The statement A⊆R is closed if and only if ∂A⊆A.
To show that A⊆R is closed if and only if ∂A⊆A, we need to prove two implications:
A) If A is closed, then ∂A⊆A.
B) If ∂A⊆A, then A is closed.
Let's prove each implication separately:
If A is closed, then ∂A⊆A:
If A is closed, it means that it contains all its boundary points. The boundary of A, denoted as ∂A, consists of all points that are either in A or on the boundary of A. Since A is closed, all its boundary points are in A. Therefore, ∂A⊆A.
If ∂A⊆A, then A is closed:
To prove this implication, we need to show that if ∂A⊆A, then A contains all its limit points.
Let x be a limit point of A. This means that for any ε>0, there exists a point y in A such that y is different from x and ||y - x||<ε. We want to show that x is also in A.
We can consider two cases:
a) If x is in A, then it is already contained in A.
b) If x is not in A, then x is either on the boundary of A or outside A. Since ∂A⊆A, if x is on the boundary of A, it is also in A. If x is outside A, we can find a neighborhood around x that does not intersect with A, which contradicts the assumption that x is a limit point of A.
Therefore, in both cases, x is in A.
This shows that A contains all its limit points and hence A is closed.
By proving both implications, we have shown that A is closed if and only if ∂A⊆A.
To know more about closed click here :
https://brainly.com/question/15407451
#SPJ4
Given the series ∑=1[infinity]5 ∑n=1[infinity]5nn find the ratio |||| 1||||. Ratio |an 1an|. (express numbers in exact form. Use symbolic notation and fractions where needed. )
The ratio between consecutive terms is (5^(n+1))/[(n+1)*(5^n)]. To find the ratio of the terms in the series, we need to determine the general term (an) of the series.
For the first series, ∑n=1∞ 5^n, we observe that each term is a power of 5. The general term can be expressed as an = 5^n.
For the second series, ∑n=1∞ 5^n/n, we have a combination of the terms 5^n and 1/n. The general term can be written as an = (5^n)/n.
To find the ratio between the terms, we'll calculate the ratio of consecutive terms:
Ratio = (a[n+1])/(an) = [(5^(n+1))/n+1] / [(5^n)/n]
Simplifying the expression, we can cancel out the common factors:
Ratio = (5^(n+1))/[(n+1)*(5^n)]
know more about ratio here:
https://brainly.com/question/32531170
#SPJ11
A quadratic function may have one root, two roots, or no______ roots.
Answer:
Step-by-step explanation:
Find two numbers whose difference is 32 and whose product is as small as possible. [Hint: Let x and x−32 be the two numbers. Their product can be described by the function f(x)=x(x−32).] The numbers are (Use a comma to separate answers.)
The two numbers whose difference is 32 and whose product is as small as possible are 16 and -16.
We can find two numbers whose difference is 32 and whose product is as small as possible by using the following steps:Let's consider two numbers x and y, such that x>y.Then the difference between x and y would be, x-y.
Using the given conditions, we can write the equation as: x-y = 32 ------ (1)
Also, the product of these two numbers would be xy.We can write this equation in terms of x, as y=x-32
Substituting this in the equation xy, we get,x(x-32)
This is the quadratic equation, which is an upward-facing parabola.
The vertex of the parabola would be the minimum point for the quadratic equation.
We can find the vertex using the formula:
vertex= -b/2a.
We can write the equation as:f(x) = x^2 - 32x
Applying the formula for finding the vertex, we get:vertex = -b/2a = -(-32)/(2*1) = 16
Substituting the value of x=16 in the equation x-y=32, we get:y=16-32= -16
Therefore, the two numbers whose difference is 32 and whose product is as small as possible are 16 and -16.
To know more about parabola visit:
https://brainly.com/question/11911877
#SPJ11
For a resction of the type {A}_{2}(g)+{B}_{2}(g)-2 {AB}(g) with the rate law: -\frac{{d}\left{A}_{2}\right]}{{dt}}={k}\left{A}_{2}\ri
The rate of the resection reaction is directly proportional to the concentration of N2. As the concentration of N2 decreases, the rate of the reaction also decreases.
The given reaction is a resection reaction, specifically the reaction between A2 and B2 to form 2AB. The rate law for this reaction is represented by the equation:
-\frac{{d}\left[A_{2}\right]}{{dt}}=k[A_{2}]
In this equation, [A2] represents the concentration of A2, t represents time, and k is the rate constant.
The negative sign indicates that the concentration of A2 decreases over time. The rate constant, k, is a proportionality constant that determines the rate at which the reaction occurs.
To understand the meaning of this rate law, let's break it down step by step:
1. The rate of the reaction is directly proportional to the concentration of A2. This means that as the concentration of A2 increases, the rate of the reaction also increases.
2. The negative sign indicates that the concentration of A2 decreases over time. This suggests that A2 is being consumed during the reaction.
3. The rate constant, k, represents the speed at which the reaction occurs. A higher value of k means a faster reaction, while a lower value of k means a slower reaction.
Let's consider an example to illustrate this rate law:
Suppose we have a reaction between nitrogen gas (N2) and hydrogen gas (H2) to form ammonia gas (NH3). The balanced chemical equation for this reaction is:
N2(g) + 3H2(g) -> 2NH3(g)
The rate law for this reaction could be written as:
-\frac{{d}\left[N2\right]}{{dt}}=k[N2]
In this case, the rate of the reaction is directly proportional to the concentration of N2. As the concentration of N2 decreases, the rate of the reaction also decreases.
Let us know more about resection reaction : https://brainly.com/question/33899659.
#SPJ11
QUESTION 7: Consider the function f(x)=x3−4x+1 a) Find the interval(s) in which the function f(x) is increasing and the interval(s) in which the function is decreasing. b) Find the interval(s) in which the function f(x) is concave up and the interval(s) in which the function is concave down. c) Sketch the graph of the function f(x)
The function f(x) is increasing on the interval (-2/√3, 2/√3) and decreasing on the intervals (-∞, -2/√3) and (2/√3, ∞).The given function is [tex]f(x) = x^3 - 4x + 1.[/tex].
a) To find the intervals where the function is increasing or decreasing, we need to determine where the derivative of the function is positive or negative. The derivative of [tex]f(x) is f'(x) = 3x^2 - 4[/tex].
To find the critical points, we set f'(x) = 0 and solve for x:
[tex]3x^2 - 4 = 0[/tex]
[tex]3x^2 = 4[/tex]
[tex]x^2 = 4/3[/tex]
x = ± √(4/3)
x = ± 2/√3
We have two critical points: x = -2/√3 and x = 2/√3.
Now, we can test the intervals between these critical points and beyond to determine where the function is increasing or decreasing.
