Answer:
Proving that the limit of the equation 10 - 2x as x approaches -3 is 16 involves using the definition of a limit.
Here's how you would approach it:
Let epsilon be a small positive number. We want to find a value of delta such that if x is within a distance of delta from -3, then 10 - 2x is within a distance of epsilon from 16.
So, we start with:
|10 - 2x - 16| < epsilon
Simplifying,
|-2x - 6| < epsilon
And using the reverse triangle inequality,
|2x + 6| > ||2x| - |6||
Now, we can choose a value for delta such that if x is within delta of -3, then |2x + 6| is within delta + 6 of |-6| = 6.
So,
||2x| - |6|| < epsilon
and therefore:
|2x - 6| < epsilon
Choosing delta = epsilon/2, we can prove that:
0 < |x + 3| < delta -> |2x - 6| < epsilon
Therefore, we have proved that the limit of 10 - 2x as x approaches -3 is 16 using the definition of a limit.
Step-by-step explanation:
brainliest Pls
For which values is this expression undefined?
The values x = -5 and x = 3 make the second expression undefined. The correct answers are:
x = -5
x = 3
x= -3
To determine the values for which the given expressions are undefined, we need to find the values that make the denominators equal to zero.
First expression: [tex]\frac{3x}{(x^2 - 9)}[/tex]
For this expression, the denominator is (x^2 - 9). It will be undefined when the denominator equals zero:
x^2 - 9 = 0
Factoring the equation, we have:
(x - 3)(x + 3) = 0
Setting each factor equal to zero, we get:
x - 3 = 0 --> x = 3
x + 3 = 0 --> x = -3
So, the values x = 3 and x = -3 make the first expression undefined.
Second expression: [tex]\frac{(x + 4)}{(x^2 + 2x - 15)}[/tex]
For this expression, the denominator is (x^2 + 2x - 15). It will be undefined when the denominator equals zero:
x^2 + 2x - 15 = 0
Factoring the equation, we have:
(x + 5)(x - 3) = 0
Setting each factor equal to zero, we get:
x + 5 = 0 --> x = -5
x - 3 = 0 --> x = 3
So, The second expression is ambiguous because x = -5 and x = 3.
Consequently, the right responses are x = -5, x = 3 and x= -3.
for such more question on expressions
https://brainly.com/question/4344214
#SPJ8
NO LINKS!! URGENT HELP PLEASE!!
Find the value of x
Answer:
x = 4
Step-by-step explanation:
You want the value of x in the figure of a circle with intersecting secants.
Secant relationThe product of lengths from the near and far circle intercepts to the point where the secants intersect is the same for both secants:
6(6+10) = 8(8+x)
6·16 = 8·(8+x)
12 = 8 +x . . . . . . . divide by 8
4 = x . . . . . . . . . . subtract 8
The length x is 4 units.
<95141404393>
If the vertical height of the ramp is 4 feet, how long must the ramp (x) be?
Show all of your work. Round your answer to the nearest foot. (Picture is
not drawn to scale.
Which are correct representations of the inequality –3(2x – 5) < 5(2 – x)? Select two options.
x < 5
–6x – 5 < 10 – x
–6x + 15 < 10 – 5x
A number line from negative 3 to 3 in increments of 1. An open circle is at 5 and a bold line starts at 5 and is pointing to the right.
A number line from negative 3 to 3 in increments of 1. An open circle is at negative 5 and a bold line starts at negative 5 and is pointing to the left.
The correct representations of the inequality –3(2x – 5) < 5(2 – x) are options 1 (x < 5) and 3 (–6x + 15 < 10 – 5x).
To determine the correct representations of the inequality –3(2x – 5) < 5(2 – x), let's simplify the expression and analyze the options:
First, we simplify the inequality:
–3(2x – 5) < 5(2 – x)
–6x + 15 < 10 – 5x
Now let's analyze the options:
x < 5: This option represents the solution to the inequality. It indicates that x must be less than 5 for the inequality to hold true.
–6x – 5 < 10 – x: This is not a correct representation of the inequality. The sign of the x-term on the right side of the inequality is incorrect.
