1a. Sum of interior angles of a heptagon:
[tex]\displaystyle \sf \text{Sum of interior angles} = (7 - 2) \times 180^\circ = 900^\circ[/tex]
1b. Sum of interior angles of a 13-gon:
[tex]\displaystyle \sf \text{Sum of interior angles} = (13 - 2) \times 180^\circ = 1980^\circ[/tex]
2. Number of sides for a polygon with a sum of interior angles of 1260°:
[tex]\displaystyle \sf (n - 2) \times 180^\circ = 1260^\circ[/tex]
[tex]\displaystyle \sf n - 2 = \frac{1260^\circ}{180^\circ}[/tex]
[tex]\displaystyle \sf n - 2 = 7[/tex]
[tex]\displaystyle \sf n = 7 + 2 = 9[/tex]
Therefore, the sum of the measures of the interior angles of a heptagon is 900°, the sum of the measures of the interior angles of a 13-gon is 1980°, and the polygon with a sum of interior angles of 1260° is a nonagon (9-gon).
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
Answer:
1. a. 900° b. 1980°
2. Nonagon
Step-by-step explanation:
In order to find the interior angles of a polygon, use the formula,
Sum of interior angles = (n-2)*180°
For
a. Heptagon
no of side =7
The sum of the interior angles of a heptagon:
(7-2)*180 = 900°
b. 13-gon
no. of side =13
The sum of the interior angles of a 13-gon:
(13-2)*180 = 1980°
2.
The sum of the interior angles of a convex polygon is 1260°,
where n is the number of sides.
In this case, we have
1260 = (n-2)*180
1260/180=n-2
n-2=7
n=7+2
n=9
Therefore, the polygon has 9 sides and is classified as a nonagon.
3
Which expression is equivalent to -x--xy?
2x-xy?
4
x(3-y)
4x(3-y)
x(3+y)
4x(3 + y)
The expression equivalent to -x--xy is 4x(3 + y).
To simplify the expression -x--xy, we can apply the rules of combining like terms and distribute the negative sign.
-x - (-xy)
Removing the double negative:
-x + xy
Factoring out the common factor of x:
x(-1 + y)
Now, let's compare the simplified expression with the given options:
Option 1: 2x - xy
This expression is not equivalent to -x - (-xy) as it includes an additional term of 2x.
Option 2: x(3 - y)
This expression is equivalent to the simplified expression x(-1 + y), as it represents the distribution of x over the terms inside the parentheses.
Option 3: 4x(3 - y)
This expression is not equivalent to -x - (-xy) as it includes the constant term 4.
Option 4: x(3 + y)
This expression is not equivalent to -x - (-xy) as it includes the positive sign before the y term.
Option 5: 4x(3 + y)
This expression is not equivalent to -x - (-xy) as it includes the constant term 4 and the positive sign before the y term.
From the given options, the expression that is equivalent to -x - (-xy) is:
Option 2: x(3 - y).
For similar question on expression.
https://brainly.com/question/723406
#SPJ8
Which exponential equation is e
quivalent to the logarithmic equation below? log=200 a
A. 200 = 10
B. 200¹0 = a
C. a¹0 = 200
D. 10 = 200 SUBMIT
The exponential equation a¹⁰ = 200 is equivalent to the logarithmic equation Log = 200 a.
Which rule of logarithms should we use here?The rule of logarithms that we should use here is given below:
[tex]\log \text{x} = \text{a} \iff 10^{\text{a}} = \text{x}[/tex]
We can find the equivalent exponential equation below:The given expression is Log = 200 a.
We can follow the rule log x = a ⇔ 10^a = x to convert this logarithmic equation to an exponential one.
Log = 200 a can be rewritten as a¹⁰ = 200
Therefore, we have found that the exponential equation a¹⁰ = 200 is equivalent to the logarithmic equation Log = 200 a.
To know more on logarithms, refer:
https://brainly.com/question/32351461
Mrs. Rodriquez has 24 students in her class. Ten of the students are boys. Jeff claims that the ratio of boys to girls in this class must be 5:12. What is Jeff’s error and how can he correct it?
Jeff found the ratio of the number of boys to the total number of students. He needed to first find that there are 14 girls to get a ratio of 10:14 or 5:7.
Jeff found the ratio of the number of boys to the total number of students. He needed to first find that there are 14 girls. The ratio would be 14:10 or 7:5.
Jeff did not write the ratio in the correct order. He should have written it as 24:10.
Jeff did not write the ratio in the correct order. He should have written it as 12:5.\
Step-by-step explanation:
24-10=14. So the girls are 14 the ratio is 10:14 =5:7
what is the value of m
Answer:
114°--------------------------
Angle G is central angle and angle E is inscribed angle, both with same endpoints.
According to the inscribed angle theorem the inscribed angle is half of the central angle.
Hence the central angle G measures:
m∠G = 2(m∠E)m∠G = 2(57°)m∠G = 114°Listed are 30 ages for Academy Award-winning best actors in order from smallest to largest.
