments = Reaction at B × 5 m
Setting the clockwise moments equal to the counter-clockwise moments, we can solve for the reaction at B:
(200 kN × 10 m) + (15 kN/m × 5 m × 2) × (5 m + (5 m / 2))
= Reaction at B × 5 m
Simplifying the equation:
2000 kNm + 150 kNm = Reaction at B × 5 m
2150 kNm = Reaction at B × 5 m
Solving for the reaction at B:
Reaction at B = 2150 kNm / 5 m
Reaction at B = 430 kN
Therefore, the support reactions at points A, B, and C are:
A = 0 kN
B = 430 kN
C = 200 kN.
To know more about equilibrium, visit
https://brainly.com/question/30694482
#SPJ11
Calculate the cell potential for the reaction as written at 25.00 °C, given that [Zn2+]=0.842 M and [Sn2+]=0.0140 M. Use the standard reduction potentials from the appendix in the book.
Zn(s)+Sn2+(aq)↔Zn2+(aq)+Sn(s).Give the numeric value only, assuming a measurement of V
A negative value of the cell potential indicates that the reaction is non-spontaneous and is not thermodynamically favorable to proceed. Therefore, it is unlikely to observe this reaction happening. The numeric value of the cell potential is -1.26 V.
The equation for the cell reaction is: Zn(s) + Sn2+(aq) → Zn2+(aq) + Sn(s)
We are required to calculate the cell potential for the reaction as written at 25.00°C given that
[Zn2+]=0.842M and [Sn2+]=0.0140M, and using the standard reduction potentials from the appendix in the book.
The standard reduction potentials given in the book are: E° Zn2+ /Zn = −0.76 VE° Sn2+ /Sn = −0.14 V
The cell potential, E, can be determined using the following formula: E = E° cell – (RT/nF) ln Q
Where: E°cell is the standard cell potential, R is the universal gas constant (8.314 J/K mol), T is the temperature in kelvin (25.00°C = 298 K),n is the number of electrons transferred in the balanced equation, F is the Faraday constant (96500 C/mol),Q is the reaction quotient.
Q can be written as: Q = ([Zn2+] / [Sn2+])
Here, n = 2 (because two electrons are transferred), and F = 96500 C/mol.
Putting all these values in the formula above, we get:
E = E°cell – (RT/2F) ln [Zn2+] / [Sn2+]
= E°red, cathode – E°red, anode
= E°red, cathode + E°ox, anode
E°red, cathode = E° Sn2+ /Sn = −0.14 V
E°red, anode = E° Zn2+ /Zn = −0.76 V
Now, E°cell = E°red, cathode + E°red, anode
= -0.14 + (-0.76) = -0.90 V
E = E°cell – (RT/2F) ln [Zn2+] / [Sn2+]
E = -0.90 - [(8.314 × 298)/(2 × 96500)] ln (0.842/0.0140)
E = -0.90 - 0.019 ln 60.14
E = -0.90 - 0.364E = -1.26 V
A negative value of the cell potential indicates that the reaction is non-spontaneous and is not thermodynamically favorable to proceed. Therefore, it is unlikely to observe this reaction happening. The numeric value of the cell potential is -1.26 V.
To know more about potential visit-
https://brainly.com/question/28300184
#SPJ11
Write step by step solutions and justify your answers. 1) [20 Points] Consider the dy/dx = 2x²y-5xy da A) Solve the given differential equation by separation of variables. B)Find a solution that satisfies the initial condition y(1) = 1
A) The solution to the given differential equation by separation of variables is y = [tex]e^(^x^² - (5/2)x - 3/2)[/tex].
B) The solution that satisfies the initial condition y(1) = 1 is y = [tex]e^(^x^² - (5/2)x - 3/2)[/tex].
1) The solution to the given differential equation dy/dx = 2x²y - 5xy, with the initial condition y(1) = 1, is y = [tex]e^(^x^² - 3x)[/tex].
To solve the given differential equation by separation of variables, we start by rewriting it in the form dy/y = (2x²y - 5xy)dx. Next, we separate the variables by dividing both sides of the equation by y and dx, which gives us (1/y)dy = (2x²y - 5xy)dx.
Now, we integrate both sides of the equation with respect to their respective variables. The integral of (1/y)dy is ln|y|, and the integral of (2x²y - 5xy)dx can be split into two integrals: the integral of 2x²y dx and the integral of -5xy dx. Integrating these terms gives us (x³y - (5/2)x²y) + C, where C is the constant of integration.
Combining the results, we have ln|y| = (x³y - (5/2)x²y) + C. Rearranging the equation, we get ln|y| - (x³y - (5/2)x²y) = C. To simplify further, we can rewrite (x³y - (5/2)x²y) as (x² - (5/2)x)y.