–6x + 15 < 10 – 5x: This option represents the solution to the inequality. It correctly represents the simplified inequality we obtained earlier.
A number line from negative 3 to 3 in increments of 1, with an open circle at 5 and a bold line starting at 5 and pointing to the right: This representation does not accurately represent the solution to the inequality. The inequality is not satisfied at x = 5, so the circle should be closed.
A number line from negative 3 to 3 in increments of 1, with an open circle at negative 5 and a bold line starting at negative 5 and pointing to the left: This representation is not correct as it does not represent the solution to the inequality.
Therefore, choices 1 (x 5) and 3 (-6x + 15 10 - 5x) are the proper expressions of the inequality -3(2x - 5) 5(2 - x).
for such more question on inequality
https://brainly.com/question/17448505
#SPJ8
What is the range of the rational function
The range of the rational function in this problem is given as follows:
All real values. (fourth option).
How to obtain the domain and range of a function?The domain of a function is defined as the set containing all the values assumed by the independent variable x of the function, which are also all the input values assumed by the function.The range of a function is defined as the set containing all the values assumed by the dependent variable y of the function, which are also all the output values assumed by the function.From the graph of the function given by the image presented at the end of the answer, it assumes all values of y, hence the range is all real values.
Learn more about domain and range at https://brainly.com/question/26098895
#SPJ1
NO LINKS!! URGENT HELP PLEASE!!
Answer:
[tex]\text{a.} \quad m\angle NLM=93^{\circ}[/tex]
[tex]\text{c.} \quad m\angle FHG=31^{\circ}[/tex]
Step-by-step explanation:
The inscribed angle in the given circle is ∠NLM.
The intercepted arc in the given circle is arc NM = 186°.
According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc.
Therefore:
[tex]m\angle NLM=\dfrac{1}{2}\overset{\frown}{NM}[/tex]
[tex]m\angle NLM=\dfrac{1}{2} \cdot 186^{\circ}[/tex]
[tex]\boxed{m\angle NLM=93^{\circ}}[/tex]
[tex]\hrulefill[/tex]
According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:
[tex]m\angle HFG=\dfrac{1}{2}\overset{\frown}{HG}[/tex]
[tex]m\angle HFG=\dfrac{1}{2}\cdot 118^{\circ}[/tex]
[tex]m\angle HFG=59^{\circ}[/tex]
As line segment FH passes through the center of the circle, FH is the diameter of the circle. Since the angle at the circumference in a semicircle is a right angle, then:
[tex]m\angle FGH = 90^{\circ}[/tex]
The interior angles of a triangle sum to 180°. Therefore:
[tex]m\angle FHG + m\angle HFG + m\angle FGH =180^{\circ}[/tex]
[tex]m\angle FHG + 59^{\circ} + 90^{\circ} =180^{\circ}[/tex]
[tex]m\angle FHG +149^{\circ} =180^{\circ}[/tex]
[tex]\boxed{m\angle FHG =31^{\circ}}[/tex]
Sarah has 12 cents. If she adds 1 dime and 1 quarter, how much money will she have?
Answer:
47 cents or $0.47
Step-by-step explanation:
1 dime = 10 cents (or $0.1)
1 quarter = 25 cents or ($0.25)
12 cents + 1 dime + 1 quarter = 12 + 10 + 25 = 47 cents
what is the slope of the line that contains these points?
The slope remains constant and equal to 0.2 between all pairs of consecutive points, we can conclude that the slope of the line that contains all the given points is 0.2.
To calculate the slope of the line that contains the given points (-4, -3), (1, -2), (6, -1), and (11, 0), we can use the formula for slope, which is defined as the change in y divided by the change in x between any two points on the line.
