QUESTION 12 10 points Save Answer a) Determine the total volume of the compacted waste produced from a city of population 220,000. Average waste production rate is 1.2 kg/capita.d. The percentage dist

Answers

Answer 1

The total volume of compacted waste produced from a city of 220,000 people, with a waste production rate of 1.2 kg/capita.d, is 66,000 kg/day.

To determine the total volume of compacted waste produced from a city, we need to consider the population, waste production rate per capita, and the compaction factor. Here's how we can calculate it:

Calculate the total waste produced per day:Waste production rate per capita = 1.2 kg/capita.dPopulation of the city = 220,000Total waste produced per day = Waste production rate per capita * PopulationTotal waste produced per day = 1.2 kg/capita.d * 220,000 = 264,000 kg/day

Determine the compaction factor:

The compaction factor represents the reduction in volume achieved by compacting the waste. It depends on various factors such as the waste composition, compaction equipment used, and waste management practices. However, for the sake of this calculation, let's assume a compaction factor of 4:1. This means that the compacted waste occupies 1/4th of its original volume.

Calculate the total volume of compacted waste:

Volume of compacted waste per day = Total waste produced per day / Compaction factor

Volume of compacted waste per day = 264,000 kg/day / 4 = 66,000 kg/day

Therefore, the total volume of compacted waste produced from the city is 66,000 kg/day.

Please note that waste management practices and compaction factors may vary in different cities, so the actual volume of compacted waste may differ. It's important to consider local waste management systems and practices for accurate calculations.

learn more about Waste volume.

brainly.com/question/30288679

#SPJ11


Related Questions

Hot water in an open storage tank at 350 K is being pumped at the rate of 0.0040 m3 s-1 from the tank. The line from the storage tank to the pump suction is 6.5 m of 2-in. schedule 40 steel pipe and it contains three elbows. The discharge line after the pump is 70 m of 2- in. schedule 40 steel pipe and contains two elbows The water discharges to the atmosphere at a height of 6.0 m above the water level in the storage tank. a) Calculate the total frictional losses, EF of this system. Ans: 122.8 J/KG b) Write the mechanical energy balance and determine the Ws of the pump in J/kg. State Ans: Ws -186.9 J/Kg any assumption made. c) What is the pump power if its efficiency is 80%? Ans: 1.527 KW

Answers

a. The total frictional losses (EF) in the system, including the suction and discharge lines and the elevation difference, are calculated to be 122.8 J/kg. b. The calculated value of  mechanical energy balance Ws is -186.9 J/kg. c. the mass flow rate is [tex]m_dot = 0.0040 m^3/s[/tex] *

The frictional losses in the suction and discharge lines are determined using the Darcy-Weisbach equation and assuming a friction factor. The elevation difference is considered as the static head difference.

The work done by the pump (Ws) is determined through the mechanical energy balance equation. The equation takes into account the pressure at the pump suction, the density of water, the velocity head, and the elevation difference. The calculated value of Ws is -186.9 J/kg. Assumptions made in the calculations include the friction factor and neglecting minor losses.

Finally, to determine the pump power, we need to know the flow rate. If the flow rate is not provided, we cannot calculate the pump power. However, if the flow rate is known, and assuming an efficiency of 80%, we can calculate the pump power using the equation Power = (Ws * [tex]m_dot[/tex]) / efficiency, where [tex]m_dot[/tex]is the mass flow rate of water.

b) The mechanical energy balance equation for the pump can be written as:

[tex]Ws = ΔH + Ef + Ep[/tex]

where Ws is the work done by the pump per unit mass, ΔH is the change in elevation head, Ef is the frictional losses, and Ep is the pressure head.

Since the water discharges to the atmosphere, the pressure head can be neglected (Ep = 0). Also, there is no change in elevation head (ΔH = 0). Therefore, the equation simplifies to:

[tex]Ws = Ef[/tex]

From part a), we have already calculated Ef. Thus, Ws is -186.9 J/kg.

c) The pump power (P) can be calculated using the equation:

[tex]P = Ws * m_dot / η[/tex]

where m_dot is the mass flow rate and η is the efficiency of the pump.

Given that the efficiency is 80% (η = 0.80), and the mass flow rate is [tex]m_dot = 0.0040 m^3/s *[/tex]

Learn more about frictional loss

https://brainly.com/question/32342025

#SPJ11

18. (a) Convert 0 = 37 radians to degrees. (b) Convert y = 53° to radians.

Answers

We convert (a) 0 = 37 radians is approximately equal to 2118.31 degrees. (b) y = 53° is approximately equal to 0.925 radians.

To convert 0 = 37 radians to degrees:

(a) To convert from radians to degrees, we use the formula:

degrees = radians * (180/π)

Substituting the given value:

degrees = 37 * (180/π)

Simplifying the expression:

degrees ≈ 37 * (180/3.14159)

degrees ≈ 37 * 57.29578

degrees ≈ 2118.30986

Therefore, 0 = 37 radians is approximately equal to 2118.31 degrees.

(b) To convert y = 53° to radians:

To convert from degrees to radians, we use the formula:

radians = degrees * (π/180)

Substituting the given value:

radians = 53 * (π/180)

Simplifying the expression:

radians ≈ 53 * (3.14159/180)

radians ≈ 53 * 0.01745

radians ≈ 0.92526

Therefore, y = 53° is approximately equal to 0.925 radians.

In summary:
(a) 0 = 37 radians is approximately equal to 2118.31 degrees.
(b) y = 53° is approximately equal to 0.925 radians.

Learn more about the radians and degrees from the given link-

https://brainly.com/question/29058626

#SPJ11

Determine the temperature of a reaction if K = 1.20 x 10-6 when AG° = +16.00 kJ/mol.

Answers

To convert kJ/mol to J/mol, multiply the given value by 1000:`AG° = 16.00 × 10³ J/mol T = 430.29 K. The temperature of a reaction if K = 1.20 × 10⁻⁶ when AG° = +16.00 kJ/mol is 157.14 °C approximately.

Let's convert the temperature in Kelvin to Celsius by subtracting 273.15:430.29 K - 273.15 = 157.14 °CSo.

The temperature of a reaction if K = 1.20 × 10⁻⁶ when AG° = +16.00 kJ/mol is given below;

According to the Gibbs-Helmholtz equation, the equilibrium constant K is related to the change in Gibbs free energy (AG°) of a reaction and the temperature (T) as follows:

`K = e^(-AG°/RT)`Where R is the universal gas constant (8.314 J K⁻¹ mol⁻¹), T is the temperature in Kelvin, and e is the mathematical constant (~ 2.718).

So, the temperature of a reaction if K = 1.20 × 10⁻⁶ when AG° = +16.00 kJ/mol is given as follows;`K = e^(-AG°/RT)`Let's rearrange this equation to solve for T:`lnK = -AG°/RT

Substitute the given values in the equation: AG° = +16.00 kJ/molK = 1.20 × 10⁻⁶R = 8.314 J K⁻¹ mol⁻¹

Substitute these values in the equation and solve for T:`ln(1.20 × 10⁻⁶) = -(16.00 × 10³)/(8.314 × T)`Solve for T:`T = -(16.00 × 10³)/(8.314 × ln(1.20 × 10⁻⁶))`T = 273.15 × (-(16.00 × 10³)/(8.314 × ln(1.20 × 10⁻⁶)))

Learn more about Kelvin:

https://brainly.com/question/30708681

#SPJ11

If y varies directly as x, and y is 180 when x is n and y is n when x is 5, what is the value of n? 6 18 30 36

Answers

Answer:
If y varies directly as x, then we can write the relationship between y and x as y = kx, where k is a constant of proportionality. To find the value of k, we can use the information given in the problem.

