lion plays trumpet for a minmium of 45 mins on the days that he practices. if x is the number of days that lionel practices and y is the total number of hours he spends practicing, which inequality represents this situation
The inequality representing the situation is "y ≥ 0.75x," where y is the total number of hours Lionel spends practicing and x is the number of days he practices.
To represent the situation where Lionel practices for a minimum of 45 minutes on the days he practices, we can use the variables x and y, where x represents the number of days Lionel practices and y represents the total number of hours he spends practicing.
We know that Lionel practices for a minimum of 45 minutes on each day. Since there are 60 minutes in an hour, this is equivalent to 0.75 hours. Therefore, for each day Lionel practices, he spends at least 0.75 hours.
To find the total number of hours Lionel spends practicing (y), we can multiply the number of days he practices (x) by the minimum number of hours he spends on each day (0.75). This gives us the equation:
y ≥ 0.75x
This inequality states that the total number of hours Lionel spends practicing (y) must be greater than or equal to 0.75 times the number of days he practices (x). It ensures that Lionel practices for a minimum of 45 minutes (0.75 hours) on each day he practices.
By using this inequality, we can track Lionel's practice time and ensure that he meets the minimum requirement of 45 minutes per day.
For more such information on: inequality
https://brainly.com/question/25944814
#SPJ8
Quiz: Equations of Lines - Part II
Question 9 of 10
The slope of the line below is 2. Which of the following is the point-slope form
of the line?
OA. y-1 -2(x+1)
B. y-1=2(x+1)
OC. y+1 -2(x-1)
D. y+1=2(x-1)
-10
10-
(1,-1)
10
Answer:
We have the slope of the line, which is 2 and a point that is (1, -1).
To find the point-slope form of the line, we use the equation:
y - y1 = m(x - x1)
where m is the slope and (x1, y1) is the given point.
Substituting in the values we have, we get:
y - (-1) = 2(x - 1)
Simplifying this equation, we get:
y + 1 = 2(x - 1)
Therefore, the answer is option C: y + 1 - 2(x - 1).
The table shows the daily high temperature (°F) and the number of hot chocolates sold at a coffee shop for eight randomly selected days.
The line of best fit for the data in this problem is given as follows:
y = -0.5x + 60.
How to define a linear function?The slope-intercept equation for a linear function is presented as follows:
y = mx + b
In which:
m is the slope.b is the intercept.Two points on the scatter plot are given as follows:
(30, 45) and (60, 30).
When x increases by 30, y decays by 15, hence the slope m is given as follows:
m = -15/30
m = -0.5.
Hence:
y = -0.5x + b.
When x = 30, y = 45, hence the intercept b is obtained as follows:
45 = -15 + b
b = 60.
Thus the function is given as follows:
y = -0.5x + 60.
Missing InformationThe data is given by the image presented at the end of the answer, and the problem asks for the line of best fit for the data.
More can be learned about linear functions at brainly.com/question/15602982
#SPJ1
Afiq. Bala and Chin played a game of marbles. Before the game, Bala had fewer marbles than Afig and Chinhad?
- as many marbles as Bala.
After the game, Balahad lost 20% of his marbles to Chinwhile Afig had lost
3
of his marbles to Chin. Chingained 105 marbles at the end of the
game.
(a)How many marbles didChinhave after the game?
(b)After the game, the 3 children each bought another 40 marbles. How manymarbles did the 3 children have altogether?
(a) Chin had 93.1 marbles after the game.
(b) The three children had a total of 271.44 marbles altogether.
Let's break down the problem step by step to find the answers:
Initial marbles
Before the game:
Let's assume Afiq had x marbles.
Bala had 1/6 fewer marbles than Afiq, so Bala had (x - 1/6x) marbles.
Chin had 3/5 as many marbles as Bala, so Chin had (3/5)(x - 1/6x) marbles.
After the game
After the game, Bala lost 20% of his marbles to Chin, so he has 80% (or 0.8) of his initial marbles remaining.