12 14
22 23
35 37
15 20 21
26 28
38 39
47 52
53 55
58 60
61 66 70
72 73 75 78 79
784854
34
40
Find the percentile for age 40.
Answer:
Step-by-step explanation:
12 14 33 35========1,234,000,124,581.
Find the measure of the indicated arc
Answer:
80
Step-by-step explanation:
Two mechanics worked on a car. The first mechanic charged $75
per hour, and the second mechanic charged $95
per hour. The mechanics worked for a combined total of 20
hours, and together they charged a total of $1800
. How long did each mechanic work?
The first mechanic worked for 12 hours, and the second mechanic worked for 8 hours.
Let's assume the first mechanic worked for x hours. Since the first mechanic charged $75 per hour, their earnings can be represented as 75x dollars.
Similarly, the second mechanic worked for (20 - x) hours, and at a rate of $95 per hour, their earnings can be represented as 95(20 - x) dollars.
According to the problem, the combined earnings of both mechanics are $1800. Therefore, we can write the equation:
75x + 95(20 - x) = 1800
Simplifying this equation, we get:
75x + 1900 - 95x = 1800
-20x = -100
x = 5
Substituting x back into the equation, we find that the first mechanic worked for 5 hours, and the second mechanic worked for (20 - 5) = 15 hours.
Therefore, the first mechanic worked for 5 hours, and the second mechanic worked for 15 hours.
for such more questions on worked
https://brainly.com/question/30630608
#SPJ8
Hcf of two expressions is (x + 1) and lcm is (x^3+ x^2 – x – 1). if one expression is (x^2 - 1), then what is the second expression?
After solving by formula the second expression is y = [tex](x^2 + 1)[/tex].
We know that the product of the HCF and LCM of two numbers is equal to the product of the numbers themselves. In this case, we can apply the same principle to expressions:
HCF * LCM = (x + 1) * [tex](x^3+ x^2 - x - 1)[/tex]
the first number is [tex]x^{2} -1\\[/tex] and let the second number is y
Therefore, we can set up the equation:
(x + 1) * [tex](x^3+ x^2 - x - 1)[/tex] = [tex]x^{2} -1\\[/tex] * y
[tex]x^4 + x^3 + x^2 - x^3 - x^2 + x - x - 1 = x^2 - 1 * y[/tex]
Simplifying:
[tex]x^4 - 1 = (x^2 - 1) * y[/tex]
Now, we can divide both sides by [tex](x^2 - 1)[/tex]:
[tex](x^4 - 1) / (x^2 - 1) = y[/tex]
Notice that [tex](x^2 - 1)[/tex]can be factored as (x + 1)(x - 1). Therefore, we can simplify further:
[tex](x^4 - 1) / ((x + 1)(x - 1)) = y[/tex]
The expression [tex](x^4 - 1)[/tex] can be factored using the difference of squares:
[tex](x^4 - 1) = (x^2 + 1)(x^2 - 1)[/tex]
[tex][(x^2 + 1)(x^2 - 1)] / ((x + 1)(x - 1)) = y[/tex]
Now, we can cancel out the common factor [tex](x^2 - 1)[/tex] from the numerator and denominator:
[tex]y =(x^2 + 1)[/tex]
know more about LCM and HCF click here;
https://brainly.com/question/26431349
An office manager needs to cover the front face of a rectangular box with a label for shipping. the vertices of the face are (-5, 8), (3, 8), (-5, -4), and (3, -4). what is the area, in square inches, of the label needed to cover the box?
98 in2
48 in2
40 in2
20 in2
The area of the label needed to cover the box is 96 square inches. None of the provided answer options (98 in², 48 in², 40 in², or 20 in²) match the calculated area of 96 in².
We must determine the area of the rectangle formed by the provided vertices in order to determine the size of the label required to completely cover the front face of the rectangular box.
Let's label the vertices as follows:
A = (-5, 8)
B = (3, 8)
C = (-5, -4)
D = (3, -4)
The formula to calculate the area of a rectangle given the coordinates of its vertices is:
Area = |(x2 - x1) * (y2 - y1)|
Using the given coordinates, we can calculate the area:
Area = |(3 - (-5)) * (8 - (-4))|
Simplifying the expression:
Area = |(3 + 5) * (8 + 4)|
Area = |8 * 12|
Area = 96 square units
for such more question on area
https://brainly.com/question/15822332
#SPJ8
What’s the value of each variable in the parallelogram
Answer:
m = 5
n = 12
Step-by-step explanation:
The parallel sides of a parallelogram are equal.
m +1 = 6 so m = 6 -1 = 5, and n = 12
Answer:
m = 5 , n = 12
Step-by-step explanation:
the opposite sides of a parallelogram are congruent , then
m + 1 = 6 ( subtract 1 from both sides )
m = 5
and
n = 12
I NEED HELP 30 POINT!!