We know that when y is 180 and x is n, we have:

180 = kn

Similarly, when y is n and x is 5, we have:

n = k(5)

To solve for k, we can divide the first equation by the second:

180/n = k(5)/n

Simplifying this expression, we get:

36 = k

Now that we know the value of k, we can use either of the two equations we wrote earlier to solve for n. Let's use the second equation:

n = k(5) = 36(5) = 180

Therefore, the value of n is 180.

The reciprocal of every non constant linear function has a vertical asymptote. True False

Answers

False. The reciprocal of a non-constant linear function does not always have a vertical asymptote; it depends on the slope of the linear function.

The reciprocal functions of a non-constant linear does not always have a vertical asymptote. The reciprocal of a linear function is obtained by flipping the function over the line y = x. If the linear function has a non-zero slope, the reciprocal function will have a vertical asymptote at x = 0. However, if the linear function is a horizontal line (slope of zero), the reciprocal function will be a vertical line, and it will not have any vertical asymptotes.

To illustrate this, consider the linear function f(x) = 2x + 3. The reciprocal function is g(x) = 1/f(x) = 1/(2x + 3). This function does not have a vertical asymptote because it is defined for all values of x.

In general, the reciprocal of a linear function will have a vertical asymptote if and only if the linear function itself has a non-zero slope. Otherwise, it will not have any vertical asymptotes.

Learn more about reciprocal functions

brainly.com/question/12621604

#SPJ11

Find the present value of the ordinary annuity. (Round your answer to the nearest cent.) 
$170 /month for 10 years at 5% year compounded monthly
$

Answers

The present value of the ordinary annuity is approximately $150.

To find the present value of the ordinary annuity, we need to calculate the amount of money that needs to be invested today to receive a series of future cash flows.

In this case, we have an annuity of $170 per month for 10 years, with a yearly interest rate of 5% compounded monthly.

1: Convert the annual interest rate to a monthly interest rate.

Since the interest is compounded monthly, we divide the annual interest rate by 12.

Monthly interest rate = 5% / 12 = 0.05 / 12 = 0.004167

2: Calculate the total number of periods.

Since the annuity is for 10 years and there are 12 months in a year, the total number of periods is:

Total number of periods = 10 years * 12 months/year = 120 months

3: Use the present value
of an ordinary annuity formula to calculate the present value:

Present value = [tex]Payment * (1 - (1 + r)^(-n)) / r[/tex]

Where:
Payment = $170 (monthly payment)
r = Monthly interest rate = 0.004167
n = Total number of periods = 120

Plugging in the values into the formula:

Present value = [tex]$170 * (1 - (1 + 0.004167)^(-120)) / 0.004167[/tex]

Now we can calculate the present value using a calculator or a spreadsheet software.

The present value of the ordinary annuity is approximately $150.

Learn more about ordinary annuity from this link:

https://brainly.com/question/30019483

#SPJ11

A rectangular sedimentation basin treating 8,932 m3/d removes 100% of particles with settling velocity of 0.032 m/s. If the tank depth is 1.25 m and length is 6.7 m, what is the horizontal flow velocity in m/s? Report your result to the nearest tenth m/s.

Answers

The horizontal flow velocity in the rectangular sedimentation basin is approximately 0.0123 m/s.

To find the horizontal flow velocity in the rectangular sedimentation basin, we can use the equation:

Q = A * V

where Q is the flow rate, A is the cross-sectional area of the tank, and V is the flow velocity.

Given:

Flow rate (Q) = [tex]8,932 m^3/d[/tex]

Tank depth = 1.25 m

Tank length = 6.7 m

First, let's calculate the cross-sectional area (A) of the tank:

A = Depth * Length = 1.25 m * 6.7 m = [tex]8.375 m^2[/tex]

Next, we can rearrange the equation to solve for the flow velocity (V):

V = Q / A

Substituting the values:

[tex]V = 8,932 m^3/d / 8.375 m^2 \approx 1068.03 m/d[/tex]

To convert the flow velocity from m/d to m/s, we divide it by the number of seconds in a day (24 hours * 60 minutes * 60 seconds):

[tex]V = 1068.03 m/d / (24 * 60 * 60) s/d \approx 0.0123 m/s[/tex]

Therefore, the horizontal flow velocity in the rectangular sedimentation basin is approximately 0.0123 m/s.

Learn more about flow velocity at:

https://brainly.com/question/31611463

#SPJ4

speed by ing angutar compute linear velocity from this, the speedometer needs to know the radius of the wheels. This information is programmed when the car is produced. If this radius changes (if you get different tires, for instance), the calculation becomes inaccurate. Suppose your car's speedometer is geared to accurately give your speed using a certain tire size: 13.5-inch diameter wheels (the metal part) and 4.65-inch tires (the rubber part). If your car's instruments are properly calibrated, how many times should your tire rotate per second if you are travelling at 45 mph? rotations per second Give answer accurate to 3 decimal places. Suppose you buy new 5.35-inch tires and drive with your speedometer reading 45 mph. How fast is your car actually traveling? mph Give answer accurate to 1 decimal place. Next you replace your tires with 3.75-inch tires. When your speedometer reads 45 mph, how fast are you really traveling? mph Give answer accurate to 1 decimal places.

Answers

- When your car's speedometer reads 45 mph with the 4.65-inch tires, your tires rotate approximately 4.525 times per second.
- When you have the new 5.35-inch tires and your speedometer reads 45 mph, your car is actually traveling at approximately 3.93 rotations per second.
- When you have the new 3.75-inch tires and your speedometer reads 45 mph, your car is actually traveling at approximately 5.614 rotations per second.

Step 1: Convert the tire size to radius
To find the radius of the tire, we divide the diameter by 2. So the radius of the 4.65-inch tire is 2.325 inches.

Step 2: Find the circumference of the tire
The circumference of a circle is calculated using the formula C = 2πr, where C is the circumference and r is the radius. Plugging in the radius, we get C = 2π(2.325) = 14.579 inches.

Step 3: Calculate the number of rotations per second
To find the number of rotations per second, we need to know the linear velocity of the car. We are given that the car is traveling at 45 mph.

To convert this to inches per second, we multiply 45 mph by 5280 (the number of feet in a mile), and then divide by 60 (the number of minutes in an hour) and 60 again (the number of seconds in a minute). This gives us a linear velocity of 66 feet per second.

Next, we need to calculate the number of rotations per second. Since the circumference of the tire is 14.579 inches, for every rotation of the tire, the car moves forward by 14.579 inches. Therefore, to find the number of rotations per second, we divide the linear velocity (66 inches/second) by the circumference of the tire (14.579 inches). This gives us approximately 4.525 rotations per second.

So, when your car's speedometer reads 45 mph, the tires should rotate approximately 4.525 times per second.

Now, let's consider the scenario where you buy new 5.35-inch tires and drive with your speedometer reading 45 mph.

Step 4: Calculate the new linear velocity
Following the same steps as before, we find that the new tire has a radius of 2.675 inches (half of 5.35 inches). The circumference of the new tire is approximately 16.795 inches.

Using the linear velocity of 45 mph (66 inches/second), we divide by the new circumference of the tire (16.795 inches) to find the number of rotations per second. This gives us approximately 3.93 rotations per second.

Therefore, when you have the new 5.35-inch tires and your speedometer reads 45 mph, your car is actually traveling at approximately 3.93 rotations per second.

Lastly, let's consider the scenario where you replace your tires with 3.75-inch tires and your speedometer reads 45 mph.

Step 5: Calculate the new linear velocity
Again, using the same steps as before, we find that the new tire has a radius of 1.875 inches (half of 3.75 inches). The circumference of the new tire is approximately 11.781 inches.

Dividing the linear velocity of 45 mph (66 inches/second) by the new circumference of the tire (11.781 inches), we find that the number of rotations per second is approximately 5.614 rotations per second.