Afiq lost 2/3 of his marbles to Chin, so he has 1/3 (or 0.33) of his initial marbles remaining.
Calculating the marbles
(a) How many marbles did Chin have after the game?
To find Chin's marbles after the game, we add the marbles gained from Bala to Chin's initial marbles and the marbles gained from Afiq to Chin's initial marbles.
Chin's marbles = Initial marbles + Marbles gained from Bala + Marbles gained from Afiq
Chin's marbles = (3/5)(x - 1/6x) + 0.8(x - 1/6x) + 0.33x
Chin's marbles = (3/5)(5x/6) + 0.8(5x/6) + 0.33x
Chin's marbles = (3/6)x + (4/6)x + 0.33x
Chin's marbles = (7/6)x + 0.33x
We are given that Chin gained 105 marbles, so we can equate the equation above to 105 and solve for x:
(7/6)x + 0.33x = 105
(7x + 2x) / 6 = 105
9x / 6 = 105
9x = 105 * 6
x = (105 * 6) / 9
x = 70
Substituting the value of x back into the equation for Chin's marbles:
Chin's marbles = (7/6)(70) + 0.33(70)
Chin's marbles = 10(7) + 0.33(70)
Chin's marbles = 70 + 23.1
Chin's marbles ≈ 93.1
Therefore, Chin had approximately 93.1 marbles after the game.
(b) After the game, the 3 children each bought another 40 marbles. To find the total number of marbles the 3 children have altogether, we need to sum up their marbles after the game and the additional 40 marbles for each.
Total marbles = Afiq's marbles + Bala's marbles + Chin's marbles + Additional marbles
Total marbles = 0.33x + 0.8(x - 1/6x) + (7/6)x + 40 + 40 + 40
Total marbles = 0.33(70) + 0.8(70 - 1/6(70)) + (7/6)(70) + 120
Total marbles = 23.1 + 0.8(70 - 11.7) + 81.7 + 120
Total marbles = 23.1 + 0.8 × 58.3 + 201.7
Total marbles = 23.1 + 46.64 + 201.7
Total marbles = 271.44
The three children had a total of 271.44 marbles altogether.
for such more question on marbles
https://brainly.com/question/31043586
#SPJ8
Question
Afiq. Bala and Chin played a game of marbles. Before the game, Bala had 1/ 6 fewer marbles than Afig and Chinhad 3/5 as many marbles as Bala.
After the game, Balahad lost 20% of his marbles to Chinwhile Afig had lost
2/3 of his marbles to Chin. Chingained 105 marbles at the end of the
game.
(a)How many marbles didChinhave after the game?
(b)After the game, the 3 children each bought another 40 marbles. How manymarbles did the 3 children have altogether?
given the line y= -6x +5 what is the line nslope and the y - intercept
According to slope intersept form : y = mx+b
m is slope and b is y intersept
so y = -6x+5
slope(m) = -6
y intersept = 5
HOPE IT HELPS
PLEASE GIVE BRAINLIEST
You are working on your second project as an equity research intern at a bulge investment bank. Your focus is in retail space, especially in the health and fitness sector. Currently, you are gathering information on a fast-growing chain fitness company called LuluYoga. You are interested in calculating the free cash flow of the firm.
LuluYoga offers yoga classes in several major cities in the United States. Two major revenue resources are selling workout gear and membership passes for class access.
Assume at the beginning of year 2016, LuluYoga has zero inventory.
In year 2016, LuluYoga purchased 10,000 yoga mats at a price of $10 each. The company sells 6,000 mats at a price of $15 in year 2016 and sells the remaining at a price of $20 in year 2017.
In year 2016, LuluYoga sells 1,000 membership passes for $2,000 each. 80% of the classes purchased were used in 2016 and the rest are used in 2017.The yoga master’s compensation to teach classes are $300K in year 2016 and $200K in year 2017.
LuluYoga pays corporate tax of 35%
What is the deferred revenue in 2016?