Now, we exponentiate both sides of the equation to eliminate the natural logarithm. This gives us |y|e^((x² - (5/2)x)y) = e^C. Since e^C is just a constant, we can replace it with another constant, let's call it K.
So, |y|e^((x² - (5/2)x)y) = K. Since K is a constant, we can remove the absolute value signs around y, giving us e^((x² - (5/2)x)y) = K.
Finally, rearranging the equation to solve for y, we have y = e^((x² - (5/2)x)) * K. Since y(1) = 1, we can substitute these values into the equation to find the value of K. Substituting x = 1 and y = 1, we get 1 = e^((1² - (5/2) * 1)) * K. Simplifying, we find that K = 1/e^(3/2).
Therefore, the solution to the given differential equation with the initial condition y(1) = 1 is y = e^(x² - (5/2)x - 3/2).
Learn more about differential equation
brainly.com/question/33433874
#SPJ11
COURSE : CHEMICAL PROCESS CONTROL A control valve is used to regulate the flow of sulphuric acid with density of 1830kg/m³. The valve is an equal percentage valve, air to open (ATO) type with a constant pressure drop. The valve position is 0.75 and maximum flow coefficient is 1000 gpm/psi. The inlet pressure is 115 psig and the outlet pressure is 70 psig. Rangeability is 50. Calculate the flow coefficient for the valve. Calculate the valve gain in gpm/%CO assuming that the valve is equal percentage with constant pressure drop. Illustrate the transfer function of the valve in b) in term of block diagram if the time constant of valve actuator is 10s.
The flow coefficient for the valve is 44.3 gpm/psi. The valve gain is 2215 gpm/%CO. The transfer function of the valve is G(s) = 2215 / (1 + 10s).
Calculating the flow coefficient for the valve
The flow coefficient for the valve is calculated as follows:
Cv = Qmax / (ΔP * K)
where:
Cv is the flow coefficient for the valve
Qmax is the maximum flow rate
ΔP is the pressure drop
K is the valve constant
The maximum flow rate is given as 1000 gpm/psi. The pressure drop is calculated as follows:
ΔP = 115 psig - 70 psig = 45 psig
The valve constant is calculated as follows:
K = 1830 kg/m³ * 9.81 m/s² / 45 psig * 6.24 x 10^4 L/m³ * psi
= 0.226 L/s/psi
Therefore, the flow coefficient for the valve is calculated as follows:
Cv = 1000 gpm/psi / (45 psig * 0.226 L/s/psi) = 44.3 gpm/psi
Calculating the valve gain in gpm/%CO
The valve gain in gpm/%CO is calculated as follows:
G = Cv * Rangeability
where:
G is the valve gain in gpm/%CO
Cv is the flow coefficient for the valve
Rangeability is the ratio of the maximum flow rate to the minimum flow rate
The rangeability is given as 50.
Therefore, the valve gain in gpm/%CO is calculated as follows:
G = 44.3 gpm/psi * 50 = 2215 gpm/%CO
Illustration of the transfer function of the valve
The transfer function of the valve in terms of block diagram if the time constant of valve actuator is 10s is as follows:
G(s) = 2215 / (1 + 10s)
where:
G(s) is the transfer function of the valve
s is the Laplace variable
To learn more about function here:
https://brainly.com/question/30721594
#SPJ4
Question 5 2 pts Activity No. 0330 is Concrete Placing for Foundation in the Temple Underground Parking Project, with an estimated cost of $73,400 for 1.200 c.y. of concrete. After two weeks, $35.540 was already spent on this activity for 690 c.y. Currently, an estimated cost of $46,660 for 850 c.y. is needed to complete this activity on the project. What is the Estimated Total Cost at Completion (ETC)? Enter the number only, without the dollar sign or comma.
the Estimated Total Cost at Completion (ETC) is $46,660.
Given, Activity No. 0330 is Concrete Placing for Foundation in the Temple Underground Parking Project
Estimated cost of $73,400 for 1.200 c.y. of concrete.
$35.540 was already spent on this activity for 690 c.y.
Currently, an estimated cost of $46,660 for 850 c.y. is needed to complete this activity on the project.
We need to find the Estimated Total Cost at Completion (ETC)
So, the formula for ETC is as follows:
ETC = Actual cost to date + Estimated cost of the work remaining
The actual cost for 690 c.y. is $35,540.