Therefore, when you have the new 3.75-inch tires and your speedometer reads 45 mph, your car is actually traveling at approximately 5.614 rotations per second.

To know more about "Car's Speedometer":

https://brainly.com/question/5830082

#SPJ11

Solve the following non-homogeneous difference
equation with initial conditions: Yn+2 — Yn+1 − 2yn = 84n, yo = 1, y₁ = −3

Answers

The solution to the non-homogeneous difference equation with initial conditions Yₙ₊₂ - Yₙ₊₁ - 2Yₙ = 84n, Y₀ = 1, and Y₁ = -3, is:Yₙ = -4(2ⁿ) + (-1)ⁿ - 4n + 1.

To solve the non-homogeneous difference equation with initial conditions Yₙ₊₂ - Yₙ₊₁ - 2Yₙ = 84n, we can follow these steps:

Step 1: Solve the corresponding homogeneous equation
To find the solution to the homogeneous equation Yₙ₊₂ - Yₙ₊₁ - 2Yₙ = 0, we assume a solution of the form Yₙ = λⁿ. Substituting this into the equation, we get:

λⁿ₊₂ - λⁿ₊₁ - 2λⁿ = 0

Dividing through by λⁿ, we have:

λ² - λ - 2 = 0

Factoring the quadratic equation, we get:

(λ - 2)(λ + 1) = 0

So the roots are λ₁ = 2 and λ₂ = -1.

Therefore, the general solution to the homogeneous equation is:

Yₙ = A(2ⁿ) + B((-1)ⁿ)

Step 2: Find a particular solution for the non-homogeneous equation
To find a particular solution for the non-homogeneous equation Yₙ₊₂ - Yₙ₊₁ - 2Yₙ = 84n, we assume a particular solution of the form Yₙ = An + B. Substituting this into the equation, we get:

A(n + 2) + B - A(n + 1) - B - 2(An + B) = 84n

Simplifying and collecting like terms, we have:

-2A = 84

Therefore, A = -42.

Step 3: Apply initial conditions to find the values of A and B
Using the initial conditions, Y₀ = 1 and Y₁ = -3, we can substitute these into the particular solution:

Y₀ = A(0) + B = 1
B = 1

Y₁ = A(1) + B = -3
A + 1 = -3
A = -4

So the values of A and B are A = -4 and B = 1.

Step 4: Write the final solution
Now that we have the general solution to the homogeneous equation and the particular solution to the non-homogeneous equation, we can write the final solution as:

Yₙ = A(2ⁿ) + B((-1)ⁿ) + An + B

Substituting the values of A = -4 and B = 1, we get:

Yₙ = -4(2ⁿ) + 1((-1)ⁿ) - 4n + 1

Therefore, the solution to the non-homogeneous difference equation with initial conditions Yₙ₊₂ - Yₙ₊₁ - 2Yₙ = 84n, Y₀ = 1, and Y₁ = -3, is:

Yₙ = -4(2ⁿ) + (-1)ⁿ - 4n + 1.

To know more about equation click-
http://brainly.com/question/2972832
#SPJ11

When Hien is 25 years old, how old will her turtle be? (Please try to do this quickly)

Answers

Answer:

33 years old

Step-by-step explanation:

We can make the equation [tex]t=h+8[/tex] using the points given to us already, so when Hien is 25 years old, her turtle will be [tex]t=25+8=33[/tex].

Step-by-step explanation:

as we can see when hien was 6 years old turtle was 14 this diffrence in age is 14 - 6 = 8

now when hien is 25 the difference in age will remain same therefore age of turtle = 25+8 = 33

A concentrated load of 460 tons is applied to the ground surface. You are a little, helpless ant located 13 feet below grade and 9 feet off center of this concentrated load. The soil has a unit weight of 128 lb/ft3 and the water table is located at a depth of 6 feet below grade (thank goodness you have your scuba gear!).
What is the vertical stress increment (p) due to the structural load at your location (in lb/ft2)?

Answers

The vertical stress increment at your location, 13 feet below grade and 9 feet off center of the concentrated load, due to the structural load is approximately 3,282 lb/ft². This information helps in understanding the stress distribution and its impact on the soil and nearby structures.

To calculate the vertical stress increment at your location due to the structural load, we need to consider the weight of the soil, the weight of the water table, and the weight of the concentrated load.

The total vertical stress at your location can be calculated as follows:

p_total = p_soil + p_water + p_load

1. Vertical Stress from Soil:

The vertical stress from the soil is given by the equation:

p_soil = γ_soil * z

Where:

- γ_soil is the unit weight of the soil (128 lb/ft³)

- z is the depth below grade (13 ft)

Substituting the given values:

p_soil = 128 lb/ft³ * 13 ft = 1,664 lb/ft²

2. Vertical Stress from Water:

The vertical stress from the water table can be calculated as follows:

p_water = γ_water * z_water

Where:

- γ_water is the unit weight of water (62.4 lb/ft³)

- z_water is the depth to the water table (6 ft)

Substituting the given values:

p_water = 62.4 lb/ft³ * 6 ft = 374.4 lb/ft²

3. Vertical Stress from Concentrated Load:

The vertical stress from the concentrated load can be calculated as follows:

p_load = P / A

Where:

- P is the concentrated load (460 tons)

- A is the area over which the load is distributed (considering a circular area with a radius of 9 ft)

Converting the concentrated load to pounds:

P = 460 tons * 2,000 lb/ton = 920,000 lb

Calculating the area of the circular load:

A = π * r²

A = 3.14 * (9 ft)² = 254.34 ft²

Substituting the values:

p_load = 920,000 lb / 254.34 ft² ≈ 3,618.39 lb/ft²

Therefore, the vertical stress increment at your location due to the structural load is approximately:

p = p_total - p_soil - p_water

p = 3,618.39 lb/ft² - 1,664 lb/ft² - 374.4 lb/ft²

p ≈ 3,282 lb/ft²

Learn more about vertical stress visit:

https://brainly.com/question/30456778

#SPJ11

1.) What is the pH of the solution with a concentration of 3.1x102M of CH COOH if Ka = 1.8 x 105?
2.) What would the pH be if it was added to a buffer of 0.26 M of NaCH COO(sodium acetate)?

Answers

pH = -log[H⁺] = -log[2.82 x 10⁻⁵] = 4.55. When it is added to a buffer of 0.26 M of NaCH COO, the pH of the solution is 4.55.

1. The pH of the solution with a concentration of 3.1 x 10² M of CH COOH if Ka = 1.8 x 10⁻⁵ is given by:

Ka = [H⁺] [CH COO⁻] / [CH COOH]1.8 x 10⁻⁵ = [H⁺] [CH COO⁻] / [3.1 x 10²]

Hence, [H⁺] = 5.96 x 10⁻⁴M

So, pH = -log[H⁺]

= -log[5.96 x 10⁻⁴]

= 3.23

The pH of the solution with a concentration of 3.1x10²M of CH COOH if Ka = 1.8 x 10⁻⁵ is 3.23.2.

CH COOH + NaCH COO ⇌ CH COO⁻ + Na⁺ + H⁺

The initial concentrations of the reactants are:

[CH COOH] = 3.1 x 10² M[NaCH COO] = 0.26 M

At equilibrium, let the concentration of [H⁺] be x M, then the concentrations of CH COOH, CH COO⁻ and Na⁺ are:

(3.1 x 10² - x) M, (0.26 + x) M and 0.26 M, respectively.

So, applying the equilibrium equation, we get:

Ka = [H⁺] [CH COO⁻] / [CH COOH]1.8 x 10⁻⁵ = x (0.26 + x) / [3.1 x 10² - x]

Now, 3.1 x 10² >> x, so we can approximate the denominator as 3.1 x 10².

Therefore, we have:1.8 x 10⁻⁵ = x (0.26 + x) / [3.1 x 10²]

Solving the above equation, we get:x = 2.82 x 10⁻⁵ M (approx.)