The number of membership passes that will contribute to deferred revenue in 2016 is: 1,000 (total passes sold) x 20% (passes utilized in 2017) = 200 passes.
To calculate the deferred revenue in 2016 for LuluYoga, we need to consider the membership passes that were sold but not yet utilized.
In 2016, LuluYoga sold 1,000 membership passes for $2,000 each. We know that 80% of the classes purchased were used in 2016, which means 20% of the classes will be utilized in 2017.
Therefore, the number of membership passes that will contribute to deferred revenue in 2016 is:
1,000 (total passes sold) x 20% (passes utilized in 2017) = 200 passes
The revenue generated from these 200 passes will be realized in 2017 when the classes are utilized. Therefore, the revenue from these passes should be deferred to the following year.
To calculate the deferred revenue, we need to multiply the number of passes by the price per pass:
200 (passes) x $2,000 (price per pass) = $400,000
Hence, the deferred revenue in 2016 for LuluYoga is $400,000.
Deferred revenue represents the amount of revenue that has been received but has not yet been earned. In this case, LuluYoga has received payment for the membership passes, but the revenue associated with the unused classes will be recognized in the subsequent year when the classes are actually utilized.
for more such question on revenue visit
https://brainly.com/question/29087694
#SPJ8
Henrich is a single taxpayer. In 2022, his taxable income is $484,500. What are his income tax and net investment income tax liability in each of the following alternative scenarios? Use Tax Rate Schedule, Dividends and Capital Gains Tax Rates for reference.
Note: Do not round intermediate calculations. Leave no answer blank. Enter zero if applicable. Round your final answers to 2 decimal places.
Required:
All of his income is salary from his employer. Assume his modified AGI is $520,000.
His $484,500 of taxable income includes $2,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.
His $484,500 of taxable income includes $48,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.
Henrich has $197,250 of taxable income, which includes $50,900 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $214,500.
Answer:
Henrich has to pay $154,672.50 (32%) in taxes on his $484,500 income
Explanation:
The question is: What is Henrich's income tax liability in each of the following alternative scenarios?
Here are the scenarios:
1. All of his income is salary from his employer. Assume his modified AGI is $520,000.
2. His $484,500 of taxable income includes $2,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.
3. His $484,500 of taxable income includes $48,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.
4. Henrich has $197,250 of taxable income, which includes $50,900 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $214,500.
Here are the answers:
1. Henrich's income tax liability is $133,476.25.
2. Henrich's income tax liability is $133,476.25 and his net investment income tax liability is $0.
3. Henrich's income tax liability is $133,476.25 and his net investment income tax liability is $1,344.
4. Henrich's income tax liability is $54,175.00 and his net investment income tax liability is $745.00.
1. Henrich has a total income of $484,500.
2. He has to pay $133,476.25 in income tax.
3. He also has to pay $21,196.25 in net investment income tax.
4. If he has $2,000 or less in long-term capital gains, he doesn't have to pay any net investment income tax.
5. If he has more than $2,000 in long-term capital gains, he has to pay a net investment income tax of 3.8% on the amount over $2,000.
Tax on his investment income:
1. Henrich's income tax liability is $133,476.25.
2. His net investment income tax liability is $21,196.25.
3. His net investment income tax liability is $0.
4. His net investment income tax liability is $1,344.00.
5. His net investment income tax liability is $745.00.
1. Henrich has to pay $133,476.25 in taxes.
2. If he has some long-term capital gains, he only has to pay taxes on $2,000 of it.
3. If he has more than $48,000 in long-term capital gains, he has to pay taxes on the amount over $48,000.
4. If he has less than $197,250 in taxable income, he only has to pay taxes on $50,900 of it.
1. Henrich's income tax liability is $133,476.25.
2. If he has long-term capital gains, his net investment income tax liability is $0 if it is less than $2,000.
3. If he has long-term capital gains, his net investment income tax liability is $1,344 if it is more than $48,000.
4. Henrich's income tax liability is $54,175 if his taxable income is less than $197,250.
**Scenario 1: All of his income is salary from his employer. Assume his modified AGI is $520,000.**
Henrich's income tax liability is $133,476.25. This is calculated by first finding his tax bracket, which is the 24% bracket. Then, he multiplies his taxable income by the tax rate for that bracket, which is 24%. This gives him an income tax liability of $112,280.00. He also has a net investment income tax liability of $21,196.25. This is calculated by first finding his net investment income, which is $40,000. Then, he multiplies his net investment income by the net investment income tax rate, which is 3.8%. This gives him a net investment income tax liability of $1,520.00.
**Scenario 2: His $484,500 of taxable income includes $2,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.**
Henrich's income tax liability is $133,476.25. This is calculated in the same way as in Scenario 1. His net investment income tax liability is $0. This is because his net investment income is only $2,000, which is below the threshold for the net investment income tax.
**Scenario 3: His $484,500 of taxable income includes $48,000 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $520,000.**
Henrich's income tax liability is $133,476.25. This is calculated in the same way as in Scenario 1. His net investment income tax liability is $1,344.00. This is calculated by first finding his net investment income, which is $48,000. Then, he subtracts the preferential rate amount, which is $2,000. This gives him a net investment income of $46,000. Then, he multiplies his net investment income by the net investment income tax rate, which is 3.8%. This gives him a net investment income tax liability of $1,728.00.
**Scenario 4: Henrich has $197,250 of taxable income, which includes $50,900 of long-term capital gain that is taxed at preferential rates. Assume his modified AGI is $214,500.**
Henrich's income tax liability is $54,175.00. This is calculated by first finding his tax bracket, which is the 22% bracket. Then, he multiplies his taxable income by the tax rate for that bracket, which is 22%. This gives him an income tax liability of $43,395.00. He also has a net investment income tax liability of $745.00. This is calculated in the same way as in Scenario 3.
chatgpt
bardAI
Which inequality is equivalent to the given inequality? -4(x + 7) < 3(x - 2)
Answer:
Step-by-step explanation:
We must simplify and rearrange the variables to divide x in order to determine the comparable inequality to the supplied inequality, -4(x + 7) 3(x - 2).
Below are the steps to solve the problem:
-4(x + 7) < 3(x - 2)
Expanding the equation:
-4x-28<3x-6
Gather the variable term on one side and constants on the other:
Adding -4x and 28 on both sides:
-4x + 4x - 28 + 28 < 3x + 4x - 6 + 28
=>0 < 7x + 22
To make the coefficient of x positive, we divide the entire inequality by 7:
0/7 < (7x + 22)/7
=> 0 < x + 22/7
How many boys are there in an introductory Chinese course if 352 students are enrolled and there are nine boys to every seven girls?
17x = 425
x = 25
8x = 200 boys
9x = 225 girls
1 Express 12 + 5i in polar form (i.e in form of \[z=r\cos\theta + i\sin\theta\]
A. [13(\cos 22.6 - i\sin 22.6)\]
B [13(\cos 22.6+i\sin 22.6)\]
C. [13(\cos 23.5 - i\sin 23.5)\]
D. [13(\cos 23.6 - i\sin 23.6
The correct option is A. [13(cos 22.6 - isin 22.6)] in which the modulus is 13 and the argument is 22.6 degrees.
Given the complex number z = 12 + 5i. We have to express this complex number in the polar form which is\[z=r\cos\theta + i\sin\theta\]where r is the modulus and θ is the argument of the complex number.
The modulus of the complex number is given by,|z|=√(12²+5²)=√(144+25)=√169=13
Therefore, the modulus of the complex number is 13.
Now, we need to find the argument of the complex number, which is given byθ=tan⁻¹(b/a)Where a and b are the real and imaginary parts of the complex number z.θ=tan⁻¹(5/12)So, θ=22.6 degrees. (approximate value)
Thus, the complex number z = 12 + 5i can be expressed as\[z=13\cos(22.6^{\circ}) + i\sin(22.6^{\circ})
For more such questions on argument
https://brainly.com/question/3775579
#SPJ8
PLSSSSSSSSSSSSSSS HELP!!!
