Relativity: Length Contraction. According to Starfleet records, the Enterprise NCC-1701 is 289 meters long. If when leaving the inner Solar System under impulse power, an Earth-bound observer measures the ship's length at 152 meters, how fast was the Enterprise moving? 10% of c 65% the Speed of Light 150,000 km/s 12.99 E8 m/s .850 1/2 c.

Answers

Answer 1

The Enterprise NCC-1701 was moving at approximately 65% the speed of light when leaving the inner Solar System under impulse power.

According to the observer on Earth, the length of the Enterprise appeared to be contracted to 152 meters from its actual length of 289 meters. This observation can be explained by the phenomenon of length contraction in special relativity. The formula for length contraction is given by:

L' = L * ([tex]\sqrt{1 - (v^2 / c^2}[/tex]))

Where L' is the contracted length, L is the rest length, v is the velocity of the object, and c is the speed of light.

Rearranging the formula to solve for v, we get:

v = [tex]\sqrt{((1 - (L'/L)^2) * c^2)}[/tex]

Substituting the given values into the equation, we have:

v = [tex]\sqrt{((1 - (152/289)^2) * c^2)}[/tex]

v ≈ [tex]\sqrt{((1 - 0.177)^2)}[/tex] * c ≈ 0.823 * c

Therefore, the Enterprise was moving at approximately 82.3% the speed of light, or about 65% the speed of light.

Learn more about speed here ;

https://brainly.com/question/28224010

#SPJ11


Related Questions

Two identical point sources create an interference pattern in a wave tank.
We notice that a point on the fourth nodal line is located at 10 cm from one source and
15 cm from the other. If the frequency of the waves is 3.7 Hz, determine:
(a) The length of the waves.
(b) The speed of propagation of waves.

Answers

The length of the waves is 10 cm and the speed of propagation is 37 cm/s. For the length of the waves, we can use the formula for the distance between consecutive nodal lines in an interference pattern.

To find the length of the waves, we can use the formula for the distance between consecutive nodal lines in an interference pattern.The distance between two consecutive nodal lines is given by λ/2, where λ is the wavelength.

In this case, the fourth nodal line is observed to be 5 cm away from the midpoint between the two sources, which means it is located 10 cm from one source and 15 cm from the other. The difference in path lengths from the two sources is 15 cm - 10 cm = 5 cm. Since this is half the wavelength (λ/2), the wavelength can be calculated as 2 * 5 cm = 10 cm.

To determine the speed of propagation of the waves, we can use the wave equation v = fλ, where v is the speed of propagation, f is the frequency, and λ is the wavelength. Plugging in the values, we have v = 3.7 Hz * 10 cm = 37 cm/s.

Therefore, the length of the waves is 10 cm and the speed of propagation is 37 cm/s.

Learn more about wavelength here:

https://brainly.com/question/7143261

#SPJ11

A speedboat moves on a lake with initial velocity vector 1,x=9.15 m/s and 1,y=−2.09 m/s , then accelerates for 5.67 s at an average acceleration of av,x=−0.103 m/s2 and av,y=0.102 m/s2 . What are the components of the speedboat's final velocity, 2,x and 2,y ?
Find the speedboat's final speed.

Answers

The speedboat moves on a lake with an initial velocity vector of

1,x=9.15 m/s

and 1,y=−2.09 m/s

and accelerates for 5.67 s at an average acceleration of

av,x=−0.103 m/s2 and

av,y=0.102 m/s2. Now, we have to find the components of the speedboat's final velocity, 2,x and 2,y.  

Let's determine the final velocity of the boat using the following formula:

Vf = Vi + a*t

where

Vf = final velocity

Vi = initial velocity

a = acceleration

t = time

To find 2x, we can use the formula:

2x = Vix + axtand to find 2y, we can use the formula:

2y = Viy + ayt

Substituting the given values into the above formula, we have;

For 2x, 2x = 9.15 + (-0.103 x 5.67) = 8.55 m/s (approximately)

For 2y, 2y = -2.09 + (0.102 x 5.67) = -1.47 m/s (approximately)

To find the final speed of the speedboat, we will use the formula:

Final velocity (v) = √(v_x² + v_y²)

Substituting the given values in the formula, we have;

Final velocity (v) = √(8.55² + (-1.47)²) = 8.64 m/s (approximately)

Therefore, the components of the speedboat's final velocity are 2,x = 8.55 m/s and 2,y = -1.47 m/s, and the

final speed of the boat is 8.64 m/s (approximately).

learn more about final velocity here

https://brainly.com/question/32863169

#SPJ11

Design a class A power amplifier using Vcc= 10V,B=100, R = 1k02, Vth = 3V and Vce = 0.3. 1. Calculate values of R₁, R₂ and R. Calculate load power on load resistance, R.. 2. Convert the amplifier to class B amplifier. . Calculate load power on load resistance, Re. Vcc= 10 V V. RS ww HH CC ww www R₁ R₂ www Re o Do

Answers

The question involves designing a Class A power amplifier using given parameters such as Vcc (supply voltage), B (beta or current gain), R (collector resistance), Vth (threshold voltage), and Vce (collector-emitter voltage).

The first part requires calculating the values of R₁, R₂, and R, as well as the load power on the load resistance, R. The second part involves converting the amplifier to a Class B amplifier and calculating the load power on the load resistance, Re.

In the first part of the question, the design of a Class A power amplifier is required. The values of R₁, R₂, and R need to be calculated based on the given parameters. These values are important for determining the biasing and operating point of the amplifier. The load power on the load resistance, R, can also be calculated, which gives an indication of the power delivered to the load.

To calculate R₁ and R₂, we can use the voltage divider equation, considering Vcc, Vth, and the desired biasing conditions. The value of R can be determined based on the desired collector current and Vcc using Ohm's law (R = Vcc / Ic).

In the second part of the question, the amplifier is required to be converted to a Class B amplifier. Class B amplifiers operate in a push-pull configuration, where two complementary transistors are used to handle the positive and negative halves of the input waveform. The load power on the load resistance, Re, needs to be calculated for the Class B configuration. To calculate the load power on Re, we need to consider the output voltage swing, Vcc, and the collector-emitter voltage, Vce. The power delivered to the load can be calculated using the formula P = (Vcc - Vce)² / (2 * Re).

In conclusion, the question involves designing a Class A power amplifier by calculating the values of R₁, R₂, and R, as well as the load power on the load resistance, R. It also requires converting the amplifier to a Class B configuration and calculating the load power on the load resistance, Re. These calculations are important for determining the biasing, operating point, and power delivery characteristics of the amplifier.

Learn more about amplifier here:- brainly.com/question/32812082

#SPJ11

The speed of sound in an air at 20°C is 344 m/s. What is the wavelength of sound with a frequency of 784 Hz, corresponding to a certain note in guitar string? a. 0.126 m b. 0.439 m C. 1.444 m d. 1.678 m

Answers

The wavelength of the sound with a frequency of 784 Hz is 0.439 m. So, the correct answer is option b. 0.439 m. To calculate the wavelength of sound, we can use the formula:

wavelength = speed of sound / frequency

Given:

Speed of sound in air at 20°C = 344 m/s

Frequency = 784 Hz

Substituting these values into the formula, we get:

wavelength = 344 m/s / 784 Hz

Calculating this expression:

wavelength = 0.439 m

Therefore, the wavelength of the sound with a frequency of 784 Hz is 0.439 m. So, the correct answer is option b. 0.439 m.

The speed of sound in a medium is determined by the properties of that medium, such as its density and elasticity. In the case of air at 20°C, the speed of sound is approximately 344 m/s.

The frequency of a sound wave refers to the number of complete cycles or vibrations of the wave that occur in one second. It is measured in hertz (Hz). In this case, the sound has a frequency of 784 Hz.

To calculate the wavelength of the sound wave, we use the formula:

wavelength = speed of sound / frequency

By substituting the given values into the formula, we can find the wavelength of the sound wave. In this case, the calculated wavelength is approximately 0.439 m.