So, pH = -log[H⁺] = -log[2.82 x 10⁻⁵] = 4.55

When it is added to a buffer of 0.26 M of NaCH COO, the pH of the solution is 4.55.

To know more about buffer visit-

https://brainly.com/question/31847096

#SPJ11

Briefly describe Water treatments basics and what are the key
parameters the final product must meet?

Answers

The treatment process of water involves different steps, including screening, settling, and disinfection.

To achieve the final product, there are various key parameters that the water must meet.

The treatment process of water involves different steps, including screening, settling, and disinfection. Before the treatment process, the water undergoes preliminary treatments to remove large impurities. Here are the primary water treatment steps;

Coagulation and flocculation - This process involves adding chemical substances to water to make impurities stick together. This process helps remove dirt, sediments, and other substances from the water.Sedimentation - Once the impurities have come together, the water is left to settle so that the impurities settle at the bottom of the container.

Filtration - The water passes through filters, which help remove the remaining impurities.Disinfection - The water is disinfected using chemicals such as chlorine to kill any remaining bacteria and viruses

water treatment basics involve the process of cleaning and treating contaminated water to make it safe for use or consumption. The process involves various stages, including coagulation and flocculation, sedimentation, filtration, and disinfection.

Before the treatment process, the water undergoes preliminary treatments to remove large impurities. To achieve the final product, there are various key parameters that the water must meet.

These parameters include water pH, turbidity, color, temperature, and taste. The final water product must be safe, clear, odorless, and colorless. In some instances, the water must be mineral-rich for consumption. In summary, water treatment is an essential process that ensures the availability of clean and safe water for use or consumption.

To know more about Coagulation  visit:

brainly.com/question/28175731

#SPJ11

The following names are incorrect. Write the correct form. (a)
3,5-dibromobenzene; (b) o-aminophenyl fluoride; (c)
p-fluorochlorobenzene.

Answers

The correct forms are: (a) 1,3-dibromobenzene;

(b) o-fluoroaniline;

(c) 4-fluorochlorobenzene.

(a) The original name, 3,5-dibromobenzene, implies that the bromine substituents are attached to the 3rd and 5th carbon atoms of the benzene ring. However, in the correct form, 1,3-dibromobenzene, the bromine substituents are attached to the 1st and 3rd carbon atoms of the benzene ring.

(b) The original name, o-aminophenyl fluoride, suggests that the amino group is attached to the ortho position of the phenyl ring. However, in the correct form, o-fluoroaniline, the fluorine substituent is attached to the ortho position of the aniline (aminobenzene) ring.

(c) The original name, p-fluorochlorobenzene, indicates that the fluorine and chlorine substituents are attached to the para position of the benzene ring. The correct form, 4-fluorochlorobenzene, indicates that both substituents are attached to the 4th carbon atom of the benzene ring.

Therefore, the correct forms of the given names are 1,3-dibromobenzene, o-fluoroaniline, and 4-fluorochlorobenzene, reflecting the correct positions of the substituents on the benzene ring.

To know more about nomenclature, visit:

https://brainly.com/question/33169813

#SPJ11

A person is riding a bike at 20 miles per hour and starts to slow down producing a constant deceleration of 5 miles per hr². (a) (3 pts) How much time elapses before the bike stops? (b) (4 pts) What is the distance traveled before the bike comes to a stop?

Answers

a.  The bike will take 4 hours to stop

b. The bike will travel a distance of 40 miles before coming to a halt.

(a) The bike will stop when its velocity reaches 0. Using the equation v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time, we can rearrange the equation to solve for t. In this case, u = 20 mph, a = -5 mph² (negative because it's deceleration), and v = 0.

0 = 20 - 5t

5t = 20

t = 4 hours

(b) To calculate the distance traveled, we can use the equation s = ut + 0.5at², where s is the distance traveled. Plugging in the values, u = 20 mph, a = -5 mph², and t = 4 hours:

s = 20 * 4 + 0.5 * (-5) * (4)²

s = 80 - 0.5 * 5 * 16

s = 80 - 40

s = 40 miles

Therefore, the bike will take 4 hours to stop and will travel a distance of 40 miles before coming to a halt.

Learn more about miles here: brainly.com/question/28161927

#SPJ11

Distinguish between the main compounds of steel at room temperature and elevated temperatures. (b) Explain the difference between steel (structural) and cast iron.

Answers

The main compounds of steel at room temperature are Iron and Carbon. Steel is a carbon and iron alloy. At room temperature, the amount of carbon ranges from 0.02 percent to 2.14 percent.

Steel is an alloy of iron and carbon, with carbon accounting for a small proportion of the alloy.

The carbon in the steel helps to increase its tensile strength and hardness.

At Elevated Temperatures:When steel is heated, it undergoes several structural modifications, depending on the temperature range.

These structural transformations are referred to as allotropic changes.

Austenite is the structure of steel at elevated temperatures, which occurs at temperatures above 723°C.

At this temperature, steel loses its ductility and becomes more malleable. The other type of structure is the martensite structure, which is the hardest of all structures.

Martensite structure is formed when steel is rapidly cooled from a high-temperature austenite structure.

(b) Difference Between Steel (Structural) and Cast Iron: Steel and cast iron are two of the most commonly used materials in the construction industry.

Cast iron is a brittle material that has a high carbon content, whereas steel is a ductile material that has a low carbon content.

Steel is composed of iron and a small amount of carbon, whereas cast iron is composed of iron and more than 2% carbon.

Steel has greater tensile strength, ductility, and weldability than cast iron. Cast iron is more brittle and cannot be welded or shaped easily compared to steel.

Cast iron is used for products such as engine blocks, pipes, and cookware, while steel is used for structural purposes such as buildings, bridges, and automotive components.

At elevated temperatures, steel's structure is referred to as austenite or martensite.

Cast iron is a brittle material with a high carbon content, while steel is a ductile material with a low carbon content.

Cast iron contains more than 2% carbon, while steel contains less than 2% carbon.

Steel has greater tensile strength, ductility, and weldability than cast iron. Cast iron is more brittle and difficult to weld or shape compared to steel.

Cast iron is used for engine blocks, pipes, and cookware, while steel is used for structural purposes such as buildings, bridges, and automotive components.

To know more about cast iron visit :

https://brainly.com/question/29210554

#SPJ11

A 20.0 mL sample of 0.500M triethylamine, (C_2H_5)_3N, solution is titrated with HCl. What is the pH of the solution after 25.0 mL of 0.400MHCl has been added to the base? The K_b for triethylamine is 5.3×10_−4
.

Answers

If a 20.0 mL sample of 0.500M triethylamine solution is titrated with HCl then the pH of the solution after 25.0 mL of 0.400M HCl has been added to the base is 9.36.


To find the pH of the solution, follow these steps:

The number of moles of triethylamine can be calculated as follows:
number of moles= molarity × volume= 0.500 M  × 0.0200 L = 0.0100 molSince triethylamine is a weak base, it reacts with HCl to form a salt and water:
(C₂H₅)₃N + HCl → (C₂H₅)₃NH⁺ + Cl⁻The number of moles of HCl that have reacted with the triethylamine can be calculated as follows:
number of moles= molarity × volume= 0.400 M × 0.0250 L = 0.0100 molSince the stoichiometry of the reaction is 1:1, the number of moles of HCl that have reacted is equal to the number of moles of (C2H5)3N that have been neutralized.The concentration of (C2H5)3NH+ ions in the solution after the reaction can be calculated as follows:
concentration = number of moles/ total volume= 0.0100 mol / (0.0200 L + 0.0250 L) = 0.23MThe concentration of OH- ions can be calculated using the Kb value for triethylamine:
Kb = [OH-][C₂H₅)₃NH⁺] / [(C₂H₅)₃N]
⇒[OH⁻] = (5.3×10⁻⁴)(0.0100 M) / 0.23 M = 2.304×10⁻⁵ MThe pOH can be calculated by taking the negative logarithm of the concentration of OH- ions:
pOH = -log₁₀(2.304×10⁻⁵) = 4.64
Finally, we can find the pH of the solution by subtracting the pOH from 14:
pH = 14 - 4.64 = 9.36

Learn more about pH:

https://brainly.com/question/12609985

#SPJ11

A 2^5-2 design to investigate the effect of A= condensation, B = temperature, C = solvent volume, D = time, and E = amount of raw material on development of industrial preservative agent. The results obtained are as follows: e = 24.2 ab = 16.5 ad= 17.9 cd= 22.8 bc = 16.2 ace=23.5 bde = 16.8 abcde 18.3 (a). Verify that the design generators used were I-ACE and I=BDE.
(b). Estimate the main effects.