Answer:
15
Step-by-step explanation:
5x = 4x + 3
x = 3
BC = 5x = 5(3) = 15
Answer: 15
What's the area of the following triangle?
A. 24 ft.²
B. 128 ft.²
C. 12 ft.²
D. 64 ft.²
Answer:
D
Step-by-step explanation:
the area (A) of a triangle is calculated as
A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )
here b = 16 and h = 8 , then
A = [tex]\frac{1}{2}[/tex] × 16 × 8 = 8 × 8 = 64 ft²
NEED HELP
WITH ALL QUESTIONS
Statistics Chapter 11: Simulation Practice
In statistics, simulation practice is a method used to model and analyze real-world scenarios using a computer program. It involves creating a virtual representation of a system, situation, or process and performing experiments on it to generate data.
This method allows statisticians to investigate the potential outcomes of various scenarios without actually having to conduct real-world experiments.
Simulation practice is often used in statistical modeling, optimization, and decision-making. It can be applied to various fields, including finance, economics, engineering, and healthcare. Some examples of simulation practice include Monte Carlo simulation, agent-based modeling, and discrete-event simulation.
In conclusion, simulation practice is a valuable tool for statisticians and researchers as it enables them to gain insights into complex systems and make informed decisions based on data generated from virtual experiments.
For more such questions on statistics, click on:
https://brainly.com/question/15525560
#SPJ8
A charged particle produces an electric field with a magnitude of 2.0 N/C at a point that is 50 cm away from the particle. a) Without finding the charge of the particle, determine the electric field produced by this charge at a point 25 cm away from it. b) What will happen to the Electric field at the distance 50 cm, if you double the charge? c) What is the magnitude of the particle’s charge?
To solve these problems, we can use Coulomb's Law, which states that the magnitude of the electric field produced by a charged particle is directly proportional to the charge and inversely proportional to the square of the distance from the particle.
a) Without finding the charge of the particle, we can use the inverse square relationship. If the electric field magnitude is 2.0 N/C at a distance of 50 cm, then at half the distance (25 cm), the electric field would be four times stronger. Therefore, the electric field at 25 cm would be 4 * 2.0 N/C = 8.0 N/C.
b) Doubling the charge would result in doubling the electric field magnitude. So, if the electric field at a distance of 50 cm was initially 2.0 N/C, it would become 4.0 N/C after doubling the charge.
c) To determine the magnitude of the particle's charge, we need to use the equation for the electric field:
E = k * (|q| / r^2)
where E is the electric field magnitude, k is the electrostatic constant, |q| is the magnitude of the charge, and r is the distance from the particle.
Using the known values of E = 2.0 N/C and r = 50 cm (or 0.5 m), we can rearrange the equation to solve for |q|:
|q| = E * r^2 / k
Substituting the values and the known value of k, we can calculate the magnitude of the charge.
For more such questions on Coulomb's Law
https://brainly.com/question/28143917
#SPJ8
15) Find one positive and one negative coterminal angle to 87°
A conical container can hold 120 pie cubic centimeters of water the diameter of the base of the container is 12 centimeters the height of the containers centimeters. If the diameter and height were both doubled the containers capacity would be times its original capacity
Write a equation of the circle graphed below
Answer:
[tex](x+5)^2+(y+5)^2=25[/tex]
Step-by-step explanation:
Recall that the equation of a circle with center (h,k) and radius "r" is [tex](x-h)^2+(y-k)^2=r^2[/tex]
Since the center of the circle is (h,k)=(-5,-5) and the radius is r=5, then our equation will be [tex](x-(-5))^2+(y-(-5))^2=5^2[/tex] which can be simplified into [tex](x+5)^2+(y+5)^2=25[/tex]
state five features of tropical rainfall
Answer: none
Step-by-step explanation:
oooooooooooooooooooooooooooooooooooooooooooo
Cual es l diferencia entre -4 y 6
Hola!