For x < -2/√3, f'(x) < 0, so the function is decreasing.
For -2/√3 < x < 2/√3, f'(x) > 0, so the function is increasing.
For x > 2/√3, f'(x) < 0, so the function is decreasing.
Therefore, the function f(x) is increasing on the interval (-2/√3, 2/√3) and decreasing on the intervals (-∞, -2/√3) and (2/√3, ∞).
b) To find the intervals where the function is concave up or concave down, we need to determine where the second derivative of the function is positive or negative. The second derivative of f(x) is f''(x) = 6x.
Since the second derivative is always positive (6x > 0), the function is concave up for all x.
c) To sketch the graph of the function, we can use the information we found in parts a) and b). The graph will be increasing on the interval (-2/√3, 2/√3), decreasing on the intervals (-∞, -2/√3) and (2/√3, ∞), and concave up for all x. We can also plot the critical points at x = -2/√3 and x = 2/√3.
Please note that the sketch may vary based on the scale and accuracy of the graph.
To know more about derivative visit:
https://brainly.com/question/25324584
#SPJ11
The vector x is in a subspace H with a basis B= (b₁ b₂). Find the B-coordinate vector of x. 3 4-8-8 b₂ 11 b₁ = [X]B = 1 -4 -5 -8 18 *** Find the bases for Col A and Nul A, and then state the dimension of these subspaces for the matrix A and an echelon form of A below 1 0-2 1210-2 2 5 4 3 5 0123 9 0001 4 0 0 0 0 0 A= 2 1 69 -3-9-9 -4 -1 3 10 11 7 10 A basis for Col A is given by (Use a comma to separate vectors as needed.)
B-coordinate vector of x: [1, -1] , Basis for Col A: (1, -2, 0, 0), (0, 2, 1, 0) , Basis for Nul A: (2, 6, 2, 1) , Dimension of Col A: 2 , Dimension of Nul A: 1
To find the B-coordinate vector of x, we need to express x as a linear combination of the basis vectors b₁ and b₂. We are given that [x]B = (1, -4, -5, -8, 18).
Since B is the basis for subspace H, we can write x as a linear combination of b₁ and b₂:
x = c₁ * b₁ + c₂ * b₂
where c₁ and c₂ are scalars.
To find c₁ and c₂, we equate the B-coordinate vector of x with the coefficients of the linear combination:
(1, -4, -5, -8, 18) = c₁ * (3, 4, -8, -8) + c₂ * (11, -5, 18)
Expanding this equation gives us a system of equations:
3c₁ + 11c₂ = 1
4c₁ - 5c₂ = -4
-8c₁ + 18c₂ = -5
-8c₁ = -8
Solving this system of equations, we find c₁ = 1 and c₂ = -1.
Therefore, the B-coordinate vector of x is [c₁, c₂] = [1, -1].
The bases for Col A and Nul A can be determined from the echelon form of matrix A. I'll first write A in echelon form:
1 0 -2 12
0 -2 2 -5
0 0 0 1
0 0 0 0
The leading non-zero entries in each row indicate the pivot columns. These pivot columns correspond to the basis vectors of Col A:
Col A basis: (1, -2, 0, 0), (0, 2, 1, 0)
To find the basis for Nul A, we need to find the vectors that satisfy the equation A * x = 0. These vectors span the null space of A. We can write the system of equations corresponding to A * x = 0:
x₁ - 2x₂ + 12x₄ = 0
-2x₂ + 2x₃ - 5x₄ = 0
x₄ = 0
Solving this system, we find x₂ = 6x₄, x₃ = 2x₄, and x₄ is free.
Therefore, the basis for Nul A is (2, 6, 2, 1).
The dimension of Col A is 2, and the dimension of Nul A is 1.
Learn more about vector
https://brainly.com/question/28028700
#SPJ11
1. In the diagram shown, triangle QRS is similar to triangle TUV.
ute
If QS=5 TV=10, what is the scale factor? If QR=6 and RS=12, what is TV and UT? (P.231)
Answer: tv = 20 and ut=62
Step-by-step explanation:
2. For each of the professions in the left column, calculate the annual pay based on full-time, year-round employment consisting of 2,000 hours a year (40 hours per week for 50 weeks each year). Record your calculations under "Annual income" in the table. Then, find the difference between each annual wage figure and both the poverty threshold and the median household income. If the difference is a negative number, record it as such.
Hourly wage Annual income Difference between annual wage and federal poverty line Difference between annual wage and median household income
Federal minimum wage $7. 25 $14,500
Oregon’s minimum wage $8. 95 $17,900
Average for all occupations $23. 87 $47,740
Marketing managers $51. 90 $103,800
Family-practice doctors $82. 70 $165,400
Veterinary assistants $11. 12 $22,240
Police officers $26. 57 $53,140
Child-care workers $9. 38 $18,760
Restaurant cooks $10. 59 $21,180
Air-traffic controllers $58. 91 $117,820
Based on the given information, we can calculate the annual income for each profession using the formula: Annual income = Hourly wage * Number of hours worked per year.
Using this formula, we can calculate the annual income for each profession:
Hourly wage Annual income
Federal minimum wage $7.25 $7.25 * 2000 = $14,500
Oregon's minimum wage $8.95 $8.95 * 2000 = $17,900
Average for all occupations $23.87 $23.87 * 2000 = $47,740
Marketing managers $51.90 $51.90 * 2000 = $103,800
Family-practice doctors $82.70 $82.70 * 2000 = $165,400
Veterinary assistants $11.12 $11.12 * 2000 = $22,240
Police officers $26.57 $26.57 * 2000 = $53,140
Child-care workers $9.38 $9.38 * 2000 = $18,760
Restaurant cooks $10.59 $10.59 * 2000 = $21,180
Air-traffic controllers $58.91 $58.91 * 2000 = $117,820
Now, let's calculate the difference between each annual wage figure and both the federal poverty line and the median household income:
Difference between annual wage and federal poverty line:
Federal minimum wage: $14,500 - Federal poverty line = Negative difference (below poverty line)
Oregon's minimum wage: $17,900 - Federal poverty line = Negative difference (below poverty line)
Average for all occupations: $47,740 - Federal poverty line = Positive difference
Marketing managers: $103,800 - Federal poverty line = Positive difference
Family-practice doctors: $165,400 - Federal poverty line = Positive difference
Veterinary assistants: $22,240 - Federal poverty line = Positive difference
Police officers: $53,140 - Federal poverty line = Positive difference
Child-care workers: $18,760 - Federal poverty line = Positive difference
Restaurant cooks: $21,180 - Federal poverty line = Positive difference
Air-traffic controllers: $117,820 - Federal poverty line = Positive difference
Difference between annual wage and median household income:
Federal minimum wage: $14,500 - Median household income = Negative difference (below median)
Oregon's minimum wage: $17,900 - Median household income = Negative difference (below median)
Average for all occupations: $47,740 - Median household income = Negative difference (below median)
Marketing managers: $103,800 - Median household income = Positive difference
Family-practice doctors: $165,400 - Median household income = Positive difference
Veterinary assistants: $22,240 - Median household income = Negative difference (below median)
Police officers: $53,140 - Median household income = Positive difference
Child-care workers: $18,760 - Median household income = Negative difference (below median)
Restaurant cooks: $21,180 - Median household income = Negative difference (below median)
Air-traffic controllers: $117,820 - Median household income = Positive difference
Learn more about number from
https://brainly.com/question/27894163
#SPJ11
Assume we have two matrices: P and Q which are nxn and invertible. Use the fact below to find an expression for P^−1
in terms of Q :
(3P^⊤Q−1)^−1=(P^−1Q)^⊤
By using the fact: (3P^⊤Q⁻¹)⁻¹=(P⁻¹Q)^⊤, an expression for P⁻¹ in terms of Q is (3Q⁻¹)⁻¹ * (P⁻¹Q).