Let's calculate the slope between the first two points (-4, -3) and (1, -2):
Slope = (change in y) / (change in x)
= (-2 - (-3)) / (1 - (-4))
= (-2 + 3) / (1 + 4)
= 1 / 5
= 0.2
Now, let's calculate the slope between the next two points (1, -2) and (6, -1):
Slope = (change in y) / (change in x)
= (-1 - (-2)) / (6 - 1)
= (-1 + 2) / (6 - 1)
= 1 / 5
= 0.2
Similarly, let's calculate the slope between the last two points (6, -1) and (11, 0):
Slope = (change in y) / (change in x)
= (0 - (-1)) / (11 - 6)
= (0 + 1) / (11 - 6)
= 1 / 5
= 0.2
Since the slope remains constant and equal to 0.2 between all pairs of consecutive points, we can conclude that the slope of the line that contains all the given points is 0.2.
for such more question on slope
https://brainly.com/question/27877215
#SPJ8
Find measure of angle HFJ
Look at picture for reference
The measure of angle HFJ in the right triangle JFH is 43 degrees.
What is the measure of angle HFJ?In the right triangle FGJ, first, we determine the hypotenuse FJ.
Angle GFJ = 43 degrees
Opposite of angle GFJ = 6
Hypotenuse FJ = ?
Using the trigonometric ratio, we can find the hypotenuse FJ:
sine = opposite / hypotenuse
sin( 43 ) = 6 / FJ
FJ = 6 / sin( 43 )
FJ = 8.7977
Now, we can find angle HFJ,
Angle HFJ = ?
opposite = 6
Hypotenuse FJ = 8.7977
Using the trigonometric ratio:
sin ( HFJ ) = 6 / 8.7977
sin ( HFJ ) = 6 / 8.7977
HFJ = sin⁻¹( 6 / 8.7977 )
HFJ = 43°
Therefore, angle HFJ measure 43 degrees.
Learn more about trigonometric ratio here: brainly.com/question/28016662
#SPJ1
NO LINKS!!! URGENT HELP PLEASE!!!
Please help with #15
Answer:
area = 8π/3
arc length = 4π/3
Step-by-step explanation:
θ = 60°
r = 4
Area of sector :
[tex]\frac{\theta}{360} \pi r^{2} \\\\=\frac{60}{360} \pi 4^{2} \\\\= \frac{1}{6} 16\pi \\\\= \frac{8}{3} \pi[/tex]
arc length:
[tex]\frac{\theta}{360} 2\pi r\\ \\= \frac{60}{360} 2(4)\pi \\\\= \frac{1}{6} 8\pi \\\\= \frac{4}{3} \pi[/tex]
Answer:
A ≈ 8.4 cm² , arc length ≈ 4.2 cm
Step-by-step explanation:
the area (A) of the sector is calculated as
A = area of circle × fraction of circle
= πr² × [tex]\frac{60}{360}[/tex] ( r is the radius of the circle )
= π × 4² × [tex]\frac{1}{6}[/tex]
= [tex]\frac{16\pi }{6}[/tex]
≈ 8.4 cm² ( to 1 decimal place )
arc length is calculated as
arc = circumference of circle × fraction of circle
= 2πr × [tex]\frac{60}{360}[/tex]
= 2π × 4 × [tex]\frac{1}{6}[/tex]
= [tex]\frac{8\pi }{6}[/tex]
≈ 4.2 cm ( to 1 decimal place )
David sold mugs at a crafts show. On the first day, he sold 10 mugs but lost $ 5.40 on each mug. On the second day, he raised his price and sold 7 mugs with a profit of $ 5.00 on each mug. What was his total profit or loss? Write a profit as a positive number and a loss as a negative number.
Answer:
Davis has a loss of $19
i.e -19
Step-by-step explanation:
On day 1, David lost 5.4 * 10 = $54
On day 2, David gained 5 * 7 = $35
Overall, his loss is greater than the profit
Total loss is $54 - $35 = $19
A research study claims that 68% of adults drink regularly. Edward conducts a random sample of 200 people and finds that 140 people drink regularly.
z equals fraction numerator p with hat on top minus p over denominator square root of begin display style fraction numerator p q over denominator n end fraction end style end root end fraction
Using the formula and data provided, what is the value of the z-test statistic? Answer choices are rounded to the hundredths place.
a.)
0.41
b.)
0.61
c.)
0.39
d.)