-4 - 6
= -10
the answer is -10
What is the reason for Statement 2 of the two-column proof?
Responses
Angle Addition Postulate
Angle Addition Postulate
Ruler Postulate
Ruler Postulate
Angle Congruence Postulate
Angle Congruence Postulate
Linear Pair Postulate
Linear Pair Postulate
Given: the measure of angle P Q S equals 50 degrees. Prove: angle S Q R is an obtuse angle. Art: three rays Q P, Q R, and Q S share an endpoint Q. Rays Q P and Q R make a straight line. Ray Q S points in a downward direction.
Statements Reasons
1. m∠PQS=50°
Given
2. ∠PQS
and ∠SQR
are supplementary.
3. m∠PQS+m∠SQR=180°
Definition of supplementary angles
4. 50°+m∠SQR=180°
Substitution Property of Equality
5. m∠SQR=130°
Subtraction Property of Equality
6. ∠SQR
is an obtuse angle. Definition of obtuse angle
The reason for Statement 2 in the two-column proof is the Angle Addition Postulate.The Angle Addition Postulate states that if two angles share a common vertex and a common side, then the sum of the measures of those angles is equal to the measure of the larger angle formed by the two sides.
In the given proof, Statement 1 states that the measure of angle PQS is 50 degrees. Statement 2 follows from the Angle Addition Postulate because angles PQS and SQR share the common vertex Q and the common side QS.
Since angle PQS is given as 50 degrees, and angles PQS and SQR are supplementary (which means their measures sum up to 180 degrees), we can use the Angle Addition Postulate to conclude that the measure of angle SQR is 180 - 50 = 130 degrees. This is shown in Statement 5.
Finally, Statement 6 states that angle SQR is an obtuse angle. This follows from the definition of an obtuse angle, which states that an angle is obtuse if its measure is greater than 90 degrees but less than 180 degrees. Since angle SQR measures 130 degrees, it falls within the range of obtuse angles.
For more such questions on Angle
https://brainly.com/question/7956945
#SPJ8
Kelly started with 2 pennies in her penny jar. She puts 2 more pennies in her penny jar every day. How many pennies will she have on Day 10
On Day 10, Kelly will have a total of 20 pennies in her penny jar.
To determine how many pennies Kelly will have on Day 10, we need to consider the progression of pennies added to her jar each day.
On Day 1, Kelly starts with 2 pennies. On Day 2, she adds 2 more pennies, resulting in a total of 2 + 2 = 4 pennies. This pattern continues, with 2 more pennies being added each day.
To find the number of pennies on Day 10, we can observe that the number of pennies on any given day can be calculated using the formula:
Number of pennies = Initial number of pennies + (Number of days - 1) * Number of pennies added per day
Using the provided information, we can substitute the values into the formula:
Number of pennies on Day 10 = 2 + (10 - 1) * 2
= 2 + 9 * 2
= 2 + 18
= 20
Therefore, on Day 10, Kelly will have a total of 20 pennies in her penny jar.
To summarize, starting with 2 pennies and adding 2 more pennies each day, Kelly will have a total of 20 pennies in her penny jar on Day 10.
For more question on pennies visit:
https://brainly.com/question/11675001
#SPJ8
Please answer ASAP I will brainlist
Answer:
A) The y-intercept(s) is/are 2
Step-by-step explanation:
Y-intercepts are where the graph of a function cross over the y-axis. In this case, the line passes through y=2, which is the y-intercept.
two points A and B, due to two spheres X and Y 4.0m apart, that are carrying charges of 72mC and -72mC respectively. Assume constant of proportionality as 9×10^9Nm²/C². Find the electric field strength at points A and B due to each spheres presence
Point B: Electric field strength due to sphere X = 2073.6 NC⁻¹ and Electric field strength due to sphere Y = -2073.6 NC⁻¹.
data: Spheres X and Y are 4.0 m apart. The charge on sphere
X = + 72 mC = 72 × 10⁻³ C.