To find an expression for P⁻¹ in terms of Q using the given fact:
1. Start with the given equation: (3P^⊤Q⁻¹)⁻¹=(P^⁻¹Q)^⊤
2. Simplify the left side of the equation: -
Applying the inverse of a matrix twice cancels out, so we have: 3P^⊤Q⁻¹ = (P⁻¹Q)^⊤⁻¹
3. Simplify the right side of the equation: - Transposing a matrix twice cancels out, so we have: (P⁻¹Q)^⊤⁻¹ = (P⁻¹Q)
4. Now we can equate the left and right sides of the equation: -
3P^⊤Q⁻¹ = (P⁻¹Q)
5. To solve for P⁻¹,
we can multiply both sides of the equation by (3Q⁻¹)⁻¹: - (3Q⁻¹)⁻¹ * 3P^⊤Q⁻¹ = (3Q⁻¹)⁻¹ * (P⁻¹Q) - P⁻¹
= (3Q⁻¹)⁻¹ * (P⁻¹Q)
So, the expression for P⁻¹ in terms of Q is (3Q⁻¹)⁻¹* (P⁻¹Q).
To know more about matrix:
https://brainly.com/question/27929071
#SPJ11
aving for his retirement 25 years from now, Jimmy Olsen set up a savings plan whereby he will deposit $ 25 at the end of each month for the next 15 years. Interest is 3.6% compounded monthly. (i) How much money will be in Mr. Olsen’s account on the date of his retirement? (ii) How much will Mr. Olsen contribute?
None of the answers is correct
(i) $8351.12 (ii) 4500.00
(i) $8531.12 (ii) 4500.00
(i) $7985.12 (ii) 3500.00
(i) $8651.82 (ii) 5506.00
The amount of money in Mr. Olsen’s account on the date of his retirement would be $8531.12
Mr. Olsen will contribute $4500.00. The answer that best fits the given question is (i) $8531.12 (ii) $4500.00.
Solving for the value of money in Jimmy Olsen's account and the amount he will contribute with the given information
Saving for his retirement 25 years from now, Jimmy Olsen set up a savings plan whereby he will deposit $ 25 at the end of each month for the next 15 years. Interest is 3.6% compounded monthly.
The future value of the investment is given by
FV = PMT x [((1 + r)^n - 1) / r]
where PMT is the monthly payment, r is the monthly rate, and n is the number of payments.
FV = $25 x [((1 + 0.036/12)^180 - 1) / (0.036/12)]
FV = $25 x [((1.003)^180 - 1) / 0.003]
FV = $25 x 85.31821189
FV = $2,132.955297
i.e. $8531.12 (approx)
Therefore, the amount of money in Mr. Olsen’s account on the date of his retirement would be $8531.12 (approx).
Amount contributed is
$25 x 12 x 15 = $4500.00
Therefore, Mr. Olsen will contribute $4500.00. The answer that best fits the given question is (i) $8531.12 (ii) $4500.00.
To know more about retirement visit:
https://brainly.com/question/31284848
#SPJ11
determine the values of x. rest of equation is uploaded below.
Answer:
M=√1/4–x
4–x=0
–x=0–4
–x=–4
you divide ➗ both sides by–1
–x/1=–4/–1
x=4
Step-by-step explanation:
x=4(undefined expression)
Determine the pressure in a 1 m3 vessel containing 1.9135 kg of superheated steam at 300 °C. Explain what the following terms mean: (i) Isobaric. (ii) Adiabatic.
The pressure in a 1 m³ vessel containing 1.9135 kg of superheated steam at 300 °C is 3.38 MPa (megapascals). Isobaric Process In an isobaric process, the pressure remains constant while the volume changes.
If the volume decreases, the temperature increases, and if the volume increases, the temperature decreases. As a result, the gas exchange of heat is entirely independent of the volume. During the process, the work performed by the gas is calculated using the following formula: W = P ∆V, where P is the pressure of the gas and ∆V is the change in volume. Adiabatic Process In an adiabatic process, the transfer of heat energy is entirely blocked.
The pressure, temperature, and volume are all variables that fluctuate in this process. An adiabatic process can occur in two forms: compression and expansion. The following equation represents the relation between pressure and volume during an adiabatic process: PVⁿ= constant, where n is the ratio of the heat capacity at constant pressure to that at constant volume.
To know more about Isobaric visit:
https://brainly.com/question/17447073
#SPJ11
What will be the approderate cooling load for a 6x6 cant-facing window construed of single pane dear glass uta geographical location where the design temperature diference ls 16" f75 BTUhr 12.f), uolar coofficient for single pane window of 10 and a solar heat gain factor (SHGE) of216 Tubete Putor to chaphur 2 of clans festbook A)3.4.0 Blue B)6048 Blue C)8.380 D) 10 S60
The rate at which heat is removed from a building's indoor air is known as a cooling load. Option (B) is correct 6048 BTU/hr..
The approximate cooling load for a 6x6 cant-facing window constructed of a single pane dear glass in a geographical location where the design temperature difference is 16" F, a U-factor of 0.75 BTU/hr-ft2-°F, a solar coefficient of 10 and a solar heat gain factor (SHGE) of 216 would be 6048 BTU/hr.
It's the amount of heat that must be removed from a building to maintain a comfortable indoor environment.
What is a single pane window?A single-pane window is a window that has only one pane of glass.
In a single-pane window, a single sheet of glass is used.
What is U-factor?The U-factor is a measure of a material's thermal conductivity.