0.59
Using the z-statistic relation given, the value of the z-statistic in the scenario would be 0.61
Z - statistic relationshipThe Z-statistic relation is written thus:
z = (phat - p) / √(p * q / n)phat = 140 / 200 = 0.7
p = 0.68
q = 1 - p = 0.32
n = 200
Inputting the values into our formula
z = (phat - p) / sqrt(p * q / n)
= (0.7 - 0.68) / sqrt(0.68 * 0.32 / 200)
= 0.02 / 0.0583
= 0.61
Therefore, Z-statistic is 0.61
Learn more on z-statistic: https://brainly.com/question/25638875
#SPJ1
Complete the sentence using the following information:
New Account Balance - $435.92
Payments/Credits - $68.50
New Purchases $118.49
Finance Charge=$3.70
The amount of the adjusted balance is
Y. given the following information:
The adjusted balance, considering the new account balance, payments/credits, new purchases, and finance charge, is $489.61.
To calculate the adjusted balance, we need to consider the new account balance, payments/credits, new purchases, and finance charges.
Starting with the new account balance of $435.92, we subtract the payments/credits of $68.50. This represents the amount that has been paid or credited to the account, reducing the balance.
Next, we add the new purchases of $118.49. These are additional charges made to the account, increasing the balance.
Finally, we add the finance charge of $3.70. This charge is typically applied as interest on the outstanding balance.
To calculate the adjusted balance, we can follow these steps:
Start with the new account balance: $435.92
Subtract the payments/credits: $435.92 - $68.50 = $367.42
Add the new purchases: $367.42 + $118.49 = $485.91
Add the finance charge: $485.91 + $3.70 = $489.61
Therefore, the amount of the adjusted balance is $489.61.
To learn more about adjusted balance
https://brainly.com/question/11308124
#SPJ8
What is the slope of the line shown below?
-6
10
(-3,-7) 5
-10
AY
(9, 1)
10
15
X
O A.-²2/
3
OB.
NIM
O c. 3
2
O D.
3
MIN
Answer:
[tex]m = \frac{1 - ( - 7)}{9 - ( - 3)} = \frac{8}{12} = \frac{2}{3} [/tex]
B is the correct answer.
NO LINKS!! URGENT HELP PLEASE!!
Find each indicated measure
Answer:
b. 160°
d. 55°
Step-by-step explanation:
The Inscribed Angle Theorem states that an inscribed angle is half of the central angle that subtends the same arc.
In other words, if an angle is inscribed in a circle and it intercepts an arc, then the measure of the inscribed angle is equal to half the measure of the central angle that also intersects that arc.
For question:
b.
By using above theorem:
m arc XW=2* m arc XYW
m arc XW= 2*80=160°
d.
m arc WV=125°
The Inscribed Angle Diameter Right Angle Theorem states that any angle inscribed in a circle that intercepts a diameter is a right angle.
By using this theorem:
m arc WV+m arc XV =180°
Now
m arc XV =180°-m arc WV
m arc XV=180°-125°
n arc XV=55°
Answer:
[tex]\text{b.} \quad m\overset{\frown}{XW}=160^{\circ}[/tex]
[tex]\text{d.} \quad m\overset{\frown}{XV}=55^{\circ}[/tex]
Step-by-step explanation:
An inscribed angle is the angle formed (vertex) when two chords meet at one point on a circle.
An intercepted arc is the arc that is between the endpoints of the chords that form the inscribed angle.
[tex]\hrulefill[/tex]
Part bFrom inspection of the given circle:
The inscribed angle is m∠WRX = 80°The intercepted arc is arc XW.According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:
[tex]m \angle WRX = \dfrac{1}{2}\overset{\frown}{XW}[/tex]
[tex]80^{\circ}= \dfrac{1}{2}\overset{\frown}{XW}[/tex]
[tex]\boxed{m\overset{\frown}{XW}=160^{\circ}}[/tex]
[tex]\hrulefill[/tex]
Part dFrom inspection of the given circle:
The inscribed angle is m∠WVX = 90°The intercepted arc is arc WX.According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:
[tex]m \angle WVX= \dfrac{1}{2}\overset{\frown}{WX}[/tex]
[tex]90^{\circ}= \dfrac{1}{2}\overset{\frown}{WX}[/tex]
[tex]m\overset{\frown}{WX}=180^{\circ}[/tex]
The sum of the measures of the arcs in a circle is 360°.