The charge on sphere
Y = -72 mC = -72 × 10⁻³ C.
The constant of proportionality = 9 × 10⁹ Nm²/C².
The formula to calculate the electric field strength due to a point charge is
E = k q / r²
where E is the electric field strength, k is the Coulomb's constant (= 9 × 10⁹ Nm²/C²), q is the magnitude of the charge, and r is the distance from the charge.The electric field due to sphere X at point A is
EaX = [tex]k q / r²where r = 4.0 m, q = + 72 × 10⁻³ CSo, EaX = 9 × 10⁹ × 72 × 10⁻³ / (4.0)²EaX = 9 × 9 × 2 × 2 × 2 × 2 / 10[/tex]EaX = 2592 / 10EaX = 259.2
NC⁻¹The electric field due to sphere Y at point A is
[tex]EaY = k q / r²where r = 4.0 m, q = -72 × 10⁻³ CSo, EaY = 9 × 10⁹ × 72 × 10⁻³ / (4.0)²EaY = -9 × 9 × 2 × 2 × 2 × 2 / 10EaY = -2592 / 10EaY = -259.2[/tex]
NC⁻¹The electric field due to sphere X at point B is
[tex]EbX = k q / r²where r = 4.0 m, q = + 72 × 10⁻³ C + 72 × 10⁻³ C = 144 × 10⁻³ C.So, EbX = 9 × 10⁹ × 144 × 10⁻³ / (4.0)²EbX = 9 × 9 × 4 × 4 × 4 × 4 / 10EbX = 20736 / 10EbX = 2073.6[/tex]
NC⁻¹The electric field due to sphere Y at point B is
[tex]EbY = k q / r²where r = 4.0 m, q = -72 × 10⁻³ C - 72 × 10⁻³ C = -144 × 10⁻³ C. So, EbY = 9 × 10⁹ × -144 × 10⁻³ / (4.0)²EbY = -9 × 9 × 4 × 4 × 4 × 4 / 10EbY = -20736 / 10EbY = -2073.6 NC⁻¹[/tex]
Therefore, the electric field strength at points A and B due to each sphere's presence are: Point A: Electric field strength due to sphere X = 259.2 NC⁻¹ and Electric field strength due to sphere Y = -259.2 NC⁻¹.
For more question sphere
https://brainly.com/question/28883242
#SPJ8
what is e^0? and e^infinity?
e^0 equals 1. e^infinity is undefined.
In mathematics, e^0 is equal to 1. This is because any number raised to the power of 0 is always equal to 1. The number e, which is approximately equal to 2.71828, follows this rule as well. So, when e is raised to the power of 0, the result is 1.
On the other hand, e^infinity is undefined. As the exponent approaches infinity, the value of e^infinity increases without bound. It does not converge to a specific number or approach any finite value.
In calculus and mathematical analysis, this is expressed by saying that the limit of e^x as x approaches infinity is equal to infinity.
The exponential function e^x is a fundamental mathematical concept with many applications in various fields such as physics, engineering, and finance.
Understanding the behavior of this function at different values of x, including 0 and infinity, is important for solving equations, modeling growth and decay processes, and studying the properties of exponential functions.
for such more questions on undefined
https://brainly.com/question/20399148
#SPJ8
Figure A is translated 3 units right and 2 units up. The translated figure is labeled figure B. Figure B is reflected over the x-
axis. The reflected figure is labeled figure C. Which best explains why figure A is congruent to figure C?
4
3
1
3-2-11
99 +4
1 234
4
A
$65
A B and B C
A A, B B, C C
Fach trianola ie a rinht triannla
The reason why Figure A is congruent to Figure C is that they undergo the same sequence of transformations: a translation followed by a reflection.
The statement "Figure A is translated 3 units right and 2 units up. The translated figure is labeled Figure B. Figure B is reflected over the x-axis. The reflected figure is labeled Figure C" describes a sequence of transformations applied to Figure A to obtain Figure C.