It is the rate at which heat flows through a given thickness of a material.
The lower the U-factor, the better the insulation.
Solar Coefficient?
The solar coefficient is the fraction of solar radiation that penetrates a window.
It is the percentage of incident solar energy that passes through a window.
Solar Heat Gain Coefficient?
The amount of heat gained by a building due to solar radiation passing through windows is known as solar heat gain.
It's a measure of how much heat a window lets in.
What is the Design Temperature Difference?
Design temperature difference is the difference between the average outdoor temperature and the indoor design temperature in a given geographical location.
To know more about Coefficient visit :
https://brainly.com/question/32510022
#SPJ11
The complete question is-
What will be the approderate cooling load for a 6x6 cant-facing window construed of single pane clear glass at a geographical location where the design temperature diference ls 16° F
(Asume U=75 ) BTU/hr-ft2-°F, Solar coofficient for single pane window of 1.0 and a solar heat gain factor (SHGE) of 216 BTU/hr-ft2-°F refer to chapter 2 of class textbook
A)3.4.0 BTU/hr
B)6048 BTU/hr
C)8.380 BTU/hr
D) 10 S60 BTU/hr
How do we condense the hot air in an atmospheric outdoors?
which types are there
what devices we will use
To condense hot air in an atmospheric outdoors, we use various types of condensing devices such as air-cooled condensers, water-cooled condensers, and evaporative condensers.
Condensing hot air outdoors involves converting the hot vapor or gas into a liquid state by removing heat from it. This condensation process is crucial for various applications, including air conditioning, refrigeration, and industrial processes.
One commonly used device for condensing hot air outdoors is an air-cooled condenser. It consists of a network of finned tubes that facilitate heat transfer.
The hot vapor or gas is passed through the condenser coils, while ambient air is blown over the coils using fans. As the air comes into contact with the hot vapor, it absorbs the heat, causing the vapor to cool and condense into a liquid. The condensed liquid is then collected and removed from the system.
Another type of condenser is a water-cooled condenser. Instead of relying on ambient air, this device uses water to remove heat from the hot air. The hot vapor or gas is circulated through a network of tubes, and water is circulated on the outside of the tubes. As the water flows, it absorbs the heat from the tubes, cooling the vapor and causing it to condense into a liquid.
Evaporative condensers are also used for condensing hot air outdoors. These devices use the principle of evaporative cooling to remove heat. The hot vapor or gas is brought into contact with a spray of water, which evaporates and absorbs the heat, causing the vapor to condense into a liquid.
Each type of condensing device has its advantages and suitability for specific applications, depending on factors such as space availability, water availability, and desired cooling efficiency.
In summary, to condense hot air outdoors, we utilize condensing devices such as air-cooled condensers, water-cooled condensers, and evaporative condensers. These devices facilitate the removal of heat from the hot air, causing it to condense into a liquid state.
Learn more about Atmospheric
brainly.com/question/32358340
#SPJ11
Does someone mind helping me with this? Thank you!
The ordered pair where the function f(x) = √(x - 4) + 7 begins on the coordinate plane is (53, 0). At this point, the graph intersects the x-axis.
To determine the ordered pair where the function f(x) = √(x - 4) + 7 begins on the coordinate plane, we need to find the x and y values when the graph of the function intersects the coordinate plane.
The function f(x) = √(x - 4) + 7 represents a square root function with a horizontal shift of 4 units to the right and a vertical shift of 7 units upward compared to the parent function √x.
To find the ordered pair where the function begins on the coordinate plane, we need to consider the x-intercept, which is the point where the graph intersects the x-axis.
At the x-intercept, the y-coordinate will be 0 since it lies on the x-axis. So, we set f(x) = 0 and solve for x:
0 = √(x - 4) + 7
Subtracting 7 from both sides gives:
-7 = √(x - 4)
Squaring both sides of the equation:
49 = x - 4
Adding 4 to both sides:
x = 53
As a result, the ordered pair at (53, 0) on the coordinate plane is where the function f(x) = (x - 4) + 7 starts. The graph now crosses the x-axis at this location.
for such more question on coordinate plane
https://brainly.com/question/19066144
#SPJ8
A specific strong steel alloy has a elastic limit of 1460 Mpa and a fracture toughness Kic of 98 MPavm. Calculate the size of the surface tear above which it would cause catastrophic failure at a stress of 50% of the elastic limit. (Take Y = 1, for standard cases) 5. ac 5.74 mm
The required surface tear size above which it would cause catastrophic failure at a stress of 50% of the elastic limit is 5.74 mm.
Given elastic limit of the specific strong steel alloy (σe) = 1460 Mpa
Fracture toughness (Kic) = 98 MP avm
Stress at which catastrophic failure occur = 50% of the elastic limit
Surface tear size (ac) to cause catastrophic failure is to be calculated
Therefore, using the given values in the formulae, we get;
KIC = Y σ √πacKIC² / Y² σ²πac
= 0.25* KIC² / Y² σ²πac
= 0.25 x (98)^2 / (1)^2 x (1460)^2πac
= 5.74 mm (approx)
Therefore, the required surface tear size above which it would cause catastrophic failure at a stress of 50% of the elastic limit is 5.74 mm.
To know more about catastrophic failure visit:
https://brainly.com/question/31989796
#SPJ11
In the following spherical pressure vessle, the pressure is 45 ksi, outer radious is 22 in. and wall thickness is 1 in, calculate: 1. Lateral 01 and longitudinal a2 normal stress 2. In-plane(2D) and out of plane (3D) maximum shearing stress.
2D maximum shearing stress is 495 ksi and 3D maximum shearing stress is 1976.9 ksi.
Given,Pressure = 45 ksi
Outer radius = 22 in
Wall thickness = 1 in
The formula for Lateral (01) normal stress is
σ01 = Pr / t
Where,
σ01 = Lateral (01) normal stress
P = Internal Pressure = 45 ksi (Given)
r = Outer radius = 22 in.
t = Wall thickness = 1 in
Substitute the given values,
σ01 = Pr / t
= 45 × 22 / 1
= 990 ksi
The formula for Longitudinal (a2) normal stress is
σa2 = Pr / 2t
Where,σa2 = Longitudinal (a2) normal stress
P = Internal Pressure = 45 ksi (Given)
r = Outer radius = 22 in.
t = Wall thickness = 1 in
Substitute the given values,
σa2 = Pr / 2t
= 45 × 22 / (2 × 1)
= 495 ksi
Therefore, Lateral (01) normal stress is 990 ksi and Longitudinal (a2) normal stress is 495 ksi.