[tex]m\overset{\frown}{VW}+m\overset{\frown}{WX}+m\overset{\frown}{XV}=360^{\circ}[/tex]
Therefore, so find the measure of arc XV, substitute the found measures of arcs VW and WX, and solve for arc XV:
[tex]125^{\circ}+180^{\circ}+m\overset{\frown}{XV}=360^{\circ}[/tex]
[tex]305^{\circ}+m\overset{\frown}{XV}=360^{\circ}[/tex]
[tex]\boxed{m\overset{\frown}{XV}=55^{\circ}}[/tex]
DC=x-2
Height=4
AB=2x+4
The area of the trapezoid ABCD shown above is 70 square units. Calculate x.
Answer:
Step-by-step explanation:To calculate the value of x, we can use the formula for the area of a trapezoid:
Area = (1/2) * (sum of the parallel sides) * height
Given that the area of the trapezoid ABCD is 70 square units, we can set up the equation as follows:
70 = (1/2) * (AB + DC) * Height
Substituting the given values:
70 = (1/2) * ((2x + 4) + (x - 2)) * 4
Simplifying the equation:
70 = (1/2) * (3x + 2) * 4
Multiplying both sides by 2 to remove the fraction:
140 = (3x + 2) * 4
Dividing both sides by 4:
35 = 3x + 2
Subtracting 2 from both sides:
33 = 3x
Dividing both sides by 3:
x = 11
Therefore, the value of x is 11.
Evaluate the algebraic expression for the given values of the variables
Answer: substitute the given number for the variable in the expression and then simplify the expression using the order of operations
Step-by-step explanation:3a2 - 4b2 for a = -3/4 and b = 1/2
Find three points that solve the equation and plot it on a graph -3x + 2y = 11
The x-axis represents the values of x, and the y-axis represents the values of y. The first point (0, 11/2) lies on the y-axis, at a height of 11/2. The second point (2, 17/2) lies to the right of the y-axis, at a height of 17/2. The third point (-3, 1) lies to the left of the y-axis, at a height of 1.
To find three points that satisfy the equation -3x + 2y = 11, we can arbitrarily assign values to either x or y and solve for the other variable. Let's choose to assign values to x and solve for y:
Let x = 0:
-3(0) + 2y = 11
2y = 11
y = 11/2
The first point is (0, 11/2).
Let x = 2:
-3(2) + 2y = 11
-6 + 2y = 11
2y = 11 + 6
2y = 17
y = 17/2
The second point is (2, 17/2).
Let x = -3:
-3(-3) + 2y = 11
9 + 2y = 11
2y = 11 - 9
2y = 2
y = 1
The third point is (-3, 1).
Now let's plot these points on a graph:
The x-axis represents the values of x, and the y-axis represents the values of y. The first point (0, 11/2) lies on the y-axis, at a height of 11/2. The second point (2, 17/2) lies to the right of the y-axis, at a height of 17/2. The third point (-3, 1) lies to the left of the y-axis, at a height of 1.
By plotting these three points on the graph, you will have a visual representation of the solutions to the equation -3x + 2y = 11.
for more such question on height visit
https://brainly.com/question/28990670
#SPJ8
Christine has 1 blue sock, 3 purple socks and 1 green sock in a box.
Christine takes one sock at random from the box, puts it back, and takes another sock from the box. Find the probability that Christine takes at least one blue sock.
21. An RSTU rectangle is drawn on the coordinate plane with coordinates R(-1, 5), S(4, 5), T(4, 9) and then translated by T(2,-3), then the image coordinates of point U are
The image coordinates of point U, after translating the RSTU rectangle by T(2,-3), would be U(6, 6).
To find the image coordinates of U, we need to apply the translation vector T(2,-3) to each of the original coordinates.
The translation vector represents the horizontal and vertical distances by which each point is moved.
Starting with the original coordinates of point U, which are (4, 9), we add the horizontal distance of 2 to the x-coordinate and subtract the vertical distance of 3 from the y-coordinate.