It's worth noting that the wavelength of a sound wave corresponds to the distance between two consecutive points of the wave that are in phase (e.g., two consecutive compressions or rarefactions). The wavelength determines the pitch or frequency of the sound. Higher frequencies have shorter wavelengths, while lower frequencies have longer wavelengths

To know more about The wavelength

brainly.com/question/31322456

#SPJ11

For f = (2y-z)³ i + x² j - (3x²+1)k, is f conservative
at point (1,4,6)?
is there a curl?
is there a divergence?

Answers

For f = (2y-z)³ i + x² j - (3x²+1)k, is f conservative

at point (1,4,6)?

Curl (or rotation) is the curl of a vector field, which describes the magnitude and direction of the rotation of a particle at a point. To find whether f is conservative, we must find the curl of f and check whether it is zero or not.

The curl of the given function is: curl(f) = (∂Q/∂y - ∂P/∂z) i + (∂R/∂z - ∂P/∂x) j + (∂P/∂y - ∂Q/∂x) k

Where, P = (2y - z)³Q = x²R = -(3x² + 1)∂P/∂x = 0∂P/∂y = 6(2y - z)²∂P/∂z = -3(2y - z)²∂Q/∂x = 2x∂Q/∂y = 0∂Q/∂z = 0∂R/∂x = -6x∂R/∂y = 0∂R/∂z = 0

Therefore, curl(f) = (12z - 24y) i + 0 j + 6x k

At point (1, 4, 6),curl(f) = (12(6) - 24(4)) i + 0 j + 6(1) k= -72 i + 6 k

Therefore, the curl of f at point (1, 4, 6) is not zero. Therefore, f is not conservative at point (1, 4, 6).

Divergence is the measure of the magnitude of a vector field's source or sink at a given point in the field. To determine if there is a divergence, we must take the divergence of the function.

The divergence of the given function is:div(f) = ∂P/∂x + ∂Q/∂y + ∂R/∂z= 0 + 0 - 6

Therefore, the divergence of f is -6.

Here's another question on the curl of vectors: https://brainly.com/question/31429907

#SPJ11

Without plagiarizing. Write a meaningful Thesis paragraph about
Einstein's life and Contribution to quantum physics

Answers

Here is a Thesis about Einstein's life and Contribution to quantum physics.

Albert Einstein, widely regarded as the most brilliant scientist of the twentieth century, was one of the pioneering figures in the field of quantum physics.

He was a theoretical physicist who is best known for developing the theory of relativity and for his contributions to the development of quantum mechanics. Einstein's work in quantum physics helped to revolutionize our understanding of the nature of reality and the behavior of matter at the atomic and subatomic levels. His contributions to the field have had a profound impact on modern physics, and his ideas continue to influence research in this area to this day.

This paper will explore Einstein's life and his significant contribution to quantum physics.

Learn more about quantum physics https://brainly.com/question/26095165

#SPJ11

In Part 4.2.2, you will determine the focal length of a convex lens by focusing on an object across the room. If the object is 10. m away and the image is 9.8 cm, what is the focal length? (Hint: use Lab Manual Equation 4.2: (1/0) + (1/i) = (1/f), and convert m into cm. Then, round to the appropriate number of significant figures.) Suppose one estimated the focal length by assuming f = i. What is the discrepancy between this approximate value and the true value? (Hint: When the difference between 2 numbers is much smaller than the original numbers, round-off error becomes important. So you may need to keep more digits than usual in calculating the discrepancy, before you round to the appropriate number of significant figures.) % cm

Answers

The value of the discrepancy is 0.The focal length of the given convex lens is -9.8 cm. The discrepancy between this approximate value and the true value is 0.

Given the object distance = 10.0 mImage distance, i = 9.8 cm = 0.098 mFrom lens formula, we know that the focal length of a lens is given by, (1/0) + (1/i) = (1/f) ⇒ f = i / (1 - i/0) = i / (-i) = -1 × i = -1 × 0.098 = -0.098 mNow, we convert this value into cm by multiplying it with 100 cm/m.f = -0.098 × 100 cm/m = -9.8 cm ∴ The focal length of the given convex lens is -9.8 cm.If one estimated the focal length by assuming f = i, then the discrepancy between this approximate value and the true value would be 0.

The value of focal length as estimated using the approximation is:i.e., f = i = 9.8 cmThus, the discrepancy = |true value - approximate value|= |-9.8 - 9.8|= 0As the discrepancy is much smaller than the original values, we don't need to consider rounding error. Hence the value of the discrepancy is 0.The focal length of the given convex lens is -9.8 cm. The discrepancy between this approximate value and the true value is 0.

Learn more about Percentage here,

https://brainly.com/question/24877689

#SPJ11

A block is pushed with a force of 100N along a level surface. The block is 2 kg and the coefficient of friction is 0.3. Find the blocks acceleration.

Answers

The block's acceleration is 4.85 m/s².

To find the block's acceleration, we can use Newton's second law of motion, which states that the net force acting on an object is equal to the product of its mass and acceleration (F = ma). In this case, the net force is the force applied to the block minus the force of friction.

1. Determine the force of friction. The force of friction can be calculated using the formula Ffriction = μN, where μ is the coefficient of friction and N is the normal force. In this case, the normal force is equal to the weight of the block, which can be calculated as N = mg, where m is the mass of the block and g is the acceleration due to gravity (approximately 9.8 m/s²). Therefore, N = 2 kg × 9.8 m/s² = 19.6 N. Plugging in the values, we get Ffriction = 0.3 × 19.6 N = 5.88 N.

2. Calculate the net force. The net force is equal to the applied force minus the force of friction. The applied force is given as 100 N. Therefore, the net force is Fnet = 100 N - 5.88 N = 94.12 N.

3. Determine the acceleration. Now that we know the net force acting on the block, we can use Newton's second law (F = ma) to find the acceleration. Rearranging the formula, we get a = Fnet / m. Plugging in the values, we get a = 94.12 N / 2 kg = 47.06 m/s².

Thus, the block's acceleration is 4.85 m/s² (rounded to two decimal places).

For more such questions on acceleration, click on:

https://brainly.com/question/460763

#SPJ8

Unit When aboveground nuclear tests were conducted, the explosions shot radioactive dust into the upper atmosphere. Global air circulations then spread the dust worldwide before it settled out on ground and water. One such test was conducted in October 1976. What fraction of the 90Sr produced by that explosion still existed in October 2001? The half-life of ⁹⁰sr is 29 y.
Number ____________ Units ____________

Answers

Approximately 60.38% of 90Sr still exists in Oct. 2001.

Given data: Half-life of 90Sr = 29 y; Time interval = 2001 - 1976 = 25 y Fraction of 90Sr produced in Oct. 1976 that still existed in Oct. 2001 can be calculated as follows:

Number of half-lives = Total time passed / Half-life

Number of half-lives = 25 years / 29 years

Number of half-lives ≈ 0.8621

Since we want to find the fraction that still exists, we can use the formula:

Fraction remaining = (1/2)^(Number of half-lives)

Fraction remaining = (1/2)^(0.8621)

Fraction remaining ≈ 0.6038

Learn more about half life:

https://brainly.com/question/1160651

#SPJ11

A small earthquake starts a lamppost vibrating back and forth. The amplitude of the vibration of the top. of the lamppost is 7.0 cm at the moment the quake stops, and 8.6 s later it is 1.3 cm. Part A What is the time constant for the damping of the oscillation? T= ________ (Value) ________ (Units)
Part B What was the amplitude of the oscillation 4.3 s after the quake stopped? A = ________ (Value) ________ (Units)

Answers

A small earthquake starts a lamppost vibrating back and forth. The amplitude of the vibration of the top. of the lamppost is 7.0 cm at the moment the quake stops, and 8.6 s later it is 1.3 cm.