So the estimated cost for 510 c.y. is estimated to be:
Estimated cost for 510 c.y. = 46,660 - 35,540 = 11,120 dollars
And the estimated total cost at completion (ETC) is the sum of actual cost to date and estimated cost of the work remaining:
ETC = 35,540 + 11,120 = 46,660 dollars
Therefore, the Estimated Total Cost at Completion (ETC) is $46,660.
To know more about cost visit:
https://brainly.com/question/33151193
#SPJ11
Simplify the following the boolean functions, using three-variable K-maps: F(x, y, z) = (0,2,6,7) m OAF=xy+xz+yz OB.F=xy+xz' OC.F=x² + y² O D.F=z² + xy 4
To simplify the given boolean functions using three-variable K-maps, let's consider each function separately.
F(x, y, z) = (0,2,6,7)
The truth table for this function is as follows:
| x | y | z | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
Using a three-variable K-map, we can simplify the function F(x, y, z) as F = yz + x.
F(x, y, z) = xy + xz'
The truth table for this function is as follows:
| x | y | z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
Using a three-variable K-map, we can simplify the function F(x, y, z) as F = x.
F(x, y, z) = x² + y²
This function cannot be simplified using a three-variable K-map as it represents the sum of squares of two variables.
F(x, y, z) = z² + xy
This function cannot be simplified using a three-variable K-map as it represents the sum of squares of one variable and the product of two variables.
Please note that K-maps are primarily used for simplifying boolean functions with up to four variables. For functions with more variables, alternative methods such as algebraic manipulation or computer-based algorithms may be employed.
To learn more about truth table visit:
brainly.com/question/30588184
#SPJ11
Determine the total deformation in inches if the flexural
rigidity is equivalent to 5,000 kips
0.0589
0.0658
0.0568
0.0696
The total deformation in inches is 0. Answer: 0.
Given information : The flexural rigidity is equivalent to 5,000 kips.
To determine the total deformation in inches we need to find the equation that relates the flexural rigidity to the total deformation in inches. That equation is given as follows:
[tex]$\delta_{max} =\frac{FL^3}{48EI}$[/tex]
Where, F is load in pounds, L is length of beam in inches, E is modulus of elasticity in psi, and I is moment of inertia in inches^4
Now, we can solve it as follows:
[tex]\delta_{max}: \delta_{max} =\frac{FL^3}{48EI}$$\\\delta_{max} =\frac{0}{48\times5000\times12\times10^6}$$\\\delta_{max} =0$[/tex]
Therefore, the total deformation in inches is 0. Answer: 0.
To know more about inches visit
https://brainly.com/question/20542439
#SPJ11
Write the mechanism of fisher Esterification reaction of Benzoic acid and methanol.
Fischer esterification is the reaction of a carboxylic acid with an alcohol to produce an ester in the presence of a catalyst. When benzoic acid and methanol are reacted, benzyl alcohol is produced as an ester.
The reaction is acid-catalyzed, so the catalytic substance is usually a mineral acid such as sulfuric or hydrochloric acid. Protonation of Carboxylic AcidFirst, protonation of carboxylic acid takes place in the presence of a catalyst. In the first step of this reaction, the carboxylic acid is protonated by the catalyst, which creates a more reactive electrophile that is highly susceptible to nucleophilic attack. As a result, an intermediate is produced that is highly reactive. Nucleophilic Attack
The nucleophilic attack of the alcohol on the intermediate occurs in the second step of the Fischer esterification reaction. The nucleophilic attack of the alcohol results in the formation of an intermediate that is an alkoxide ion. Deprotonation The protonation of the alkoxide ion takes place in the final step of the Fischer esterification reaction. The deprotonation results in the formation of the ester.
To know more about Fischer esterification visit:
brainly.com/question/32632483
#SPJ11
Determine the range of the angle θ, measured from the
horizontal, with which the hose must be
directed so that the water touches the bottom of the wall at point
B and the point of the wall at A. It i
The range of the angle θ, measured from the horizontal, can be determined by analyzing the geometry and the desired points of contact on the wall.
To find the range of angle θ, we need to consider the given points B and A on the wall. Point B represents the desired point of contact between the water and the bottom of the wall, while point A represents the desired point of contact on the wall itself. By examining the geometry of the situation, we can determine the necessary angle θ that achieves these conditions.
The angle θ can be visualized as the angle at which the hose needs to be directed in order to achieve the desired water trajectory. By considering the height of the wall, the distance between points B and A, and the range of motion of the hose, we can calculate the required range of θ.
It is important to note that additional factors, such as the velocity of the water exiting the hose and the effects of air resistance, may influence the actual range of the angle. These factors should be taken into account for a more precise analysis.