Therefore, the new x-coordinate of U is 4 + 2 = 6, and the new y-coordinate is 9 - 3 = 6.
Thus, the image coordinates of point U after the translation are (6, 6). This means that U has been moved 2 units to the right and 3 units downward from its original position.
for such more questions on coordinates
https://brainly.com/question/29660530
#SPJ8
i need help in geometry 1
The expression/equation as written in the question is ∠A ≈ ∠C
How to write the expression/equation as expressedFrom the question, we have the following parameters that can be used in our computation:
∠A ≈ ∠C
The above expression means that
The angles A and C are congruent
From the question, we understand that
The question is not to be solved; we only need to write out the expression
Hence, the expression/equation as written is ∠A ≈ ∠C
Read more about angles at
https://brainly.com/question/31898235
#SPJ1
Margie has a $50.00 budget to purchase a $45.00 pair of boots. If
there is an 8% sales tax rate, then how much under budget will
Margie be?
Answer:
She willl be $1.40 under budget
Step-by-step explanation:
8% = 8/100 = 0.08
Adding this to 100% of the price of the shoes, we get 108% = 108/100 = 1.08.
We multiply the price of the shoes by this:
45*1.08 = 48.60
Subtract this from 50:
50 - 48.60 = 1.40
Write each set builder notation as interval notation. Do not include spaces in your answer. Please type out the word "infinity".
{r | -3 < r < 4}
The interval notation (-3, 4) represents the set of real numbers r that are greater than -3 and less than 4, excluding -3 and 4.
The set builder notation {r | -3 < r < 4} can be expressed in interval notation as (-3, 4).
In interval notation, the parentheses indicate that the endpoints, -3 and 4, are not included in the set.
The interval (-3, 4) represents all the real numbers r that are greater than -3 and less than 4, but not including -3 and 4.
It can also be visualized on a number line as an open interval between -3 and 4, where the endpoints are not filled in.
The interval (-3, 4) can be interpreted as a range of values for r. Any real number between -3 and 4, excluding the endpoints, would satisfy the given set builder notations.
For example, -2, 0, and 3 are all included in the interval (-3, 4), but -3 and 4 themselves are not part of the set.
For similar question on interval notation.
https://brainly.com/question/27997656
#SPJ8
The table shows the size of outdoor decks (x) in square feet, and the estimated dollar cost to construct them (y).
x y x2 xy
100 600 10,000 60,000
144 850 20,736 122,400
225 1,300 50,625 292,500
324 1,900 104,976 615,600
400 2,300 160,000 920,000
∑x=1,193 ∑y=6,950 ∑x2=346,337 ∑xy=2,010,500
Which regression equation correctly models the data?
y = 5.83x – 1.04
y = 5.83x + 17
y = 5.71x + 29
y = 5.71x + 27.6
The regression equation that correctly models the data is: y = 5.71x + 27.6.
The correct answer to the given question is option D.
Regression equations are mathematical models that relate two or more variables to find the relationship between them. One variable, denoted as y, is considered the dependent variable. The other variable, denoted as x, is considered the independent variable.
In this case, the independent variable is the size of the outdoor deck, while the dependent variable is the estimated cost to construct it.
There are different types of regression equations. The one that fits this scenario is the linear regression equation, which has the form y = mx + b, where m is the slope of the line and b is the y-intercept.
The slope represents the change in y for each unit change in x, while the y-intercept represents the value of y when x is zero. To find the regression equation that correctly models the data, we need to calculate the slope and the y-intercept using the given values.
We can use the following formulas:
Slope: m = [(n∑xy) - (∑x)(∑y)] / [(n∑x2) - (∑x)2]
Y-intercept: b = (∑y - m∑x) / n Where n is the number of data points, which is 6 in this case.
Using the given values, we get: Slope: m = [(6)(2,010,500) - (1,193)(6,950)] / [(6)(346,337) - (1,193)2] = 5.71
Y-intercept: b = (6,950 - (5.71)(1,193)) / 6 = 27.6
Therefore, the regression equation that correctly models the data is: y = 5.71x + 27.6
The answer is option D.