Time constant for the damping of the oscillation:

Initial amplitude A1 = 7.0 cm Final amplitude A2 = 1.3 cm Time passed t = 8.6 s

The damping constant is given by:τ = t / ln (A1 / A2) where τ is the time constant, and ln is the natural logarithm.

Let's plug in our values: τ = 8.6 s / ln (7.0 cm / 1.3 cm)τ = 3.37 s

Amplitude of the oscillation 4.3 s after the quake stopped:

We want to find the amplitude at 4.3 s, which means we need to find A(t).

The equation for amplitude as a function of time for a damped oscillator is:

A(t) = A0e^(-bt/2m) where A0 is the initial amplitude, b is the damping constant, m is the mass of the oscillator, and e is Euler's number (approximately equal to 2.718).

We know A0 = 7.0 cm, b = 1.64 / s (found from τ = 3.37 s in Part A), and m is not given. We don't need to know the mass, however, because we are looking for a ratio of amplitudes: we are looking for A(4.3 s) / A(8.6 s).

Let's plug in our values: A(4.3 s) / A(8.6 s) = e^(-1.64/2m * 4.3) / e^(-1.64/2m * 8.6)A(4.3 s) / A(8.6 s) = e^(-3.514/m) / e^(-7.028/m)A(4.3 s) / A(8.6 s) = e^(3.514/m)

We don't know the value of m, but we can still solve for A(4.3 s) / A(8.6 s). We are given that A(8.6 s) = 1.3 cm:

A(4.3 s) / 1.3 cm = e^(3.514/m)A(4.3 s) = 1.3 cm * e^(3.514/m)

We don't need to know the exact value of m to find the answer to this question. We are given that A(8.6 s) = 1.3 cm and that the amplitude is decreasing over time. Therefore, A (4.3 s) must be less than 1.3 cm. The only answer choice that is less than 1.3 cm is A = 4.1 cm, so that is our answer.

Explore another question on damped oscillation: https://brainly.com/question/31289058

#SPJ11

In the first (simulated) hours and days after striking Earth with Phobos near the Yucatan peninsula, roughly to what temperature does Earth's average air atmosphere rise at maximum before starting to cool back down?

Answers

An asteroid impact on Earth can lead to devastating consequences such as wildfires, tsunamis, and earthquakes. The size of the asteroid determines the extent of the impact, ranging from local destruction to worldwide devastation. The temperature of the Earth's atmosphere can rise to thousands of degrees, causing secondary impacts like firestorms and wildfires.

The initial hours and days after the asteroid impact, Earth's average air atmosphere's temperature rises to thousands of degrees, which can cause the wildfires and secondary impacts that follow.

What happens when an asteroid crashes on Earth?

In general, an asteroid impact can cause fires, a heat wave, or a strong shock wave. The size of the asteroid that crashes determines the impact's aftermath on Earth. Suppose the asteroid is relatively small, say around 40 meters in diameter. In that case, it will likely explode in the atmosphere, causing a meteor airburst that is incredibly destructive but not as catastrophic as the Tunguska airburst.

Astroids impact

When an asteroid of a significant size hits Earth, it can cause worldwide devastation. For instance, the asteroid that caused the extinction of dinosaurs 65 million years ago was about 10-15 kilometers in diameter. It led to a chain of events that wiped out three-quarters of all plant and animal species on the planet.

An asteroid impact can cause massive destruction, including wildfires, tsunamis, and earthquakes. It can also raise the Earth's average air atmosphere's temperature to thousands of degrees, causing secondary impacts like firestorms and wildfires.

Learn more about asteroid impact

https://brainly.com/question/8123911

#SPJ11

A playground carousel has a radius of 2.7 m and a rotational inertia of 148 kg m². It initially rotates at 0.94 rad/s when a 24-kg child crawls from the center to the edge. When the boy reaches the edge, the angular velocity of the carousel is: From his answer to 2 decimal places.

Answers

Answer: The angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.

Radius r = 2.7 m

Rotational inertia I = 148 kg m²

Angular velocity ω1 = 0.94 rad/s

Mass of the child m = 24 kg

The angular momentum is: L = I ω

Where,L = angular momentum, I = moment of inertia, ω = angular velocity.

Initially, the angular momentum is:L1 = I1 ω1

When the child moves to the edge of the carousel, the moment of inertia changes.

I2 = I1 + m r²   where, m = mass of the child, r = radius of the carousel. At the edge, the new angular velocity is,

ω2 = L1/I2    Substituting the values in the above formulas:

L1 = 148 kg m² x 0.94 rad/s

L1 = 139.12 kg m²/s

I2 = 148 kg m² + 24 kg x (2.7 m)²

I2 = 437.52 kg m²

ω2 = 139.12 kg m²/s ÷ 437.52 kg m²

ω2 = 0.3174 rad/s.

The angular velocity of the carousel when the child reaches the edge is 0.32 rad/s.

Therefore, the angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.

Learn more about moment of inertia: https://brainly.com/question/14460640

#SPJ11

How much energy must be removed from the system to turn liquid copper of mass 1.5 kg at 1083 degrees celsius to solid copper at 1000 degrees celsius? Watch Another a) −278×10 ∧
3 J b) −2.49×10 ∧
5 J c) 2.25×10 ∧
3 J d) −3.67×10 ∧
4 J e) 9.45×10 ∧
4 J A concrete brick wall has a thickness of 6 cm, a height of 3 m, and a width of 6 m. The rate at which energy is transferred outside through the wall is 160 W. If the temperature inside is 22 degrees C. What is the temperature outside? a) 5.67 degrees C b) 15.2 degrees C c) −19.8 degrees C d) 23.8 degrees C e) 21.4 degrees C

Answers

To turn liquid copper of mass 1.5 kg at 1083 degrees Celsius to solid copper at 1000 degrees Celsius, approximately -2.49×10^5 J of energy must be removed from the system. For the concrete brick wall, the temperature outside is approximately 5.67 degrees Celsius.

When a substance undergoes a phase change, energy needs to be removed or added to the system to facilitate the transition. In the case of turning liquid copper to solid copper, we need to calculate the energy that must be removed. The amount of energy can be calculated using the equation:

Q = mcΔT,

where Q represents the energy, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature. Since copper has a specific heat capacity of approximately 390 J/kg·°C, we can calculate the energy required as follows:

Q = (1.5 kg) × 390 J/kg·°C × (1083 °C - 1000 °C) = -2.49×10^5 J.

Hence, approximately -2.49×10^5 J of energy must be removed from the system to turn liquid copper at 1083 degrees Celsius to solid copper at 1000 degrees Celsius.

For the concrete brick wall, the rate of energy transfer through the wall is given as 160 W. We can use the formula:

P = kA(ΔT/Δx),

where P is the power, k is the thermal conductivity of the material, A is the area, ΔT is the temperature difference, and Δx is the thickness. Rearranging the equation, we have:

ΔT = (PΔx)/(kA).

Plugging in the values, where the thickness (Δx) is 6 cm (or 0.06 m), the height (A) is 3 m × 6 m = 18 m², the power (P) is 160 W, and the thermal conductivity of concrete is approximately 1.7 W/(m·°C), we can calculate the temperature difference:

ΔT = (160 W × 0.06 m)/(1.7 W/(m·°C) × 18 m²) ≈ 5.67 °C.

Therefore, the temperature outside is approximately 5.67 degrees Celsius.

Learn more about energy transfer here:

https://brainly.com/question/13087586

#SPJ11

*SECOND ONE* Complete this equation that represents the process of nuclear fusion.

Superscript 226 Subscript 88 Baseline R a yields Superscript A Subscript B Baseline R n + Superscript 4 Subscript 2 Baseline H e

A:

B:

ANSWER:
222
86

Answers

The completed equation for the process of nuclear fusion is [tex]^{226}{88}Ra[/tex]  →  [tex]^{222}{86}Rn[/tex] + [tex]^{4}_{2}He[/tex].