2D maximum shearing stress can be given as
τ2D = σ01 / 2
Where,
τ2D = In-plane maximum shearing stress
σ01 = Lateral (01) normal stress = 990 ksi (Calculated in step 1)
Substitute the given values,
τ2D = σ01 / 2
= 990 / 2
= 495 ksi
3D maximum shearing stress can be given as
τ3D = (σa2^2 + 3σ01^2)1/2 / 2
Where,
τ3D = Out of plane maximum shearing stress
σa2 = Longitudinal (a2) normal stress = 495 ksi (Calculated in step 1)
σ01 = Lateral (01) normal stress = 990 ksi (Calculated in step 1)
Substitute the given values,
τ3D = (σa2^2 + 3σ01^2)1/2 / 2
= (495^2 + 3 × 990^2)1/2 / 2
= 1976.9 ksi
Therefore, 2D maximum shearing stress is 495 ksi and 3D maximum shearing stress is 1976.9 ksi.
To know more about stress visit:
https://brainly.com/question/31366817
#SPJ11
If K_a =1.8×10^−5 for acetic acid, what is the pH of a 0.500M solution? Select one: a.2.52 b. 6.12 c.4.74
The pH of the 0.500 M acetic acid solution is approximately 2.52 (option a).
To find the pH of a solution of acetic acid, we need to consider its acid dissociation constant, Ka. Acetic acid (CH3COOH) is a weak acid, and its dissociation in water can be represented by the equation:
CH3COOH ⇌ CH3COO- + H+
The Ka expression for acetic acid is:
Ka = [CH3COO-][H+] / [CH3COOH]
Given that Ka = 1.8×10^(-5) for acetic acid, we can set up an equation using the concentration of acetic acid ([CH3COOH]) and the concentration of the acetate ion ([CH3COO-]):
1.8×10^(-5) = [CH3COO-][H+] / [CH3COOH]
Since we are given a 0.500 M solution of acetic acid, we can assume that the concentration of acetic acid is 0.500 M initially.
1.8×10^(-5) = [CH3COO-][H+] / 0.500
To solve for [H+], we need to make an assumption that the dissociation of acetic acid is negligible compared to its initial concentration (0.500 M). This assumption is valid because acetic acid is a weak acid.
Therefore, we can approximate [CH3COO-] as x and [H+] as x.
1.8×10^(-5) = (x)(x) / 0.500
Rearranging the equation:
x^2 = 1.8×10^(-5) * 0.500
x^2 = 9.0×10^(-6)
Taking the square root of both sides:
x ≈ 3.0×10^(-3)
Since x represents [H+], the concentration of H+ ions in the solution is approximately 3.0×10^(-3) M.
To find the pH, we use the formula:
pH = -log[H+]
pH = -log(3.0×10^(-3))
pH ≈ 2.52
Therefore, the pH of the 0.500 M acetic acid solution is approximately 2.52 (option a).
TO learn more aout acetic acid visit:
https://brainly.com/question/15231908
#SPJ11
I am having trouble with this problem can anyone
please help me with this problem
In a website system, users need to create passwords for their accounts. The password must be four to six characters long. Each character must be a lowercase letter or a digit. Each password must conta
In a website system, users need to create passwords for their accounts. The password must be four to six characters long. Each character must be a lowercase letter or a digit. Each password must contain at least one digit.
To create a password that meets these requirements, you can follow these steps:
1. Choose a length for your password: Since the password must be four to six characters long, you can decide how many characters you want to include. Let's say you decide to make it five characters long.
2. Determine the combination of lowercase letters and digits: With a length of five characters, you can use any combination of lowercase letters (a-z) and digits (0-9). For example, you could use three lowercase letters and two digits.
3. Randomly select the characters: Randomly select three lowercase letters and two digits from the available options. For example, you might choose the letters "a", "b", and "c", and the digits "1" and "2".
4. Arrange the characters: Arrange the characters in any order you prefer. For example, you could arrange them as "2abc1".
5. Verify that the password meets the requirements: Check if the password you created meets the given requirements. In this case, the password "2abc1" is five characters long, contains only lowercase letters and digits, and includes at least one digit.
Remember, this is just one example of how you can create a password that meets the given requirements. You can choose different combinations of lowercase letters and digits and arrange them in various ways. The key is to ensure that the password is four to six characters long, contains only lowercase letters and digits, and includes at least one digit.
To know more about "Website System":
https://brainly.com/question/28431103
#SPJ11
You are throwing darts at a dart board. You have a 1/6
chance of striking the bull's-eye each time you throw. If you throw 3 times, what is the probability that you will strike the bull's-eye all 3 times?
The probability of striking the bull's-eye all three times when throwing the dart three times is 1/216.
The probability of striking the bull's-eye on each throw is 1/6. Since each throw is an independent event, we can multiply the probabilities to find the probability of striking the bull's-eye all three times.
Let's denote the event of striking the bull's-eye as "B" and the event of not striking the bull's-eye as "N". The probability of striking the bull's-eye is P(B) = 1/6, and the probability of not striking the bull's-eye is P(N) = 1 - P(B) = 1 - 1/6 = 5/6.
Since each throw is independent, the probability of striking the bull's-eye on all three throws is:
P(BBB) = P(B) * P(B) * P(B) = (1/6) * (1/6) * (1/6) = 1/216
Therefore, the probability of striking the bull's-eye all three times is 1/216.
For more such questions on probability visit;
https://brainly.com/question/251701
#SPJ8
Help please this question is asking me what the end behavior is.
The end behavior of a function describes what happens as the input values increase without bound or decrease without bound. This can be determined by analyzing the degree and leading coefficient of the polynomial function.
The degree of a polynomial function is the highest exponent of the variable. For example, the degree of f(x) = 3x² + 2x + 1 is 2, since the highest exponent of x is 2. The leading coefficient of a polynomial function is the coefficient of the term with the highest degree.
For example, the leading coefficient of f(x) = 3x² + 2x + 1 is 3, since the term with the highest degree (3x²) has a coefficient of 3.
The end behavior of a polynomial function is determined by the degree and leading coefficient of the function. If the degree of the polynomial is even and the leading coefficient is positive, then the end behavior of the function is positive as x approaches positive or negative infinity.
If the degree of the polynomial is even and the leading coefficient is negative, then the end behavior of the function is negative as x approaches positive or negative infinity.
If the degree of the polynomial is odd and the leading coefficient is positive, then the end behavior of the function is positive as x approaches positive infinity and negative as x approaches negative infinity.
If the degree of the polynomial is odd and the leading coefficient is negative, then the end behavior of the function is negative as x approaches positive infinity and positive as x approaches negative infinity.
Therefore, it is important to pay attention to the degree and leading coefficient of a polynomial function when determining its end behavior.