Answers

The generators used in the design are I-ACE and I=BDE. To verify that the generators used in the design were I-ACE and I=BDE, we can use the defining relation, which states that a 2n-k design.

with n > k, has generators if the decimal equivalent of the product of the row numbers for each interaction contains exactly k zeros at the rightmost end. If there are fewer than k zeros, the generator is absent. If there are more than k zeros, the generator is superfluous and it is not included.

To verify the generators, we need to calculate the product of the row numbers for each interaction:

e=[tex]2 × 3 × 4 × 5 × 6 = 720,[/tex]

which has three zeros at the rightmost endab =[tex]1 × 3 × 4 × 5 × 6 = 36[/tex]0, which has two zeros at the rightmost endad =[tex]1 × 3 × 4 × 5 × 6 = 360,[/tex]

which has two zeros at the rightmost endcd = 1 × 2 × 4 × 5 × 6

= 240, which has one zero at the rightmost endbc = [tex]1 × 3 × 4 × 5 × 6[/tex]

= 360, which has two zeros at the rightmost endace =[tex]1 × 2 × 3 × 5 × 6 = 180[/tex], which has one zero at the rightmost endbde = 1 × 2 × 4 × 5 × 6

= 240, which has one zero at the rightmost endabcde

[tex]= 1 × 2 × 3 × 4 × 5 × 6 = 720,[/tex] which has three zeros at the rightmost end

To know more about generators visit:

https://brainly.com/question/12841996

#SPJ11

1. Determine the utilization and the efficiency for each of these situations: (a) A loan operation processes an average of 12 loans per day. The operation has a design capacity of 20 loans per day and an effective capacity of 16 loans per day. (b) A furnace repair team that services an average of four furnaces a day if the design capacity is six furnaces a day and the effective capacity is five furnaces a day. [Hint: Please read Example on page 193 in the text book.] Please solve the following problem related to cost-volume analysis 2. A producer of pens has fixed costs of $36,000 per month which are allocated to the operation and variable costs are $1.60 per pen. (a) Find the break-even quantity if pens sell at $2.2 each. (b) Find the profit/loss if the company produces 65,000 pens and pens sell at $2.4 each? CTX English (United States). Accessibility and o I words MGMT 335 HW#3 1. Determine the utilization and the efficiency for each of these situations: (a) A loan operation processes an average of 12 loans per day. The operation has a design capacity of 20 loans per day and an effective capacity of 16 loans per day. (b) A furnace repair team that services an average of four furnaces a day if the design capacity is six furnaces a day and the effective capacity is five furnaces a day. [Hint: Please read Example on page 193 in the text book.] Please solve the following problem related to cost-volume analysis 2. A producer of pens has fixed costs of $36,000 per month which are allocated to the operation and variable costs are $1.60 per pen. (a) Find the break-even quantity if pens sell at $2.2 each. (b) Find the profit/loss if the company produces 65,000 pens and pens sell at $2.4 each?

Answers

1. (a) The utilization for the loan operation is 60% (12 loans processed / 20 loans design capacity). The efficiency is 75% (12 loans processed / 16 loans effective capacity).

(b) The utilization for the furnace repair team is 67% (4 furnaces serviced / 6 furnaces design capacity). The efficiency is 80% (4 furnaces serviced / 5 furnaces effective capacity).

2. (a) The break-even quantity for the pen producer is 30,000 pens (Fixed costs / Contribution margin per pen: $36,000 / ($2.2 - $1.60)).

(b) The profit for producing 65,000 pens at a selling price of $2.4 each is $16,000 (Profit = Revenue - Total Costs: ($2.4 x 65,000) - ($36,000 + ($1.60 x 65,000))).

In the first situation, the loan operation has a design capacity of 20 loans per day, but it only processes an average of 12 loans per day. This results in a utilization rate of 60%, indicating that the operation is operating at 60% of its maximum capacity. The efficiency is calculated by comparing the average number of loans processed (12) to the effective capacity of the operation (16), resulting in an efficiency rate of 75%. This means that the loan operation is able to utilize 75% of its effective capacity on average.

In the second situation, the furnace repair team has a design capacity of six furnaces per day, but it services an average of four furnaces per day. The utilization rate is calculated by dividing the average number of furnaces serviced (4) by the design capacity (6), resulting in a utilization rate of 67%. This indicates that the furnace repair team is operating at 67% of its maximum capacity. The efficiency rate is determined by comparing the average number of furnaces serviced (4) to the effective capacity of the team (5), resulting in an efficiency rate of 80%. This means that the furnace repair team is able to utilize 80% of its effective capacity on average.

In the third situation, the pen producer has fixed costs of $36,000 per month, which are allocated to the operation, and variable costs of $1.60 per pen. To find the break-even quantity, we need to determine the number of pens that need to be sold in order to cover the total costs. By dividing the fixed costs ($36,000) by the contribution margin per pen ($2.2 - $1.60 = $0.60), we find that the break-even quantity is 30,000 pens. This means that the pen producer needs to sell at least 30,000 pens to cover all the costs and reach the break-even point.

Lastly, if the pen producer produces 65,000 pens and sells them at $2.4 each, we can calculate the profit or loss. The revenue is calculated by multiplying the selling price per pen ($2.4) by the number of pens produced (65,000), resulting in a total revenue of $156,000. The total costs are the sum of the fixed costs ($36,000) and the variable costs ($1.60 x 65,000 = $104,000), amounting to $140,000. Subtracting the total costs from the revenue, we find that the company would make a profit of $16,000.

Learn more about efficiency

brainly.com/question/32925154

#SPJ11

When the following equation is balanced properly under acidic conditions, what are the coefficients of the species shown?_______I_2 + _______Fe^3+_______IO^- _3 + _______Fe_2+.Water appears in the balanced equation as a _____________ (reactant, product, neither) with a coefficient of ___________(Enter 0 for neither.)Which element is oxidized? ________

Answers

The coefficients for the species in the balanced equation are:
  I2: 2
  Fe^3+: 6
  IO3^-: 2
  Fe^2+: 6
Water appears as a product with a coefficient of 6 and Iodine (I) is oxidized in this reaction.

The Fe is the element that is oxidized.

To balance the equation under acidic conditions:

I2 + Fe^3+ + IO^-3 → Fe^2+ + I2 + H^+

The balanced equation is:

2I2 + 2Fe^3+ + 6IO^-3 → 2Fe^2+ + 3I2 + 3H^+

The coefficients of the species are:

I2: 2

Fe^3+: 2

IO^-3: 6

Fe^2+: 2

Water appears in the balanced equation as a neither (it is not included in the equation). Its coefficient is 0.

Learn more about oxidation from the given link!

https://brainly.com/question/8493642.