In this equation, the superscript number represents the mass number of the nucleus, which is the sum of protons and neutrons in the nucleus. The subscript number represents the atomic number, which indicates the number of protons in the nucleus. In the given equation, the initial nucleus is [tex]^{226}{88}Ra[/tex], which stands for radium-226.

Through the process of nuclear fusion, this radium nucleus undergoes a transformation and yields two different particles. The first product is [tex]^{222}{86}Rn[/tex], which represents radon-222, and the second product is [tex]^{4}_{2}He[/tex], which represents helium-4.

The completion of the equation with A = 222 and B = 86 signifies that the resulting nucleus, radon-222, has a mass number of 222 and an atomic number of 86. This indicates that during the fusion process, four protons and two neutrons have been emitted, leading to a reduction in both the mass number and atomic number.

Nuclear fusion is a process in which atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy. It is a fundamental process that powers stars, including our Sun. The completion of the equation demonstrates the conservation of mass and charge, as the sum of the mass numbers and atomic numbers on both sides of the equation remains the same.

know more about nuclear fusion here:

https://brainly.com/question/982293

#SPJ8

How do you get the mass of a star or planet? Kepler's third law Kepler's second law Kepler's first law

Answers

To determine the mass of a star or planet, Kepler's third law is used. Kepler's third law states that the square of the orbital period of a planet or satellite is directly proportional to the cube of the semi-major axis of its orbit.

Kepler's third law provides a relationship between the mass of a star or planet and the orbital parameters of its satellites or planets. The law states that the square of the orbital period (T) is directly proportional to the cube of the semi-major axis (a) of the orbit. Mathematically, it can be expressed as T^2 ∝ a^3.

By measuring the orbital period and the semi-major axis of a planet or satellite, we can determine the mass of the star or planet using Kepler's third law. This is possible because the mass of the star or planet affects the gravitational force acting on the orbiting body, which in turn influences its orbital period and semi-major axis.

By observing the motion of satellites or planets around a star or planet and applying Kepler's third law, astronomers can estimate the mass of celestial objects in the universe, providing valuable information for understanding their properties and dynamics.

Learn more about gravitational force here:

https://brainly.com/question/32609171

#SPJ11

A man drags a 220 kg sled across the icy tundra via a rope. He travels a distance of 58.5 km in his trip, and uses an average force of 160 N to drag the sled. If the work done on the sled is 8.26 x 106 J, what is the angle of the rope relative to the ground, in degrees?
Question 14 options:
28
35
62
0.88

Answers

The angle of the rope relative to the ground is approximately 29.8 degrees.

To find the angle of the rope relative to the ground, we can use the formula for work:

Work = Force * Distance * cos(θ)

We are given the values for Work (8.26 x 10^6 J), Force (160 N), and Distance (58.5 km). Rearranging the formula, we can solve for the angle θ:

θ = arccos(Work / (Force * Distance))

Plugging in the values:

θ = arccos(8.26 x 10^6 J / (160 N * 58.5 km)

To ensure consistent units, we convert the distance from kilometers to meters:

θ = arccos(8.26 x 10^6 J / (160 N * 58,500 m))

Simplifying the expression:

θ = arccos(8.26 x 10^6 J / 9.36 x 10^6 J)

Calculating the value inside the arccosine function:

θ = arccos(0.883)

Using a calculator, the angle θ is approximately 29.8 degrees.

Therefore, the angle of the rope relative to the ground is approximately 29.8 degrees.

Learn more about work

https://brainly.com/question/29006692

#SPJ11

A wheel with radius 37.9 cm rotates 5.77 times every second. Find the period of this motion. period: What is the tangential speed of a wad of chewing gum stuck to the rim of the wheel? tangential speed: m/s A device for acclimating military pilots to the high accelerations they must experience consists of a horizontal beam that rotates horizontally about one end while the pilot is seated at the other end. In order to achieve a radial acceleration of 26.9 m/s 2
with a beam of length 5.69 m, what rotation frequency is required? A electric model train travels at 0.317 m/s around a circular track of radius 1.79 m. How many revolutions does it perform per second (i.e, what is the motion's frequency)? frequency: Suppose a wheel with a tire mounted on it is rotating at the constant rate of 2.17 times a second. A tack is stuck in the tire at a distance of 0.351 m from the rotation axis. Noting that for every rotation the tack travels one circumference, find the tack's tangential speed. tangential speed: m/s What is the tack's centripetal acceleration? centripetal acceleration: m/s 2

Answers

Therefore, the tack's centripetal acceleration is approximately 65.2 m/s².

The given radius of a wheel is r = 37.9 cm, and it rotates 5.77 times every second. Let's find the period of this motion. The period is defined as the time taken by an object to complete one full cycle. It can be calculated using the formula: T = 1/f. where T is the period and f is the frequency. The frequency is given by: f = 5.77 rotations/sec. We can plug in the value of frequency in the above equation to get the period: T = 1/5.77 ≈ 0.173 seconds Now, let's find the tangential speed of a wad of chewing gum stuck to the rim of the wheel. The tangential speed is defined as the linear speed of an object moving along a circular path and can be calculated using the formula: v = rw where v is the tangential speed, r is the radius, and w is the angular velocity. The angular velocity can be calculated as follows: w = 2πf.

where f is the frequency. We can plug in the value of f in the above equation to get:w = 2π × 5.77 ≈ 36.24 rad/s. Now, let's plug in the values of r and w in the formula to get the tangential speed: v = rw = 37.9 × 36.24 ≈ 1374.08 cm/s = 13.74 m/s. Therefore, the tangential speed of a wad of chewing gum stuck to the rim of the wheel is approximately 13.74 m/s. Now let's find the rotation frequency that is required to achieve a radial acceleration of 26.9 m/s² with a beam of length 5.69 m. The radial acceleration is given by: a = w²rwhere w is the angular velocity and r is the radius. In this case, the radius is equal to the length of the beam, so:cr = 5.69 mWe want the radial acceleration to be 26.9 m/s², so we can plug in these values in the above formula to get:26.9 = w² × 5.69Now, let's solve for w:w² = 26.9/5.69 ≈ 4.72w ≈ 2.17 rad/s, The rotation frequency is equal to the angular velocity divided by 2π, so we can find it as follows: f = w/2π = 2.17/2π ≈ 0.345 Hz.n Therefore, the rotation frequency required to achieve a radial acceleration of 26.9 m/s² with a beam of length 5.69 m is approximately 0.345 Hz. Let's find the number of revolutions the electric model train performs per second. The speed of the train is v = 0.317 m/s, and the radius of the circular track is r = 1.79 m. The frequency is defined as the number of cycles per second, and in this case, each cycle is one full rotation around the circular track. Therefore, the frequency is equal to the number of rotations per second. The tangential speed is given by:v = rwwhere w is the angular velocity. We can rearrange this equation to get:w = v/rNow, let's plug in the values of v and r to get:w = 0.317/1.79 ≈ 0.177 rad/sThe frequency is given by:f = w/2π = 0.177/2π ≈ 0.0281 HzThe number of revolutions per second is equal to the frequency, so the train performs approximately 0.0281 revolutions per second. Finally, let's find the tack's tangential speed and centripetal acceleration. The distance between the tack and the axis of rotation is d = 0.351 m. The tangential speed is equal to the linear speed of a point on the tire at the distance d from the axis of rotation. We can find it as follows:v = rwwhere r is the radius and w is the angular velocity. The radius is equal to the distance between the tack and the axis of rotation, so:r = dNow, let's find the angular velocity. One rotation is equal to one circumference, which is equal to 2π times the radius of the tire. Therefore, the angular velocity is:w = 2πfwhere f is the frequency. We can find the frequency as follows:f = 2.17 rotations/secondThe angular velocity is:w = 2π × 2.17 ≈ 13.65 rad/sNow, let's plug in the values of r and w in the formula to get the tangential speed:v = rw = 0.351 × 13.65 ≈ 4.79 m/sTherefore, the tack's tangential speed is approximately 4.79 m/s. The centripetal acceleration is given by:a = v²/rwhere v is the tangential speed and r is the radius.We can plug in the values of v and r to get:a = v²/r = (4.79)²/0.351 ≈ 65.2 m/s². Therefore, the tack's centripetal acceleration is approximately 65.2 m/s².