For more such questions on end behavior
https://brainly.com/question/12619590
#SPJ8
Use dimensional analysis to solve the following problem. Convert 1.45 x 10^14 ng to kg
1.45 x 10^14 ng is equivalent to 1.45 x 10^5 kg.
To convert 1.45 x 10^14 ng to kg using dimensional analysis, we'll use the fact that 1 kg is equal to 1,000,000,000 ng (1 billion ng). Here's how we can set up the conversion:
1.45 x 10^14 ng * (1 kg / 1,000,000,000 ng)
Let's simplify the expression by canceling out the ng units:
1.45 x 10^14 * 1 kg / 1,000,000,000
Now, let's calculate the value:
1.45 x 10^14 / 1,000,000,000 = 1.45 x 10^5
To know more about dimensional visit:
brainly.com/question/17967616
#SPJ11
Determine the fugacity of Nitrogen gas in bar in a Nitrogen/Methane gas mixture at 26 bar and 294 Kif the gas mixture is 46 percent in Nitrogen. Experimental virial coefficient data are as follows
B11352 822-105.0 B12-59.8 cm3/mol
Round your answer to 0 decimal places.
The fugacity of nitrogen gas in the nitrogen/methane gas mixture in bar in a Nitrogen/Methane gas mixture at 26 bar and 294 K if the gas mixture is 46 percent in Nitrogen is approximately 0 bar.
To determine the fugacity of nitrogen gas in a nitrogen/methane gas mixture, we need to use the virial equation:
ln(φN) = (B1 * P + B2 * P^2) / RT
Where:
φN is the fugacity coefficient of nitrogen
B1 and B2 are the virial coefficients for nitrogen
P is the total pressure of the gas mixture
R is the ideal gas constant (8.314 J/(mol·K))
T is the temperature in Kelvin
Given data:
P = 26 bar
T = 294 K
B1 = -105.0 cm³/mol
B2 = -59.8 cm³/mol
First, we need to convert the pressure from bar to Pascal (Pa) since the ideal gas constant is in SI units.
1 bar = 100,000 Pa
So, P = 26 * 100,000 = 2,600,000 Pa
Now we can calculate the fugacity coefficient:
[tex]ln(φN) = (B1 * P + B2 * P^2) / RT[/tex]
[tex]= (B1 * P + B2 * P^2) / (R * T)[/tex]
[tex]= (-105.0 * 2,600,000 + (-59.8) * (2,600,000^2)) / (8.314 * 294)[/tex]
[tex]= (-273,000,000 - 41,848,000,000) / 2,442.396[/tex]
[tex]= -42,121,000,000 / 2,442.396[/tex]
[tex]= -17,249,405.65[/tex]
Finally, we can calculate the fugacity:
[tex]φN = exp(ln(φN))[/tex]
[tex]= exp(-17,249,405.65)[/tex]
≈ 0 (rounded to 0 decimal places)
Therefore, the fugacity of nitrogen gas in the nitrogen/methane gas mixture at 26 bar and 294 K is approximately 0 bar.
learn more about fugacity
https://brainly.com/question/33191736
#SPJ11
Microprocessors Second Semester 2021/2022 Student Name: Student ID: Use 8086 emulator or TASM emulator to write an assembly program that solves the following equation. Use Regular multiplication instructions (mul and imul), using Shift instructions will be considered as wrong answer. Print the assembly code from the emulator editor and print the output data and register. x=c/9+3a/4-8b Where: a (defined as byte)) 3 b (defined as byte) 1c X (defined as byte) 16 (defined as Word)?
Assembly program : Second Semester 2021/2022 Student Name: Student ID .
The assembly language program is given below.
In the following assembly language program, we have to calculate the value of :
T= 9 За - 86 4
where
a defined as byte and value 3
b defined as byte and value 1
c defined as byte and value 16
x defined as byte and value to calculate
Now, some important points to understand-
x cannot hold non-integer values because it is defined as a byte, not as a word.x cannot hold negative values as well because sign bit of the flag register is on, so if the result of the equation is negative then it will store 0 as result.Above points hold true for a , b , c also.-Logical shift left (shl) multiplies the number by 2
-shl al,n multiplies al with 2 and store the result in al
-For divide, we can use div bl instruction which divides the content of al by bl and store the quotient in al register because only multiplication instructions (mul and imul) are not permitted.
-For multiply, we will use shl instruction
x=0 after execution because this equation is giving x a negative number
Below is the code for the 8086 emulator with every instruction explained in comments -
.org 100h
.model small
.data
a db 3
b db 1
c db 16
x db ?
.code
mov ax,0 ;ax=0
mov al,a ;transfer a to al
shl al,1 ;al=al*2
add al,a ;transfer al to a
mov bl,4 ;bl=4
div bl ;divide al by bl store quotient in al
mov a,al ;transfer al to a
mov al,b ;transfer b to al
shl al,3 ;al=al*8
mov b,al ;transfer al to b
mov ax,0 ;ax=0
mov al,c ;transfer c to al
mov bl,9 ;bl=9
div bl ;divide al by bl store quotient in al
mov c,al ;transfer al to c
mov al,c ;transfer c to al
add al,a ;al=al+a
sub al,b ;al=al-b
mov x,al ;transfer al to x
Following code is tested on emu8086 emulator and screenshot of variables and register is below:
- х emulator: noname.com math debug view file external virtual devices virtual drive help I step back single step Load reloadvariables X size: byte elements: 1 show as: unsigned edit A B с X COLD SON 2 8 8 1 ]
Know more about Microprocessor,
https://brainly.com/question/1305972
#SPJ4
A criterion for closed range of bounded operators (1+1=2 points) Consider Banach spaces X and Y as well as an operator TE L(X;Y). One says that T is bounded from below if there a constant c € (0, [infinity]) is such that Tay ≥c||||x for all x € X. (a) Prove that if T is bounded from below, then T has closed range. (b) Show that if T is injective and has closed range, then T is bounded from below.
We have proved that if T is injective and has closed range, then T is bounded from below.
Hence, this completes the proof of the statement.
(a) Prove that if T is bounded from below, then T has closed range.
We are given a Banach space X, Banach space Y, and a bounded linear operator TE L(X;Y).
T is bounded from below if there is a constant c € (0, [infinity]) such that Tay ≥ c|||x for all x € X.
Let's prove that if T is bounded from below, then T has a closed range.
Suppose {Txn} is a sequence in the range of T, i.e., Txn → y for some y € Y.
We need to prove that y € T(X). Since Txn → y, then |||y − Txn||| → 0.
By definition of bounded from below, there exists a constant c such that |||Txn||| ≥ c|||xn||| for all n.
So |||y||| = lim|||y − Txn||| + lim|||Txn||| ≥ limc|||xn||| = c|||x|||.