#SPJ11

An oil well has been drilled and completed. The productive zone has been encountered at a depth of 7815-7830 feet. The log analysis showed an average porosity of 15% and an average water saturation of 35%. The oil formation volume factor is determined in the laboratory to be 1.215 RB/STB. Experience shows other reservoirs of about the same properties drain 80 acres with a recovery factor of 12%. Compute the OOIP and the ultimate oil recovery. If after 5 years of production, only 5% of the reserve has been produced. What is the amount of reserve still left in place.

Answers

The amount of reserve still left in place after 5 years of production is 8,650,116.46 STB.

Percentage of reserve left in place = 95%OOIP (Original Oil in Place) is the volume of oil present in a reservoir before production, which can be calculated using the given information as follows:

Area of the reservoir = π/4 × (rod length)²

= π/4 × (15,405)

= 19,265,400 ft² = 443.6 acres

Drainage area is 80 acres, so the portion of the reservoir that contributes to production = 80/443.6

= 0.1803 of the reservoir or (1/0.1803 = 5.54) times the given volume of oil.

Estimated ultimate recovery factor (EUR) = Recovery factor × Drainage area

= 12% × 80 acres

= 9.6 acres or 0.0220 of the reservoir or (1/0.0220 = 45.45) times the given volume of oil.

The formula to calculate the original oil in place (OOIP) is:

OOIP = (7758 × A × h × φ × (1-Sw))/B

Where A = Area (acres)h = Net thickness (feet)

φ = Porosity (decimal)

Sw = Water saturation (decimal)

B = Formation volume factor (reservoir barrels per stock tank barrel)

Substituting the given values in the above formula:

OOIP = (7758 × 80 × (7815-7830) × 0.15 × (1-0.35))/1.215OOIP

= 9,105,385.46 STB

Now, the ultimate oil recovery can be calculated by multiplying OOIP by EUR.

Ultimate oil recovery = OOIP × EUR

= 9,105,385.46 × 0.0220

= 200,318.48 STB

After 5 years of production, the oil that has been produced is:

5% of OOIP = 0.05 × 9,105,385.46

= 455,269 STB

The amount of reserve still left in place after 5 years of production is 8,650,116.46 STB.

Know more about reserve  here:

https://brainly.com/question/25817380

#SPJ11

The set B={1+t^2,−2t−t^2,1+t+t^2} is a basis for P2​. Find the coordinate vector of p(t)=−5−7t−8t^2 relative to B. (Simplify your answers.)

Answers

The coordinate vector of p(t) = -5 - 7t - 8t^2 relative to the basis B = {1 + t^2, -2t - t^2, 1 + t + t^2} is [3, -7, -6].

To find the coordinate vector of p(t) relative to the basis B, we need to express p(t) as a linear combination of the basis vectors and find the coefficients.

We start by writing p(t) as a linear combination of the basis vectors:

p(t) = c1(1 + t^2) + c2(-2t - t^2) + c3(1 + t + t^2)

Expanding and collecting like terms, we have:

p(t) = (c1 - c2 + c3) + (c1 - 2c2 + c3)t + (c1 - c2 + c3)t^2

Comparing the coefficients of the polynomial terms on both sides, we get the following system of equations:

c1 - c2 + c3 = -5

c1 - 2c2 + c3 = -7

c1 - c2 + c3 = -8

Simplifying the system, we can see that the third equation is redundant as it is the same as the first equation. Thus, we have:

c1 - c2 + c3 = -5

c1 - 2c2 + c3 = -7

Solving this system of equations, we find that c1 = 3, c2 = -7, and c3 = -6.

Therefore, the coordinate vector of p(t) relative to the basis B is [3, -7, -6].

Learn more about Coordinate vector

brainly.com/question/32768567

#SPJ11

Calculate and compare COP values for Rankine refrigeration cycle
and Vapor compression refrigeration cycle. TH=20C and TC=-40C.

Answers

The COP for Rankine refrigeration cycle is 1.146

The COP for Vapor compression refrigeration cycle is 2.685

The Coefficient of Performance (COP) is a unit of efficiency that measures how effectively a refrigeration cycle or a heat pump can move heat. The COP is determined by dividing the cooling effect generated by the energy input, such as electricity or fuel. The COP of a cooling system is increased by lowering the refrigeration temperature and raising the evaporation temperature.

Calculation of COP for Rankine refrigeration cycle:

Here we use the Rankine cycle as a refrigeration cycle, so we have to consider the following data:

TH = 20 °C = 293 K;

TC = -40 °C = 233 K;

For the calculation of COP, we need to calculate the refrigeration effect. This is calculated as follows:

Refrigeration effect = h1 - h4

where h1 = enthalpy of the refrigerant leaving the evaporator; h4 = enthalpy of the refrigerant entering the compressor.

We know that, in the Rankine cycle, the refrigerant enters the compressor in a saturated state at the evaporator's temperature. Therefore, we have:

h4 = h1 = hf (at -40°C)

Using a steam table, the enthalpy at -40°C, hf, is found to be 71.325 kJ/kg.

The enthalpy of the refrigerant leaving the evaporator (h1) is found from the table to be 162.6 kJ/kg. Therefore,

Refrigeration effect = h1 - h4 = 162.6 - 71.325 = 91.275 kJ/kg

The work input to the compressor is calculated as the difference between the enthalpy of the refrigerant leaving the compressor and the enthalpy of the refrigerant entering the compressor. We have:

h2 - h1

where h2 = enthalpy of the refrigerant leaving the compressor

From the steam table, the enthalpy at 20°C, h1, is found to be 162.6 kJ/kg, and the enthalpy at 20°C and 5 MPa, h2, is found to be 242.2 kJ/kg.

Therefore,

Work input to the compressor = h2 - h1 = 242.2 - 162.6 = 79.6 kJ/kg

The COP of the Rankine cycle is given by:

COP_R = Refrigeration effect / Work input to the compressor

= 91.275 / 79.6

= 1.146

Calculation of COP for Vapor compression refrigeration cycle:

We use the vapor compression refrigeration cycle as a refrigeration cycle here, so we have to consider the following data:

TH = 20°C = 293 K;

TC = -40°C = 233 K;

For the calculation of COP, we need to calculate the refrigeration effect. This is calculated as follows:

Refrigeration effect = h1 - h4

where h1 = enthalpy of the refrigerant leaving the evaporator; h4 = enthalpy of the refrigerant entering the compressor.

We know that in the vapor compression cycle, the refrigerant enters the compressor as a saturated vapor from the evaporator. Therefore, we have:

h4 = hf (at -40°C)

where hf = enthalpy of refrigerant at saturated liquid state at evaporator temperature.

The enthalpy at -40°C is found to be 71.325 kJ/kg from the steam table.

The enthalpy of the refrigerant leaving the evaporator (h1) is also found from the table to be 162.6 kJ/kg. Therefore,

Refrigeration effect = h1 - h4 = 162.

6 - 71.325 = 91.275 kJ/kg

The work input to the compressor is calculated as the difference between the enthalpy of the refrigerant leaving the compressor and the enthalpy of the refrigerant entering the compressor. We have:

h2 - h1

where h2 = enthalpy of the refrigerant leaving the compressor

From the steam table, the enthalpy at 20°C, h1, is found to be 162.6 kJ/kg, and the enthalpy at 20°C and 0.8 MPa, h2, is found to be 196.6 kJ/kg.

Therefore,

Work input to the compressor = h2 - h1 = 196.6 - 162.6 = 34 kJ/kg

The COP of the vapor compression cycle is given by:

COP_VC = Refrigeration effect / Work input to the compressor

= 91.275 / 34

= 2.685

The COP for Rankine refrigeration cycle is 1.146

The COP for Vapor compression refrigeration cycle is 2.685

Hence, the COP for Vapor compression refrigeration cycle is higher than the COP for Rankine refrigeration cycle.