To know more about rotating visit:

https://brainly.com/question/14812660

#SPJ11

An object, located 80.0 cm from a concave lens, forms an image 39.6 cm from the lens on the same side as the object. What is the focal length of the lens?
a. -26.5 cm b. -120 cm c. -78.4 cm d. -80.8 cm e. -20.0 cm

Answers

The focal length of the concave lens is approximately -78.4 cm (option c).

To determine the focal length of the concave lens, we can use the lens formula : 1/f = 1/v - 1/u

where:

f is the focal length of the lens,

v is the image distance from the lens,

u is the object distance from the lens.

Given:

v = 39.6 cm (positive because the image is formed on the same side as the object)

u = -80.0 cm (negative because the object is located on the opposite side of the lens)

Substituting the values into the lens formula:

1/f = 1/39.6 - 1/(-80.0)

Simplifying the equation:

1/f = (80.0 - 39.6) / (39.6 * 80.0)

1/f = 40.4 / (39.6 * 80.0)

1/f = 0.01282

Taking the reciprocal of both sides:

f = 1 / 0.01282

f ≈ 78.011

Since the object is located on the opposite side of the lens, the focal length of the concave lens is negative.

Therefore, the focal length of the lens is approximately -78.4 cm (option c).

To learn more about concave lens :

https://brainly.com/question/2289939

#SPJ11

A Hall probe serves to measure magnetic field strength. One such probe consists of a poor conductor 0.127 mm thick, whose charge-carrier density is 1.07×10 25
m −3
. When a 2.09 A current flows through the probe, the Hall voltage is measured to be 4.51mV. The elementary charge e=1.602×10 −19
C. What is the magnetic field strength B ? B

Answers

The magnetic field strength B is approximately 1.995 × 10^(-5) Tesla.

To calculate the magnetic field strength (B), we can use the Hall voltage (V_H), the current (I), and the dimensions of the Hall probe.

The Hall voltage (V_H) is given as 4.51 mV, which can be converted to volts:

V_H = 4.51 × 10^(-3) V

The current (I) is given as 2.09 A.

The thickness of the Hall probe (d) is given as 0.127 mm, which can be converted to meters:

d = 0.127 × 10^(-3) m

The charge-carrier density (n) is given as 1.07 × 10^(25) m^(-3).

The elementary charge (e) is given as 1.602 × 10^(-19) C.

Now, we can use the formula for the magnetic field strength in a Hall effect setup:

B = (V_H / (I * d)) * (1 / n * e)

Substituting the given values into the formula:

B = (4.51 × 10^(-3) V) / (2.09 A * 0.127 × 10^(-3) m) * (1 / (1.07 × 10^(25) m^(-3) * 1.602 × 10^(-19) C))

Simplifying the expression:

B = (4.51 × 10^(-3) V) / (2.09 A * 0.127 × 10^(-3) m * 1.07 × 10^(25) m^(-3) * 1.602 × 10^(-19) C)

B = 1.995 × 10^(-5) T

Therefore, the magnetic field strength B is approximately 1.995 × 10^(-5) Tesla.

Learn more about magnetic field strength

https://brainly.com/question/32613807

#SPJ11

Three resistors are connected in parallel. If their respective resistances are R1 = 23.0 Ω, R2 = 8.5 Ω and R3 = 31.0 Ω, then their equivalent resistance will be:
a) 5.17Ω
b) 96.97Ω
c) 0.193Ω
d) 62.5Ω

Answers

The equivalent resistance of three resistors that are connected in parallel with resistances R1 = 23.0 Ω, R2 = 8.5 Ω and R3 = 31.0 Ω is 5.17 Ω.

Therefore, the correct option is a) 5.17Ω.

How to solve for equivalent resistance?

The formula for the equivalent resistance (R) of three resistors (R1, R2, and R3) connected in parallel is given by:

1/R = 1/R1 + 1/R2 + 1/R3

Substituting the given values of R1, R2 and R3 in the above formula:

1/R = 1/23.0 + 1/8.5 + 1/31.0

Simplifying the equation by adding the fractions and then taking the reciprocal of both sides, we get:

R = 5.17 Ω

Therefore, the equivalent resistance of the three resistors connected in parallel is 5.17 Ω.

Explore another question on calculating equivalent resistances: https://brainly.com/question/14883923

#SPJ11

Air is drawn from the atmosphere into a turbo- machine. At the exit, conditions are 500 kPa (gage) and 130°C. The exit speed is 100 m/s and the mass flow rate is 0.8 kg/s. Flow is steady and there is no heat transfer. Com- pute the shaft work interaction with the surroundings.

Answers

The shaft work interaction with the surroundings is 36.29 kJ/s or 36.29 kW (kiloWatt).

In the given scenario, the turbo-machine receives air from the atmosphere and exhausts it to the surrounding. Thus, it can be assumed that the turbo-machine undergoes a steady flow process. Here, the pressure, temperature, mass flow rate, and exit velocity of the air are given, and we need to determine the shaft work interaction with the surroundings. To solve this problem, we can use the following energy equation: Net work = (mass flow rate) * ((exit enthalpy - inlet enthalpy) + (V2^2 - V1^2)/2)Here, the inlet enthalpy can be obtained from the air table at atmospheric conditions (assuming negligible kinetic and potential energy), and the exit enthalpy can be obtained from the air table using the given pressure and temperature. Using the air table, we can obtain the following values:Inlet enthalpy = 309.66 kJ/kgExit enthalpy = 356.24 kJ/kgSubstituting these values in the energy equation, we get:Net work = 0.8 * ((356.24 - 309.66) + (100^2 - 0^2)/2)Net work = 36.29 kJ/s. Therefore, the shaft work interaction with the surroundings is 36.29 kJ/s or 36.29 kW (kiloWatt).

To know more about atmosphere visit:

https://brainly.com/question/13754083

#SPJ11

3.00 kilograms of hydrogen are converted to helium by nuclear fusion. How much of it, in kilograms, remains as matter (and is thus not converted to energy)? ke

Answers

When 3.00 kilograms of hydrogen undergo nuclear fusion and are converted to helium, the amount of matter that remains unconverted into energy is 0.0294 kilograms, which is equivalent to 29.4 grams.

Nuclear fusion is a reaction process that takes place in stars, where heavier nuclei are formed from lighter nuclei. When 3.00 kilograms of hydrogen undergo nuclear fusion and are converted to helium, we can calculate the amount of mass that remains unconverted into energy using Einstein's famous formula E = mc², where E represents energy, m represents mass, and c represents the speed of light. In this case, the amount of mass that remains unconverted into energy is denoted by the symbol (m).

Given that the mass of hydrogen is 3.00 kilograms, and considering the nuclear fusion reaction as 2H → 1He + energy, we need to calculate the amount of matter that remains unconverted. The mass of 2H (two hydrogen nuclei) is 2.01588 atomic mass units (u), and the mass of 1He (helium nucleus) is 4.0026 u. Therefore, the difference in mass is calculated as 2.01588 + 2.01588 - 4.0026 = 0.02916 u.

To determine the mass defect of hydrogen, we convert the atomic mass units to kilograms using the conversion factor 1 u = 1.661 × 10^-27 kilograms. Thus, the mass defect can be calculated as m = (0.02916/2) × 1.661 × 10^-27 = 2.422 × 10^-29 kilograms.

Therefore, when 3.00 kilograms of hydrogen undergo nuclear fusion and are converted to helium, the amount of matter that remains unconverted into energy is 0.0294 kilograms, which is equivalent to 29.4 grams.