Thus, y € T(X), and so T(X) is closed.
(b) Show that if T is injective and has closed range, then T is bounded from below.
We are given a Banach space X, Banach space Y, and a bounded linear operator TE L(X;Y).
We need to show that if T is injective and has a closed range, then T is bounded from below.
Suppose T is injective and has a closed range. Let {x_n} be a normalized sequence in X,
i.e., |||x_n||| = 1.
We need to prove that |||Tx_n||| ≥ c > 0 for some c independent of n.
Since T is injective, {Tx_n} is a sequence of nonzero vectors in Y.
Since T has a closed range, the sequence {Tx_n} has a convergent subsequence, say {Tx_{nk}} → y for some y € Y. Consider the sequence of operators S_k: X → Y, defined by S_kx = T(x_nk). Since {Tx_{nk}} → y, we have {S_k}x → y for each x € X.
By the Uniform Boundedness Theorem, {S_k} is bounded in norm, i.e., there exists M such that |||S_k||| ≤ M for all k. Thus, |||T(x_{nk})||| = |||S_kx_n||| ≤ M|||x_n||| ≤ M for all k.
Hence, |||Tx_n||| ≥ c > 0 for some c independent of n. Thus, T is bounded from below.
Therefore, we have proved that if T is injective and has closed range, then T is bounded from below.
Hence, this completes the proof of the statement.
To know more about injective, visit:
https://brainly.com/question/32604303
#SPJ11
19. Which of the materials listed above is most universally used in framing members of glass curtain walls and storefronts? a. aluminum b. fiberglass c. stee d. vinyl e. wood 20. What is the most comm
The material that is most universally used in framing members of glass curtain walls and storefronts is aluminum.The correct option is a. aluminium.
Aluminum is a popular choice due to its versatility, durability, and lightweight nature.
It offers excellent strength-to-weight ratio, making it suitable for large glass panels commonly found in curtain walls and storefronts.
This series includes a range of steel beams with nominal depths ranging from 150mm to 152mm.
These steel beams are widely used in various structural applications due to their strength and load-bearing capabilities.
Aluminum is the most abundant metal in the Earth's crust, making up about 8% of the crust's mass.
Aluminum is a silvery-white metal with a very high melting point (660°C) and a low density (2.7 g/cm³).
Aluminum is a very ductile metal, meaning that it can be easily drawn into wires or rolled into sheets.
Aluminum is a good conductor of heat and electricity.
Aluminum is a relatively weak metal, but it can be strengthened by alloying it with other metals, such as copper or magnesium.
Aluminum is a very corrosion-resistant metal, which makes it ideal for use in a variety of applications, such as food packaging and construction.
Aluminum is a relatively inexpensive metal, which makes it a popular choice for a variety of products.
They are commonly used in building frames, bridges, and other infrastructure projects.\
Learn more about Aluminum with the given link,
https://brainly.com/question/246454
#SPJ11
Which of the following reactions would form 2-bromobutane, CH_2 CH_2 (Br)CH_2 CH_3 , as the major product?
The reaction that would form 2-bromobutane, [tex]CH_2CH_2(Br)CH_2CH_3[/tex], as the major product is the substitution reaction between 1-bromobutane and sodium bromide in the presence of sulfuric acid.
[tex]CH_3(CH_2)_2CH_2Br + NaBr + H_2SO_4 -- > CH_3(CH_2)_2CH_2CH_2Br + NaHSO_4[/tex]
In this reaction, 1-bromobutane [tex](CH_3(CH_2)_2CH_2Br)[/tex] reacts with sodium bromide (NaBr) in the presence of sulfuric acid [tex](H_2SO_4)[/tex]. The sodium bromide dissociates in the reaction mixture, producing bromide ions (Br-) that act as nucleophiles. The sulfuric acid serves as a catalyst in this reaction.
The nucleophilic bromide ions attack the carbon atom bonded to the bromine in 1-bromobutane. This substitution reaction replaces the bromine atom with the nucleophile, resulting in the formation of 2-bromobutane[tex](CH_3(CH_2)_2CH_2CH_2Br)[/tex] as the major product. The byproduct of this reaction is sodium hydrogen sulfate [tex](NaHSO_4)[/tex].
The choice of 1-bromobutane as the reactant is crucial because it provides the necessary carbon chain length for the formation of 2-bromobutane. The reaction proceeds through an SN2 (substitution nucleophilic bimolecular) mechanism, where the nucleophile directly replaces the leaving group (bromine) on the carbon atom.
Overall, the reaction between 1-bromobutane, sodium bromide, and sulfuric acid promotes the substitution of the bromine atom, leading to the formation of 2-bromobutane as the major product, as shown in the chemical equation above.
Learn more about substitution reaction
brainly.com/question/30239668
#SPJ11
5.2 General Characteristics of Transfer Functions P5.2.1 Develop the transfer function for the effect of u on y for the following differential equations, assuming u(0)=0, y(0)-0 and y'(0)-0.
6 6 *c.
The transfer function for the given differential equation is 6/(s^2 + 6s).
To develop the transfer function, we start with the given differential equation and apply Laplace transform to both sides. The initial conditions u(0) = 0, y(0) = 0, and y'(0) = 0 are also taken into account.
The given differential equation is:
6y'' + 6y' = u(t)
Applying Laplace transform to both sides, we get:
6(s^2Y(s) - sy(0) - y'(0)) + 6(sY(s) - y(0)) = U(s)
Since u(0) = 0, y(0) = 0, and y'(0) = 0, we substitute these values into the equation:
6s^2Y(s) + 6sY(s) = U(s)
Factoring out Y(s) and U(s), we have:
Y(s)(6s^2 + 6s) = U(s)
Dividing both sides by (6s^2 + 6s), we obtain the transfer function:
Y(s)/U(s) = 1/(6s^2 + 6s)
In the Laplace domain, Y(s) represents the output (y) and U(s) represents the input (u). Therefore, the transfer function for the effect of u on y is 1/(6s^2 + 6s).
The transfer function for the given differential equation, considering the initial conditions u(0) = 0, y(0) = 0, and y'(0) = 0, is 6/(s^2 + 6s). This transfer function represents the relationship between the input (u) and the output (y) in the Laplace domain.
To know more about function visit:
https://brainly.com/question/11624077
#SPJ11
1)(a) Find the order of 2 mod 31 . (b) Determine whether 2 is aprimitive root mod23. 2) Given thint 2 is a primitive root mod 101 , find an element a mod 101 with order 10. 3) Let p be a prime and let g and k be integers. Show that if g^k is a primitive root mod m then g is 4 primitive root mod p.