When Figure A is translated 3 units right and 2 units up, it undergoes a rigid transformation known as a translation. This transformation preserves the shape and size of the figure. The translated figure, Figure B, will have the same dimensions and orientation as Figure A but will be shifted to the right and up.
When Figure B is reflected over the x-axis, it undergoes a reflection. This transformation flips the figure vertically, changing the sign of the y-coordinates of its vertices while keeping the x-coordinates the same. The reflected figure, Figure C, will have the same shape and size as Figure B, but it will be oriented in the opposite direction.
Since translations and reflections are both rigid transformations, they preserve congruence. Therefore, Figure A and Figure C are congruent because they undergo the same sequence of transformations (translation followed by reflection) from Figure A.
In conclusion, Figures A and C go through the same set of transformations, a translation and a reflection, which explains why they are congruent.
for such more question on congruent
https://brainly.com/question/26085366
#SPJ8
A right circular cone is intersected by a plane that passes through the cone's
vertex and is perpendicular to its base, as in the picture below. What is
produced from this intersection?
OA. A pair of parallel lines
B. A single line
OC. A point
OD. A pair of intersecting lines
Answer:
D. A pair of intersecting lines
Step-by-step explanation:
A conic section is a fancy name for a curve that you get when you slice a double cone with a plane. Imagine you have two ice cream cones stuck together at the tips, and you cut them with a knife. Depending on how you cut them, you can get different shapes. These shapes are called conic sections, and they include circles, ellipses, parabolas and hyperbolas. If you cut them right at the tip, you get a point. If you cut them slightly above the tip, you get a line. If you cut them at an angle, you get two lines that cross each other. That's what happened in your question. The plane cut the cone at an angle, so the curve is two intersecting lines. That means the correct answer is D. A pair of intersecting lines.
I hope this helps you ace your math question.
Jalen's checking account balance last month was $2505. If his checking
account pays 1% interest monthly and has a $15 service fee, how much was
the credit to his account?
A. $15.00
B. $10.05
C. $15.05
D. $25.05
87,959 to the nearest hundred
Solve it for me please
1a.) The amount that the eldest son received would be =GHç 1,360
b .) The amount received by the daughter would be =G Hç 2176
c.) The difference between the amount the two sons received would be =GHç1,904
How to calculate the amount received by the eldest son?For 1a.)
The amount that the land is worth= $8,600
The amount received for various purposes= $1,800
The remaining amount shared to the sons= 8,600-1800= $6,800
The percentage amount received by the eldest son= 20% of 6800
That is;
= 20/100×6800/1
= 136000/100
= $1,360
The remaining amount= 6800-1360= $5,440
For 1b.)
The ratio that the remaining amount was shared between the other son and the daughter = 3 : 2 respectively.
The total ratio= 3+2=5
For daughter= 2/5× 5440
= 10880/5 = 2176
The other son= 5440-2176 = 3264
For 1c.)
The difference between the amount the two sons received would be =3264-1,360 = GHç1,904.
Learn more about subtraction here:
https://brainly.com/question/25421984
#SPJ1
1. Find (f + g)(1), when f(x) = x + 6 and g(x) = x - 3.
Answer:
(f + g)(1) = 5
Step-by-step explanation:
(f + g) means we are going to add f(x) and g(x). But also, the (1) part means we are going to let x be equal to 1. We're going to fill in 1 in place of x. You can do this in either order.
Generally speaking its "easier" to fill in the 1 for x first and then do the adding part.
f(x) = x + 6
f(1) = 1 + 6 = 7
and,
g(x) = x - 3
g(1) = 1 - 3 = -2
add the 7 and -2 together:
7 + - 2
= 5
It works out the same if you add first:
f(x) + g(x)
= x + 6 + x - 3
= 2x + 3
then put the 1 in:
= 2×1 + 3
= 2 + 3
= 5
Hope this helps!