For more such questions on regression equation, click on:
https://brainly.com/question/25987747
#SPJ8
Please help me out with this question.
Answer:
Assuming options are independent or not independent/dependent, it would be not independent
Step-by-Step:
Probability of (A given B) = Probability(A)
P(A & B) divided by P(B) = P(A)
(1/9)/(1/15) = 2/5
5/3 = 2/5
Since 5/3 doesn't equal 2/5, the events if A and B are not independent
Answer if the following statement is true of false. *
1.X=X?
True
O False
The statement is:
O True
Work/explanation:
The following statement is true, because 1x is indeed the same thing as x. So when combining like terms, 2x + x is the same thing as 2x + 1x, which evaluates to 3x.
Therefore this is the answer.4x-5 2x+7 Find the value of x
answers should be from
27
37
47
57
Pls help I need this answer now
Answer:
The correct answer is A. As x increases, the rate of change of f(x) exceeds the rate of change of g(x)
Step-by-step explanation:
Sketch the graph of y=-2x²+x+1 using your graphing calculator. What are the x-intercepts of this graph?
a. (1, 0) and (-0.5, 0)
c. There are no x-intercepts
b.
(-2.5, 0) and (-2, 0)
d.
(-1.5, 0) and (-0.5, 0)
Please select the best answer from the choices provided
From the graph, we can see that the parabola intersects the x-axis at two points, which are approximately (-0.5, 0) and (1, 0).
Therefore, the correct answer is: a. (1, 0) and (-0.5, 0)
To sketch the graph of the quadratic function y = -2x² + x + 1 and determine the x-intercepts, we can use a graphing calculator or analyze the equation directly.
Here's the visualization and explanation of the graph:
The graph of a quadratic function is a parabola.
The general form of a quadratic equation is y = ax² + bx + c,
where a, b, and c are constants.
In this case, we have y = -2x² + x + 1.
The coefficient of x², which is -2, tells us that the parabola opens downward.
The vertex of the parabola can be found using the formula x = -b / (2a). Plugging in the values from our equation, we get x = -(1) / (2[tex]\times[/tex] (-2)) = 1/4.
So, the x-coordinate of the vertex is 1/4.
To find the y-coordinate of the vertex, we substitute the x-coordinate into the equation: y = -2(1/4)² + (1/4) + 1 = -1/8 + 1/4 + 1 = 1 + 1/4 - 1/8 = 1 + 2/8 - 1/8 = 1 + 1/8 = 9/8.
Now that we have the vertex of the parabola, which is (1/4, 9/8), we can sketch the graph.
-1/2 1/4 1/2
For similar question on parabola intersects.
https://brainly.com/question/28060070
#SPJ8
Why do we define
a curvature in terms of tha arc length?
i.e.
why do we put 's' into this definition?
(where s(t) is arc length function)
The inclusion of the arc length function in the definition of curvature provides a consistent and intrinsic measure of the rate of deviation from a straight line.
Incorporating arc length allows for the calculation of various geometric properties associated with curvature, such as the radius of curvature or the osculating circle.
The definition of curvature in terms of arc length is used to describe the rate at which a curve deviates from being a straight line. By incorporating the arc length function, denoted as 's(t)', into the definition, we can measure the curvature at different points along the curve.
Curvature, represented by 'k', is defined as the derivative of the unit tangent vector 'T' with respect to the arc length 's'. This definition has several advantages.
Firstly, it eliminates the dependency on the parametrization of the curve. Different parametrizations can yield the same curve, but their tangent vectors may differ. By using arc length as the parameter, we obtain an intrinsic measure of curvature that remains consistent regardless of the chosen parametrization.
Secondly, arc length provides a natural way to measure distance along the curve. By considering the derivative of the tangent vector with respect to arc length, we obtain a measure of how quickly the curve is turning per unit distance traveled.
Lastly, incorporating arc length allows for the calculation of various geometric properties associated with curvature, such as the radius of curvature or the osculating circle. These properties provide insights into the shape and behavior of the curve.
For more such questions on function visit:
https://brainly.com/question/11624077
#SPJ8