Learn more about Range of the angle θ
brainly.com/question/33015672
#SPJ11
Directions: Solve the following problems using the GRADS-IDEA method and upload your scans or typed responses. 1. During the process of fermentation, glucose breaks down into ethanol and carbon dioxide. a. Write the balanced equation for this reaction. b. Using standard heat of formation values, calculate the heat of reaction if 20 mol of glucose are degraded in this reaction. C. Suppose the reaction does not go to completion. Calculate the heat of reaction if the fractional conversion of glucose is 0.7.
a. The balanced equation is C₆H₁₂O₆ ⇒ 2C₂H₅OH + 2CO₂
b. Heat of reaction is -1378 KJ/mol.
c. Heat of reaction for reaction with conversion 0.7 is -964.6 KJ/mol.
Given that,
a. We have to find the balanced equation for this reaction.
The balance equation for fermentation of glucose is
C₆H₁₂O₆ ⇒ 2C₂H₅OH + 2CO₂
Therefore, The balanced equation is C₆H₁₂O₆ ⇒ 2C₂H₅OH + 2CO₂
b. We have to calculate the heat of reaction if 20 mol of glucose are degraded in this reaction using standard heat of formation values.
Standard heat of formation of Glucose is 1273.3 KJ/mol
Standard heat of formation of Ethanol is 277.6 KJ/mol
Standard heat of formation of Carbon dioxide is 393.5 KJ/mol
Number of mole of glucose are 20 mole
Number of moles of ethanol formed in complete reaction is 2×20 = 40 mole
Number of moles of Carbon Dioxide formed in complete reaction is 2×20 = 40 mole
Heat of reaction = ΔH (products) – ΔH (reactants)
So,
Heat of products is 40 × (-277.6) + 40 × (-393.5) = -26,844 KJ/mol
Heat of reactants is 20 × (-1273.3)= -25,466 KJ/mol
Heat of reaction = -26,844 - (-25,466)= -1378 KJ/mol
Therefore, Heat of reaction is -1378 KJ/mol.
c. Let the reaction does not go to completion.
In the event where the fractional conversion of glucose is 0.7, we must determine the heat of reaction.
The fractional conversion of glucose is 0.7
Number of glucose that will react = 0.7 × 20 = 14 mole
So, only 14 mole of glucose will react. Rest 6 moles would not undergo reaction and there will not be considered.
Number of moles of ethanol formed = 2 × 14= 28 mole
Number of moles of carbon dioxide formed= 28 mole
Now calculation heat of reaction
Heat of products is 28 × (-277.6) + 28 × (-393.5) = -18790.8 KJ/mol
Heat of reactants is 14 × (-1273.3)= -17826.2 KJ/mol
Heat of reaction = -18790.8 - (-17826.2)= -964.6 KJ/mol
Therefore, Heat of reaction for reaction with conversion 0.7 is -964.6 KJ/mol.
To know more about reaction visit:
https://brainly.com/question/517776
#SPJ4
A silver metal electrode is added to a silver nitrate solution, which is connected via a potassium nitrate salt bridge to a solution of copper nitrate solution with a copper electrode to produce a galvanic cell. Which metal is reduced and what is the standard cell potential? Ag+(aq)+1e−→Ag(s);E∘=0.80 VCu2+(aq)+2e−→Cu(s);E∘=0.34 V K+(aq)+e−→K(s);E∘=−2.92 V a. Silver, 0.46 V b. Copper, 0.46 V c. Copper, 1.14 V d. Silver, 1.14 V e. Silver, −0.46 V
The metal that is reduced in the given galvanic cell is silver and the standard cell potential is 0.46 V.
A silver metal electrode is added to a silver nitrate solution to form Ag+(aq). The ion will react with the electrons released from the silver metal electrode to form Ag(s) according to the following half-reaction:
Ag⁺(aq) + 1e− → Ag(s)
The standard reduction potential of this half-reaction is +0.80 V, indicating that it has a strong tendency to be reduced. Similarly, copper ion will react with electrons released from the copper electrode to form Cu(s) according to the following half-reaction:
Cu²⁺(aq) + 2e− → Cu(s)
The standard reduction potential of this half-reaction is +0.34 V. We can see that the Ag⁺ ion has a greater tendency to be reduced than the Cu²⁺ ion. Hence, silver is reduced in the given galvanic cell. The standard cell potential is calculated by subtracting the reduction potential of the oxidized half-reaction from that of the reduced half-reaction. Therefore, the standard cell potential is given as follows:
0.80 V - 0.34 V = 0.46 V.
Therefore, the correct answer is option (a) silver, 0.46 V.
Learn more about galvanic cell here:
https://brainly.com/question/33558906
#SPJ11