Know more about Rankine refrigeration cycle.

https://brainly.com/question/31328524

#SPJ11

Find the curve of best fit of the type y=ae^bx to the following data by the method of least squares. a= a. 7.23 b. 8.85 c. 9.48 d. 10.5,0.12.39 b= a. 0.128 b. 0.059 c. 0.099 d. 0.155 e. 0.071

Answers

The curve of best fit of the type y = ae^bx for the given data is approximately y = 28.2e^(-1.118x).

To find the curve of best fit of the type y = ae^bx to the given data using the method of least squares, we need to minimize the sum of the squared differences between the actual y-values and the predicted y-values based on the given equation.

Let's break down the steps:

1. Write down the given data: (10.5,0.12), (39,8.85), (0.12,9.48), and (0.155,7.23).

2. Take the natural logarithm of both sides of the equation to linearize it:
  ln(y) = ln(a) + bx.

  This transforms the equation into a linear form: Y = A + BX, where Y = ln(y), A = ln(a), and B = b.

3. Calculate the values of Y by taking the natural logarithm of the y-values in the data set.

  For example, ln(0.12) ≈ -2.12, ln(8.85) ≈ 2.18, ln(9.48) ≈ 2.25, and ln(7.23) ≈ 1.98.

  So the transformed data set becomes: (-2.12, 0.12), (3.66, 8.85), (2.18, 9.48), and (1.98, 7.23).

4. Calculate the values of X by using the x-values from the given data set.

  The transformed data set becomes: (-2.12, 10.5), (3.66, 39), (2.18, 0.12), and (1.98, 0.155).

5. Now, we can apply the method of least squares to find the best-fit line of the form Y = A + BX.

  Calculate the following sums:
  - Sum of X: ΣX ≈ -1.3
  - Sum of Y: ΣY ≈ 9.74
  - Sum of XY: ΣXY ≈ -8.2
  - Sum of X^2: ΣX^2 ≈ 7.3524

  Calculate the following values:
  - Mean of X: X ≈ -0.33
  - Mean of Y: Y ≈ 2.435
  - Slope of the line: B ≈ -1.118
  - Intercept of the line: A ≈ 3.338

6. Now that we have the values of A and B, we can substitute them back into the original equation to find a and b.

  a = e^A ≈ e^3.338 ≈ 28.2
  b = B

  Therefore, the curve of best fit of the type y = ae^bx for the given data is approximately y = 28.2e^(-1.118x).

Please note that the values provided here are approximate and rounded for simplicity. Additionally, there may be slight variations in the final values due to rounding or computational differences.

Learn more about method of least squares here: https://brainly.com/question/30548323

#SPJ11

How is the hot air cooled by the air conditioner(AC)? Is there a heat
exchanger?

Answers

Hot air is cooled by the air conditioner through a heat exchanger.

The primary function of an air conditioner is to remove heat from the indoor environment and cool it down. The cooling process involves several components, including a heat exchanger.

The heat exchanger in an air conditioner consists of two main parts: the evaporator coil and the condenser coil. The evaporator coil is located inside the indoor unit, while the condenser coil is situated in the outdoor unit. These coils are made of metal and have a large surface area to enhance heat transfer.

When the air conditioner is in cooling mode, the hot indoor air is drawn into the unit through a vent. The air passes over the evaporator coil, which contains a cold refrigerant. The refrigerant absorbs the heat from the air, causing the air to cool down. As a result, the refrigerant evaporates, changing from a liquid state to a gaseous state.

Simultaneously, the gaseous refrigerant is pumped to the outdoor unit, where the condenser coil is located. Here, the refrigerant releases the heat it absorbed from the indoor air. The heat is transferred to the outside environment, typically through a fan or an exhaust system. As the refrigerant loses heat, it condenses back into a liquid state.

The heat exchange process continues cyclically, with the air conditioner removing heat from the indoor air and expelling it outside. This continuous cycle helps maintain a cool and comfortable indoor environment.

In conclusion, the hot air is cooled by the air conditioner through a heat exchanger, specifically the evaporator and condenser coils. The heat exchanger facilitates the transfer of heat from the indoor air to the refrigerant, and then from the refrigerant to the outdoor environment.

Learn more about Exchanger

brainly.com/question/2206977

#SPJ11

X=[2 4 5 6 8 9); Y=[5 9 10 13 17 20); Write a command in Matlab to plot the data above with black asterisk

Answers

To plot the data above with black asterisk using Matlab, the command is:

plot(X,Y,'k*')

Explanation: To plot data above in Matlab, we will use the 'plot' function.

The 'plot' function is used to create 2D line plot with the first input parameter specifying the x-coordinates, the second input parameter specifying the y-coordinates and so on.

The parameters X and Y in this question are vectors containing the x and y coordinates of the data points respectively. The 'k*' argument specifies that the plot should use a black asterisk marker.

The general syntax for plotting a set of data points in Matlab is as follows:

plot(X, Y, MarkerSpec)

Where MarkerSpec represents the type of marker used to denote each point in the plot.

The 'k*' argument represents a black asterisk.

Therefore, the command to plot the data above with black asterisk using Matlab is:

plot(X,Y,'k*')

To know more about Matlab visit:

https://brainly.com/question/30763780

#SPJ11

Need help!! I really don’t understand this at all and need help fast!!

Answers

The spheres are not congruent as they have different radius lengths. Thus, option B is correct.

Congruent spheres are two hemispheres that have the same radius and identical shapes. Congruent spheres exhibit equal measurements for radius, diameter, circumference, and volume when compared to one another.

The first hemisphere has a diameter of 12 in. We know that the radius is half the length of the diameter. Therefore, the length of the radius is 6 in.

The second hemisphere has a radius of 7 in.

Therefore, the radius of both spheres are different in length and hence they are not congruent.

Read more about spheres:

brainly.com/question/30522100

A mole of charge. One mole of calcium ions, for instance, contains two moles of charge. Choose the best matching term from the menu.

Answers

When we say "a mole of charge," we are referring to 6.022 × 10^23 elementary charges, such as electrons or protons.

A mole of charge refers to the amount of electric charge that corresponds to one mole of a particular charged particle or ion. In the case of calcium ions (Ca²⁺), one mole of calcium ions contains two moles of charge.

This is because calcium ions have a charge of +2, indicating the gain or loss of two electrons.

The concept of a mole of charge is based on Avogadro's number, which states that one mole of any substance contains 6.022 × 10^23 entities (atoms, ions, molecules, etc.).

In the context of charge, this means that one mole of charged particles contains a number of charges equal to Avogadro's number.

The concept of a mole allows us to quantitatively relate the amount of charge to the number of particles involved, providing a convenient way to work with and compare different quantities of charge in various chemical and physical processes.

Learn more about Avogadro's number from the given link!

https://brainly.com/question/859564

#SPJ11

A=-x^2+40 which equation reveals the dimensions that will create the maximum area of the prop section

Answers

The x-coordinate of the vertex is 0.  the corresponding y-coordinate (the maximum area), we can substitute x = 0 into the equation A(x) = -x^2 + 40: A(0) = -(0)^2 + 40 = 40.

To find the dimensions that will create the maximum area of the prop section, we need to analyze the given equation A = -x^2 + 40. The equation represents a quadratic function in the form of A = -x^2 + 40., where A represents the area of the prop section and x represents the dimension.

The quadratic function is in the form of a downward-opening parabola since the coefficient of is negative (-1 in this case). The vertex of the parabola represents the maximum point on the graph, which corresponds to the maximum area of the prop section.

To determine the x-coordinate of the vertex, we can use the formula x = -b / (2a), where the quadratic equation is in the form Ax^2 + Bx + C and a, b, and c are the coefficients. In this case, the equation is -x^2 + 40, so a = -1 and b = 0. Plugging these values into the formula, we get x = 0 / (-2 * -1) = 0.