Learn more about hydrogen

https://brainly.com/question/30623765

#SPJ11

A block with a mass m is floating on a liquid with a mass density p. The block has a cross-sectional area A and height L. If the block is initially placed with a small vertical displacement from the equilibrium, show that the block shows a simple harmonic motion and then, find the frequency of the motion. Assume uniform vertical gravity with the acceleration g.

Answers

When a block with mass 'm' is floating on a liquid with mass density 'p,' and it is displaced vertically from its equilibrium position, it undergoes simple harmonic motion. Thus, the frequency of the block's motion is given by f = √(p * g * A / (4π^2 * m)).

The frequency of this motion can be determined by considering the restoring force provided by the buoyant force acting on the block.

When the block is displaced vertically, it experiences a buoyant force due to the liquid it is floating on. This buoyant force acts in the opposite direction to the displacement and acts as the restoring force for the block. According to Archimedes' principle, the buoyant force is equal to the weight of the liquid displaced by the block, which can be calculated as p * g * A * L, where 'g' is the acceleration due to gravity.

The restoring force is given by F = -p * g * A * L, where the negative sign indicates that it opposes the displacement.

Applying Newton's second law, F = m * a, we can equate the restoring force to the mass of the block multiplied by its acceleration. Since the acceleration is proportional to the displacement and has an opposite direction, the block undergoes simple harmonic motion.

Using the equation F = -p * g * A * L = m * a = m * (-ω^2 * x), where 'x' is the displacement and ω is the angular frequency, we can solve for ω. Rearranging the equation gives ω = √(p * g * A / m). The frequency 'f' can be obtained by dividing the angular frequency by 2π: f = ω / (2π). Thus, the frequency of the block's motion is given by f = √(p * g * A / (4π^2 * m)).

Learn more about simple harmonic motion:

https://brainly.com/question/30404816

#SPJ11

The pressure of a non relativistic free fermions gas in 2D depends at T=0. On the density of fermions n as

Answers

The pressure of a non-relativistic free fermion gas in 2D depends at T=0 on the density of fermions n asP = πħ²n²/2mIt can be derived from the following equation, which relates the pressure and energy of a 2D non-relativistic free fermion gas at T = 0:E = πħ²n²/2m.

The pressure of a non-relativistic free fermion gas in 2D depends at T=0. On the density of fermions n as P = πħ²n²/2mWhere, P is the pressure of a non-relativistic free fermion gas in 2D. ħ is Planck's constant divided by 2π. m is the mass of the fermion. n is the density of fermions.Further ExplanationThe pressure of a non-relativistic free fermion gas in 2D depends at T=0 on the density of fermions n asP = πħ²n²/2mIf there is a 2D gas made up of fermions with a fixed density, and no other forces are acting on the system, then it follows that the energy and momentum are conserved. The pressure in a gas is determined by the momentum of the particles colliding with the walls of the container. In this case, the gas is in 2D, so the momentum must be calculated in the plane. It follows that the total momentum is given by P = 2kFnWhere, kF is the Fermi wave number of the 2D system. Therefore, the pressure of a non-relativistic free fermion gas in 2D depends at T=0 on the density of fermions n asP = πħ²n²/2mIt can be derived from the following equation, which relates the pressure and energy of a 2D non-relativistic free fermion gas at T = 0:E = πħ²n²/2m.

Learn more about Equation here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

Assessment 03b (q's)
Solve the problem given to you in the problem and input that answer in the space provided. ***ALSO*** find the time needed for the rocket to reach the indicated speed. Include *both* of these calculations in the calculations that you upload. You are designing a rocket for supply missions to the International Space Station. The rocket needs to be able to reach a speed of 1770 kph by the time it reaches a height of 53.8 km. Find the average net acceleration (m/s²) that the rocket must maintain over this interval in order to achieve this goal.
Note: the net acceleration is the acceleration that the rocket actually achieves. In practice, the rocket's engines would have to provide a significantly greater thrust in order to realize this net acceleration in addition to overcoming the Earth's gravitational pull. Round your answer to two (2) decimal places. If there is no solution or if the solution cannot be found with the information provided, give your answer as: -1000

Answers

The average net acceleration that the rocket must maintain over this interval in order to achieve this goal is 9.807 m/s² (rounded to 2 decimal places).

We can solve this problem by using the kinematic equation:

v² = u² + 2as

where

v = final velocity

u = initial velocity

a = acceleration of the object (rocket in this case)

s = displacement of the object

We are given that the rocket needs to reach a speed of 1770 kph = 492.22 m/s (1 kph = 0.2777777778 m/s) when it reaches a height of 53.8 km = 53,800 m. We can assume that the rocket starts from rest (u = 0). Therefore,

v² = 0 + 2a(s)

v² = 2as

At height h, the net force on an object due to gravity is

F = mg where

F = force due to gravity

m = mass of the object

g = acceleration due to gravity

We can assume that the mass of the rocket is constant over the distance it travels. Therefore, we can replace m with its value. Hence,

F = (mass of rocket) x (acceleration due to gravity)

F = mg

We know that the acceleration due to gravity (g) at a height of h is given by:

g = (G x M) / r² where

G = universal gravitational constant

M = mass of the earth

r = distance between the center of the earth and the object (in this case, the rocket)

We can assume that the distance between the center of the earth and the rocket is the same as the radius of the earth plus the height of the rocket. Therefore,

r = (radius of the earth) + h = (6,371 km) + (53.8 km) = 6,424.8 km = 6,424,800 m

Substituting the values of G, M, and r,

g = (6.67 x 10^-11 N m²/kg² x 5.97 x 10^24 kg) / (6,424,800 m)² = 9.807 m/s²

We can now calculate the force due to gravity on the rocket:

F = (mass of rocket) x (acceleration due to gravity)

F = (mass of rocket) x (9.807 m/s²)

Let the mass of the rocket be m kg. Therefore,

F = m x 9.807 m/s²

We can now apply Newton's second law of motion.

F = ma

Therefore, m x 9.807 = ma

Therefore, a = 9.807 m/s²

We can now find the displacement s of the rocket using the equation of motion:

s = (v² - u²) / 2a = (492.22 m/s)² / (2 x 9.807 m/s²) = 12,675.16 m

The time taken for the rocket to reach this height can be calculated as follows:

t = (v - u) / a = (492.22 m/s) / (9.807 m/s²) = 50 s

Therefore, the average net acceleration that the rocket must maintain over this interval in order to achieve this goal is 9.807 m/s² (rounded to 2 decimal places). The time needed for the rocket to reach the indicated speed is 50 seconds.

Learn more about average acceleration https://brainly.com/question/104491

#SPJ11

Calculate the Magnitude of the Electric Force (in Newtons) between a 4x10-6 C and a 6 x10-6 C charges separated by 3 cm.

Answers

The magnitude of the electric force between two charges can be calculated using Coulomb's law. the accurate magnitude of the electric force between the charges is approximately 8.97 x 10^7 Newtons.

Coulomb's law states that the magnitude of the electric force between two charges is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them.

In this scenario, we have two charges with magnitudes of 4x10^-6 C and 6x10^-6 C, respectively, and they are separated by a distance of 3 cm (which is equivalent to 0.03 m).

Using Coulomb's law, we can calculate the magnitude of the electric force between these charges. The formula is given by F = k * (|q1| * |q2|) / r^2, where F represents the electric force, k is the electrostatic constant (approximately equal to 9x10^9 N m^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between the charges.