The order of 2 mod 31 is 15. 2 is a primitive root modulo 23. The element a ≡ 19 (mod 101) has order 10. If g^k has the property of being a generator of the multiplicative group modulo m, then g has a similar property modulo a prime number p. The proof for this claim involves demonstrating that if g^k generates the multiplicative group modulo m, then g raised to certain powers will generate the same group modulo p, where p is a prime factor of m.
1)(a)
To find the order of 2 modulo 31, we need to calculate the smallest positive integer n such that 2ⁿ ≡ 1 (mod 31). By trying different values of n, we find that 2¹⁵ ≡ 1 (mod 31). Therefore, the order of 2 modulo 31 is 15.
(b)
To determine whether 2 is a primitive root modulo 23, we need to check if 2^k ≡ 1 (mod 23) for any positive integer k < 22 (since φ(23) = 22, where φ denotes Euler's totient function).
By calculating the powers of 2 modulo 23, we find that none of them are congruent to 1. Hence, 2 is a primitive root modulo 23.
2)
Since 2 is a primitive root modulo 101, we need to find an element a such that the order of a modulo 101 is 10. By trying different values, we find that a = 19 satisfies this condition.
Calculating the powers of 19 modulo 101, we see that 19¹⁰ ≡ 1 (mod 101). Therefore, the element a ≡ 19 (mod 101) has order 10.
3)
Let p be a prime and g^k be a primitive root modulo m. We want to show that g is a primitive root modulo p. Since g^k is a primitive root modulo m, we know that (g^k)^φ(m) ≡ 1 (mod m), where φ denotes Euler's totient function.
Since p is a prime, φ(p) = p - 1. Therefore, we have (g^k)^(p-1) ≡ 1 (mod m).
Now, we need to show that g has the order p-1 modulo p. Since p is prime, all the positive integers less than p are relatively prime to p. Thus, the order of g modulo p must be a factor of p-1.
If the order of g modulo p is less than p-1, then we would have (g^k)^(p-1) ≡ 1 (mod m) for some k < p-1, which contradicts the assumption that g^k is a primitive root modulo m.
Therefore, the order of g modulo p must be p-1, and g is a primitive root modulo p.
To know more about integer:
https://brainly.com/question/929808
#SPJ11
A trapezoidal concrete lined canal is designed to convey water to a reclamation area of 120,000 feddans. The irrigation water requirement of the project is 25 m /feddan/day. The canal is constructed at a longitudinal slope of 0.0002 with a selected side slope of 2:1 (H:V), Calculate the required canal dimensions (bed width and water depth) under the following conditions: a) Best hydraulic section b) Bed Width is three times the water depth
According to the statement the water depth is 0.5155 m and the bed width is 3(0.5155) = 1.5465 m.
a) Best Hydraulic Section: To calculate the best hydraulic section of the canal, we use the trapezoidal section formula;
Q = (1/n)A(R²/3)S[tex]\frac{1}{2}[/tex]
where:
Q = Discharge in cubic meters per second
A = Cross-sectional area of the canal
R = Hydraulic radiusn = Coefficient of roughness of the canal bed
S = Longitudinal slope of the canal bed Given:
Length of the canal = 120,000 feddans
Irrigation water requirement = 25 m/feddan/day
Area to be irrigated = 120,000 × 4200 = 504,000,000 m²
Discharge of water to be carried = (25 × 504,000,000)/86400
= 145,833.33 m³/day
Slope of the canal bed = 0.0002
Side slope of the canal = 2:1 (H:V) = 2
Dimensions of the canal bed are bed width (b) and water depth (y).
Using the trapezoidal section formula;Q = (1/n)A(R²/3)S[tex]\frac{1}{2}[/tex]
Rearranging the formula to obtain A;A = (Qn/S[tex]\frac{1}{2}[/tex])(R[tex]\frac{2}{3}[/tex]))
The hydraulic radius is given as;R = A/P
where;
P = b + 2y(2) = (b + 2y)/2
Therefore;
P = b + y
Using the hydraulic radius in the area formula;A = R(P – b)²/4
The formula for the hydraulic radius is then simplified to;
R = y(1 + 4/y²)[tex]\frac{1}{2}[/tex]
Using the values of Q, S, n, and y in the formula for A;
A = 1.4845 y[tex]\frac{5}{3}[/tex] (b + y)[tex]\frac{2}{3}[/tex]
The canal bed width is three times the water depth;
b = 3y
Therefore;
A = 1.84 y[tex]\frac{8}{3}[/tex]
The area formula is then differentiated and equated to zero to find the minimum area;
dA/dy = (16.224/9) y[tex]\frac{5}{3}[/tex] = 0
Therefore;
y = 0.5558 m
A minimum depth of 0.5558 m or 55.58 cm is required.
Using the hydraulic radius formula;
R = y(1 + 4/y²)[tex]\frac{1}{2}[/tex]
Therefore;R
= 0.5506 m
The value of P can be calculated using the bed width formula;
P = b + 2y
The canal bed width is three times the water depth;
b = 3y
Therefore;
P = 9y
Using the value of P in the hydraulic radius formula;
R = A/P
Therefore;
A = PR²
= (0.5506 m)(9 × 0.5506^2) = 2.646 m²
The water depth is 0.5558 m and the bed width is 3(0.5558)
= 1.6674 m.
b) Bed Width is three times the Water Depth:
In this case, the bed width is three times the water depth.
Therefore;
b = 3yA = (1/n)(b + 2y) y R[tex]\frac{2}{3}[/tex] S[tex]\frac{1}{2}[/tex]
R = y(1 + 9)^(1/2)
Using the values of Q, S, n, and y in the formula for A;
A = 2.1986 y[tex]\frac{5}{3}[/tex]
The value of P can be calculated using the bed width formula;
P = b + 2y
The canal bed width is three times the water depth;
b = 3y
Therefore;
P = 9y
Using the value of P in the hydraulic radius formula;
R = A/P
Therefore;
R = 0.6172 m
The area formula is differentiated and equated to zero to obtain the minimum area;
dA/dy = (7.328/9) y[tex]\frac{2}{3}[/tex] = 0
Therefore;
y = 0.5155 m
A minimum depth of 0.5155 m or 51.55 cm is required.
Using the hydraulic radius formula;
R = y(1 + 9)[tex]\frac{1}{2}[/tex]
Therefore;
R = 1.732 y
Using the value of P in the hydraulic radius formula;
R = A/P
Therefore;
A = PR² = (0.5155 m)(9 × 1.732^2) = 8.4386 m²
The water depth is 0.5155 m and the bed width is 3(0.5155)
= 1.5465 m.
To know more about dimensions visit :
https://brainly.com/question/32471530
#SPJ11