Therefore, the x-coordinate of the vertex is 0. To find the corresponding y-coordinate (the maximum area), we can substitute x = 0 into the equation  A(x) = -x^2 + 40: A(0) = -(0)^2 + 40 = 40.

Hence, the equation that reveals the dimensions that will create the maximum area of the prop section is A = 40. This means that regardless of the dimension x, the area of the prop section will be maximized at 40 units.

For more such questions on coordinate visit:

https://brainly.com/question/29660530

#SPJ8

Question: Determine the equation of motion, Please show work step by step
A 8 pound weight stretches a spring by 0.5 feet. The mass is then released from an initial position 1 foot below the equilibrium position with an initial upward velocity of 24 feet per second. The surrounding medium offers a damping force of= 2.5 times the instantaneous velocity.

Answers

The equation of motion for this scenario is: dv/dt = (515.2 * x - 2.5 * v - 257.6) / 0.248.

To determine the equation of motion for this scenario, we need to consider the forces acting on the system. The weight exerts a gravitational force of 8 pounds, which can be converted to 8 * 32.2 = 257.6 lb*ft/s^2. The spring force opposes the weight and is given by Hooke's Law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position. The equation for the spring force is F_spring = k * x, where k is the spring constant and x is the displacement.

Since the weight stretches the spring by 0.5 feet, we can substitute the given values into the equation: 257.6 = k * 0.5. Solving for k, we find k = 515.2 lb/ft.

Next, we can consider the damping force. The damping force is given by F_damping = -2.5 * v, where v is the velocity. The negative sign indicates that the damping force opposes the velocity.

Now we can write the equation of motion: m * a = F_spring + F_damping + F_gravity, where m is the mass and a is the acceleration.

The mass is not given, but we can solve for it using the weight: 8 lb = m * 32.2 ft/s^2. Solving for m, we find m = 8 / 32.2 = 0.248 lb*s^2/ft.

With all the values known, we can write the equation of motion as: 0.248 * dv/dt = 515.2 * x - 2.5 * v - 257.6.

Simplifying the equation further, we have: dv/dt = (515.2 * x - 2.5 * v - 257.6) / 0.248.

This equation describes the motion of the system. To solve it, we can use numerical methods or techniques such as Laplace transforms, depending on the desired level of accuracy and complexity.

Learn more about Laplace transforms from:

https://brainly.com/question/29583725

#SPJ11

Other Questions
Which of the following is true about cultural change in the United States?Select one:a."Culture-bound" IQ tests have shown increases in American intelligence over the past generation, but "culture-free" IQ tests have not shown any changes.b.Americans today score lower on the SAT than they did a generation ago.c.Performance on the Ravens Matrices test reveals that Americans have lower IQs today than they did a generation ago.d.IQ increased among Americans in the first half of the twentieth century but has been decreasing since then.e.Americans today score higher on the SAT than they did a generation ago. What was Mama's motivation for giving Walter the money left over after buying her house?O She was tired of running the family and making decisions.She wanted Walter to have some input into how the money was spent.O She thought he and Ruth needed it the most because of the baby.She wanted to show her faith in him to become a responsible, mature man. The half-life of a radioactive isotope is 210 d. How many days would it take for the decay rate of a sample of this isotope to fall to 0.60 of its initial rate?Number ____________ Units ____________ Which statement best describes the way the sections in the excerpt from "Song of Myself" are constructed? For a continuous culture to produce microbial biomass, the system has following characteristics:Maximum specific growth rate: 0.4 /h Substrate constant: 0.5 g/LSubstrate concentration in the feed: 50 g/L Substrate concentration in the reactor: 1 g/L The biomass yield from substrate: 0.2 g/g Downtime: 25 days/yearReactor volume: 100LFind out the following parameters at the optimal operational conditions:(a) Biomass concentration in the reactor(b) Feed flow rate(c) Substrate concentration in the reactor(d) Annual biomass production Methanol is produced by reacting carbon monoxide and hydrogen. A fresh feed stream containing CO and H joins a recycle stream and the combined stream is fed to a reactor. The reactor outlet stream flows at a rate of 350 gmole/min and contains 63.1 mol % H, 27.4 mol % CO and 9.5 mol % CH,OH. This stream enters a cooler in which most of the methanol is condensed. The pure liquid methanol condensate is withdrawn as a product, and the gas stream leaving the condenser is the recycle stream that combines with the fresh feed. This gas stream contains CO, H and 0.80 mole% uncondensed CHOH vapor. (a) Without doing any calculations, prove that you have enough information to determine: i. The molar flow rates of CO and H2 in the fresh feed ii. The production rate of liquid methanol The single-pass and overall conversions of carbon monoxide (b) Perform the calculations and answer the questions in part (a) b) An R-L-C series circuit has R = 5 2, C = 60 F and a variable inductance. The applied voltage is 50 V at 50Hz. The inductance is varied till it reaches the value of capacitive reactance. Under this condition, find (i) value of inductance (ii) value of impedance, (iii) current (iv) voltages across resistance, capacitance and inductance. MFRS 137, Provision, Contingent Liabilities and Contingent Assets stipulates the criteria for provisions which must be met in order for a provision to be recognised, sothat companies should be prevented from manipulating profits. According to MFRS 137, three (3) criteria are required to be met before a provision can be recognised.These are:i. An entity has a present obligation (legal or constructive) as a result of a past event.ii. It is probable that an outflow of resources embodying economic benefits will be required to settle the obligation andiii. a reliable estimate can be made of the amount of the obligation.Required:Explain each criteria by giving examples. Part A A 500-ft curve, grades of g, - +2.50% and g=-3.00% VPI at station 96 +80 and elevation 845 26 ft stakeout at full stations List station elevations for an equal target parabolic curve for the data given the evallons in the Express your answers in feet to five significant figures separated by com 190 Advoc 7 it Elev Sun Rest AS Tom is aresident for tax purposes.He works full-time in a multinational company. Hisannual gross salary is$63,000.This year his total deductions calculatedare$5250,the tax offset is calculated as $420. Tax withheld by the employer is $15570. How muchtaxdoes Tom need to pay to the ATO? An air parcel begins to ascent from an altitude of 1200ft and a temperature of 81.8 F. It reaches saturation at 1652ft. What is the temperature at this height? The air parcel continues to rise to 2200ft. What is the temperature at this height? The parcel then descents back to the starting altitude. What is the temperature after its decent? (Show your work so I can see if you made a mistake.) lets say you have a mixture made of methanol and water, initially containing 60% methanol and 40% water and we want to produce methanol at 90% purity while recovering 85% of it from the feed. please show how you would determine the reflux ratio and the temperature required and also write out all complete mass balances. What kind of story does the poem Jabberwocky tell?1 a young boys dangerous quest2 a dragons desire for friends3 a girls attempt to stop gossip 4 a fathers search for his child (PROJECT RISKMANAGEMENT)Discuss, Elaborate, Explain and Describe the Four-Phase Approachto Project Risk Management. The capacitance of an empty capacitor is 4.70 F. The capacitor is connected to a 12-V battery and charged up. With the capacitor connected to the battery, a slab of dielectric material is inserted between the plates. As a result, 9.30 10-5 C of additional charge flows from one plate, through the battery, and onto the other plate. What is the dielectric constant of the material? Find the first four nonzero terms in a power series expansion of the solution to the given initial value problem.y' -e^xy=0; y(0)=2y(x)=______+... (Type an expression that includes all terms up to order 3. Which of the following is an effective way to use critical thinking in business? Accept new information only when it matches my current thinking Expand my level of self-awareness by asking appropriate questions (both of the above) (none of the above) Please describe your theory of how you believe psychologicaldisorders develop. Ture or falseWhen a government taxes bothchocolate and tobacco for a similarly sized tax, the quantitydemanded of tobacco should be affected more than that ofchocolate. Help me with this 9 math