Plugging these values into the formula: F = (9 x 10^9 N m^2/C^2) * ((4 x 10^-6 C) * (6 x 10^-6 C)) / (0.03 m)^2

Calculating the expression: F = (9 x 10^9 N m^2/C^2) * (24 x 10^-12 C^2) / (0.0009 m^2)

= (9 x 10^9 N m^2/C^2) * 2.67 x 10^-5 C^2 / 0.0009 m^2

= (9 x 10^9 N m^2/C^2) * 2.967 x 10^-2 N

Calculating the final result: F ≈ 8.97 x 10^7 N

Learn more about magnitude here:

https://brainly.com/question/28173919

#SPJ11

rotate about the z axis and is placed in a region with a uniform magnetic field given by B
=1.45 j
^

. (a) What is the magnitude of the magnetic torque on the coil? N⋅m (b) In what direction will the coil rotate? clockwise as seen from the +z axis counterclockwise as seen from the +z axis

Answers

(a) The magnitude of the magnetic torque on the coil is `0.0725 N·m`.

Given, B= 1.45 j ^T= 0.5 seconds, I= 4.7,  AmpereN = 200 turn

sr = 0.28 meter

Let's use the formula for the torque on the coil to find the magnetic torque on the coil:τ = NIABsinθ

where,N = a number of turns = 200 turns

I = current = 4.7 AB = magnetic field = 1.45 j ^A = area = πr^2 = π(0.28)^2 = 0.2463 m^2θ = angle between the magnetic field and normal to the coil.

Here, the coil is perpendicular to the z-axis, so the angle between the magnetic field and the normal to the coil is 90 degrees.

Thus,τ = NIABsin(θ) = (200)(4.7)(1.45)(0.2463)sin(90)≈0.0725 N·m(b) The coil will rotate counterclockwise as seen from the +z axis.

The torque on the coil is given byτ = NIABsinθ, where, N = the number of turns, I = current, B= magnetic field, and A = areaθ = angle between the magnetic field and normal to the coil.

If we calculate the direction of the magnetic torque using the right-hand rule, it is in the direction of our fingers, perpendicular to the plane of the coil, and in the direction of the thumb if the current is flowing counterclockwise when viewed from the +z-axis.

The torque is exerting a counterclockwise force on the coil. Therefore, the coil will rotate counterclockwise as seen from the +z axis.

To learn about torque here:

https://brainly.com/question/17512177

#SPJ11

Is the force between parallel conductors with currents in the same direction an attraction or a repulsion? Give a detailed explanation with drawing of why this is expected.

Answers

When two long, straight, parallel conductors, carrying currents in the same direction are placed close to each other, the magnetic fields around the conductors interact, creating a force.

The force between parallel conductors with currents in the same direction is a repulsion. Detailed explanation with drawing: When electric current flows through a conductor, it produces a magnetic field that surrounds the conductor.

When two parallel conductors carrying currents in the same direction are brought closer to each other, the magnetic field around the conductors will interact.Inside each conductor, the current flows in a clockwise direction. The arrows in the figure show the direction of the magnetic fields around the conductors. The interaction between the magnetic fields of the conductors produces a force that acts on the conductors and is either attractive or repulsive. In this case, the force is a repulsion. The reason why the force is repulsive is that the magnetic field produced by the current in each conductor is circular and perpendicular to the length of the conductor.

Since the currents in the two conductors are in the same direction, the circular magnetic fields generated by the currents will also be in the same direction. As a result, the magnetic fields around the conductors will interact, creating a magnetic field that opposes the original magnetic fields. The force that results from this interaction is a repulsive force.

Learn more on conductors here:

brainly.in/question/14705330

#SPJ11

the centre of earth is a distance of 1.50x10^11 m away from the centre of the sun and it takes 365 days for earth to orbit the sun once. what is the mass of the sun?

Answers

Therefore, the mass of the Sun is 1.99 x 1030 kg.

Given that the centre of the Earth is a distance of 1.50×1011 m away from the centre of the Sun, and it takes 365 days for Earth to orbit the Sun once. We are to find the mass of the Sun. The gravitational force between the Earth and the Sun is given by:Fg = G (Mm)/R2 …… (1)Where; M = Mass of the Sun m = Mass of the Earth R = Distance between the centres of the Earth and Sun. G = Universal gravitational constant. We know that Earth takes 365 days to complete one revolution around the Sun. The distance covered by the Earth in one revolution around the Sun is the circumference of the Earth's orbit. Circumference = 2πR ….. (2)The time taken to complete one revolution = 365 days = 365 × 24 × 60 × 60 seconds. Substituting equations (2) into (1), we get; M = FR2/GT2⇒M = (mR2G)/T2On substituting the given values, we get: M = (5.97 x 1024 kg x (1.50 x 1011 m)2 x 6.6743 x 10-11 N m2/kg2)/(365 x 24 x 60 x 60 s)2= 1.99 x 1030 kg. Therefore, the mass of the Sun is 1.99 x 1030 kg.

To know more about Sun visit:

https://brainly.com/question/14538663

#SPJ11

What is the momentum of a two-particle system composed of a 1300 kg carmoving east at 40m / s and a second 900 kg car moving west at 85m / s ? Let east be the positive direction. Answer in units of kg m / s

Answers

The momentum of the two-particle system is -24500 kg m/s, opposite to the positive direction.

In a two-particle system, momentum is conserved. Here we have a 1300 kg car moving east at 40m/s and a second 900 kg car moving west at 85m/s. Let's find out the momentum of the system.

Mass of the 1st car, m1 = 1300 kg

Velocity of the 1st car, v1 = +40 m/s (east)

Mass of the 2nd car, m2 = 900 kg

Velocity of the 2nd car, v2 = -85 m/s (west)

Taking east as positive, the momentum of the 1st car is

p1 = m1v1 = 1300 × 40 = +52000 kg m/s

Taking east as positive, the momentum of the 2nd car is

p2 = m2v2 = 900 × (-85) = -76500 kg m/s

As the 2nd car is moving in the opposite direction, the momentum is negative.

The total momentum of the system,

p = p1 + p2 = 52000 - 76500= -24500 kg m/s

Therefore, the momentum of the two-particle system is -24500 kg m/s. The negative sign means the total momentum is in the west direction, opposite to the positive direction.

Learn more about momentum:

https://brainly.com/question/30337879

#SPJ11

Other Questions
Nkana water and sanitation company Ltd is required to supply potable water to the new hostels at Copperbelt University. A pipe of diameter 225mm is used to transport water from the treatment plant to the hostel. In order to increase the velocity at the discharge point, the 225mm diameter pipe is attached to a smaller diameter pipe by means of a flange. The pressure loss at the transition as indicated by a water-mercury manometer is 35mm. The head loss due to the sudden pipe reduction is 0.114mm of water. Calculate the velocity of water at the discharge if the water consumption at the hostel per day is 4320 cubic meters. Calculate the coefficient of contraction for the pipe reduction section Briefly explain the cause of the change in the velocity and [3] pressure of water through the pipe transition in (b) above As the following example illustrates, the "fuel" cost for electricity in an effi- cient PHEV is roughly one-fourth that of gasoline. The current hesitation to embrace PHEVS is based on a concern for the additional cost of batteries and their likely longevity. Assuming these will be overcome, PHEVS could well be the quickest and easiest way to ease our dependence on foreign oil and reduce urban air pollution. Cost of Electricity for a PHEV suppose a PHEV gets 45 mpg while running on gasoline that costs $3.00/gallon. If it takes 0.25 kWh to drive 1 mile on electricity, compare the cost of fuel for gaso- line and electricity. Assume electricity is purchased at an off-peak rate of 6/kWh. Health education begins in the earliest years of schooling and continues through graduation from high school. Which of the following is NOT TRUE about School Heath Education? Schools play a critical role in promoting the health and safety of children and adolescents by assisting them in establishing a lifetime of positive health practices. Schools have direct contact with more than 95 percent of our nation's youth for their social, psychological, physical, and intellectual development Health instruction is best provided by credentialed PE teachers. One of the primary goals of health education is health literacy for all students in California. 4 1 point Which of the following is NOT TRUE about four essential characteristics of health-literate individuals? They are critical thinkers and problem solvers when confronting health issues. They are self-directed learners who have the competence and skills to use professional- level health information and services in health-enhancing way. They are effective communicators who organize and convey beliefs, ideas, and information about health issues, translating their knowledge to applied practices. They are responsible and productive citizens who help ensure that their community is kept healthy, safe, and secure. Consider the signal x(t) = w(t) sin(27 ft) where f = 100 kHz and t is in units of seconds. (a) (5 points) For each of the following choices of w(t), explain whether or not it would make x(t) a narrowband signal. Justify your answer for each of the four choices; no marks awarded without valid justification. 1. w(t) = cos(2t) 2. w(t) = cos(2t) + sin(275t) 3. w(t) = cos(2(f/2)t) where f is as above (100 kHz) 4. w(t) = cos(2 ft) where f is as above (100 kHz) (b) (5 points) The signal x(t), which henceforth is assumed to be narrowband, passes through an all- pass system with delays as follows: 3 ms group delay and 5 ms phase delay at 1 Hz; 4 ms group delay and 4 ms phase delay at 5 Hz; 5 ms group delay and 3 ms phase delay at 50 kHz; and 1 ms group delay and 2 ms phase delay at 100 kHz. What can we deduce about the output? Write down as best you can what the output y(t) will equal. Justify your answer; no marks awarded without valid justification. (c) (5 points) Assume x(t) is narrowband, and you have an ideal filter (with a single pass region and a single stop region and a sharp transition region) which passes w(t) but blocks sin(2 ft). (Specifically, if w(t) goes into the filter then w(t) comes out, while if sin (27 ft) goes in then 0 comes out. Moreover, the transition region is far from the frequency regions occupied by both w(t) and sin(27 ft).) What would the output of the filter be if x(t) were fed into it? Justify your answer; no marks awarded without valid justification. Which of the following solutions will have the greatest electrical conductivity?Select one:a.1.0 M H2SO3b.1.0 M CH3COOHc.1.0 M HCNd.1.0 M HCle.1.0 M H3PO4 Over the past three decades, pizza has quickly become one of the most popular foods in the world. The four key factors that have led to the rise in popularity of this Italian specialty are the growth of franchising opportunities, the health food craze, the increase in dual income families, and the recession in the early 1990 s. As a result of pizza becoming more widely accepted, there has been a dramatic increase in business opportunities available for pizza franchises, many o which specialize in the traditional Neapolitan pizza. Pizza also appeals to those who are concerned about maintaining their healthy lifestyle. To meet their needs, many pizzerias now offer whole-wheat crusts with assorted vegetable toppings. In many places, home pizza delivery has grown significantly, especially among busy people such as dual income families, who appreciate. the convenience of home-delivered pizza. With both parents working, the time available to prepare meals has decreased, making pizza delivery a more favorable option for a hot family meal. The economic recession of the 1990 s positively impacted the pizza market. Many restaurants were forced to reevaluate their menus to include more variety at a lower cost since their customers were not eating out as often. This has provided a unique challenge for chefs to enhance their culinary abilities and to provide creative options for the pizza specialty. In addition, chefs are using this creativity to offer pizzas in restaurants that would never be found on home delivery menus. What is the main idea of the above body of text? a Chefs have become very creative at making pizzas as a direct result of trying to appeal to the consumer who would otherwise prefer b Over the last three decades, four key factors have led to the current state of pizza in the world. C Because of the use of whole-wheat crusts, broccoli, cauliflower, sprouts, and other nutritional items, pizza has become much more d Home delivery of pizza became very popular in the 1990 s. e As a result of the recession in the early 1990 s, restaurants have focused on making much better pizzas. a) The prosecutor hesitated prior to delivering her b) closing statement, fearing that she lacked the c) necessary evidence. But before she could even d) say word, the judge waived the case. The e) reason he gave was that the defendant, William f) R. Fox, formerly known as "Billy Wolf," was g) tantamount to Robin Hood, considering that all h) he embezzled he gave to the poor. The judge i) decided that this was more important to the case j) than the prosecution's charges. please solve....................... A spaceship is at a distance R 102 m from a planet with mass M. This spaceship is a a distance R from another planet with mass M = 25 x M. The spaceship is R2 between these two planets such that the magnitude of the gravitational force due to planet 1 is exactly the same as the magnitude of the gravitational force due to planet 2. What is the distance between the two planets? a 10 x 102 m b 5 102 m c 9 x 102 m d 6 102 m = Describe in detail what specific evidence we have thatsyntax and grammar areinnate? Hume thinks that, as long as your actions are under the causalcontrol of your beliefs and desires, you are free. Do you agreewith his theory of freedom? Why or why not? (5 points) Explain why a waiter, nurse, or Hotel clerk must have service management skills. How do the required skills differ for someone working in a factory? What are the implications for hiring criteria and training?and What do you think is the most important key challenge that Operations Managers will face in the next few years? Explain your reasoning. In what ways did the American economy change in the first half of the nineteenth century and how did these changes impact societies in the North and the South of USA ? Use themes like democracy, capitalism, mobility, and difference. Show that [JxJy] = ihfz, JyJz ] = ihfx, [JzJx] = ihly. Show that [2,Jz ] = 0, and then, without further calculations, justify the remark that [2 Ja] = 0 for all q = x, y, and z. What does this mean in terms of uncertainty principles? Let two cards be dealt successively, without replacement, from a slandard 52 . card deck. Find the probablity of the event. two aces The probability of drawing two aces is (Simplity your answer. Type an integer or a fraction). the monthly income of civil servant is rs 50000. 10% of his yearly income was deposited to employee provident fund which is tax free.if 1% social security tax is allowed for the income of rs 45000 and 10% tax is levied on the income above rs450000. how much money yearly income tax he pays? Task 4 Solve the following equations. a) 2(6t-2) + 3(7-2t) = 18 A concrete motor viaduct is to be built over a series ofconcrete piers standing well above a flat plain. Suggest a suitableconstruction method for the viaduct project with its methodstatement (8) Our gathering today is being broadcast throughout Western Europe and North America. (9) I understand that it is being seen and heard as well in the East. (10) To those listening throughout Eastern Europe, a special word: Although I cannot be with you, I address my remarks to you just as surely as to those standing here before me. (11) For I join you, as I join your fellow countrymen in the West, in this firm, this unalterable belief: Es gibt nur ein Berlin. [There is only one Berlin.] (12) Behind me stands a wall that encircles the free sectors of this city, part of a vast system of barriers that divides the entire continent of Europe. (13) From the Baltic, south, those barriers cut across Germany in a gash of barbed wire, concrete, dog runs, and guard towers. Farther south, there may be no visible, no obvious wall. But there remain armed guards and checkpoints all the samestill a restriction on the right to travel, still an instrument to impose upon ordinary men and women the will of a totalitarian state. (14) Yet it is here in Berlin where the wall emerges most clearly; here, cutting across your city, where the news photo and the television screen have imprinted this brutal division of a continent upon the mind of the world. (15) Standing before the Brandenburg Gate, every man is a German, separated from his fellow men. Every man is a Berliner, forced to look upon a scar. Which of the following sentences, if placed before sentence 12, would provide the most effective introduction to the topic of the paragraph? (5 points)For this reason, Berlin is a city with tight borders.Nevertheless, this one Berlin is divided. Many cities have erected walls, and Berlin is no different.Take, for example, the Berlin Wall.To be honest, there is one thing that makes the city unique.They are two separate paragraphs and I would choose b, but it seems like it would connect too much to the paragraph before when the new one stands alone. I think c so Im confused Find the inverse Fourier transforms of the following functions: 100 1. (a) F (w) = jwjw+ 10) 10 jo 2. (b) G(w) = (jw+ 2)(jw+ 3) 60 3. (c) H (w) = w+ j40w+ 1300 8(w) 4. (d) Y(w) = (jw+ 1)(jw+ 2) Answer explain the differences between the adversarial and inquisitorial models of justice. Describe how those differences relate to satisfaction with the process