Answer:
35
Step-by-step explanation:
You can easily graph this in desmos for a visual understanding.
The slope of a line is received by (y2-y1)/(x2-x1). Assuming that Days is X and the cost is Y, we get (160-90)/(4-2), and it makes 70/2, which equates out to 35. Because the prices become more and more expensive, the slope is positive 35.
The new corporate logo created by the design engineers at Magic Motors is shown in the accompanying diagram. If the measure of arc AC = 80°, what is the mLB?
The measure of angle LB is 40°.
To find the measure of angle LB, we can use the fact that the measure of an inscribed angle is half the measure of its intercepted arc.
In this case, we are given that the measure of arc AC is 80°, so we can conclude that the measure of angle LB is half of that.
Since angle LB is an inscribed angle that intercepts arc AC, we can write the equation:
mLB = 1/2 [tex]\times[/tex] mAC
Substituting the given value, we have:
mLB = 1/2 [tex]\times[/tex] 80°
mLB = 40°
Therefore, the measure of angle LB is 40°.
In the context of the corporate logo, angle LB represents a portion of the circular shape of the logo.
By knowing the measure of arc AC, we can determine the measure of angle LB, which helps in accurately representing the logo in terms of angles and proportions.
This information is crucial for design and branding purposes, as it ensures consistency and precision in the presentation of the logo across various media and materials.
Overall, understanding the measures of angles and arcs in the logo design allows for effective communication and replication of the logo's visual elements, ensuring brand recognition and consistency in its representation.
For similar question on angle.
https://brainly.com/question/1309590
#SPJ8
Find the area of the triangle below.
Be sure to include the correct unit in your answer.
15 ft
5 ft
22 ft
Answer:
What is the base, height? Is it a right triangle?
If PQ¯ is tangent to circle R at point Q, and PS¯ is tangent to ⊙R at point S, what is the perimeter of quadrilateral PQRS?
The perimeter of PQRS would depend on the lengths of the tangent segments and the lengths of the intercepted arcs. Without specific measurements, we cannot determine the precise perimeter.
To determine the perimeter of quadrilateral PQRS, we need more information about the lengths of the sides or the relationship between the sides and angles. Without specific measurements or additional details, we cannot calculate the exact perimeter of the quadrilateral.
However, we can provide some general information.Since PQ¯ is tangent to circle R at point Q, it is perpendicular to the radius drawn from the center of the circle to point Q. Similarly, PS¯ is tangent to circle R at point S, so it is perpendicular to the radius drawn to point S.
The quadrilateral PQRS is formed by the tangents PQ¯ and PS¯ along with the two arcs intercepted by these tangents on the circle R.
For more such questions on perimeter
https://brainly.com/question/12567822
#SPJ8
Give me Author/year in mathemathics,?
Answer:
Isaac Newton (late 17th century) - Newton made significant contributions to calculus and mathematical physics. His book "Philosophiæ Naturalis Principia Mathematica" laid the groundwork for classical mechanics.
Var(X), where X is any random variable, is equals to:
Select one:
a. E(X2)-(E(X))2
b. None of the above
c. (E(X))2
d. E(X2)
e. E(X2)+(E(X))2
Note: Answer E is NOT the correct answer. Please find the correct answer. Any answer without justification will be rejected automatically.
The correct answer is option (a): Var(X) = E(X^2) - (E(X))^2.
The variance of a random variable X is defined as the average of the squared differences between each value of X and its expected value (E(X)). Mathematically, it can be expressed as Var(X) = E((X - E(X))^2).
Expanding the squared term, we have Var(X) = E(X^2 - 2XE(X) + (E(X))^2). Distributing and rearranging, we get Var(X) = E(X^2) - 2E(X)E(X) + (E(X))^2. Simplifying, we obtain Var(X) = E(X^2) - (E(X))^2.
How many solutions does this system of equations have?
-x+7
= -2x³ + 5x² + x - 2
O A.
0 в.
OC.
D.
no solution
1 solution
2 solutions
3 solutions
Reset
Next
The system of equation: -x + 7 = -2x³ + 5x² + x - 2 has three solutions
The correct answer is option D.
To solve the system of equations:
-x + 7 = -2x³ + 5x² + x - 2
We need to simplify and rearrange the equation to find its solutions. Let's start by combining like terms:
-x + 7 = -2x³ + 5x² + x - 2
Simplifying the left side:
7 = -2x³ + 5x² - x - 2
Next, let's arrange the equation in descending order of the variable's exponent:
-2x³ + 5x² - x - 2 = 7
Now, let's move all terms to one side of the equation to set it equal to zero:
-2x³ + 5x² - x - 2 - 7 = 0
Simplifying further:
-2x³ + 5x² - x - 9 = 0
To determine the number of solutions, we can analyze the degree of the equation. Since it is a cubic equation, it can have a maximum of three real solutions.
The given system of equations is:
-x + 7 = -2x³ + 5x² + x - 2
To find the solutions, we need to set the equation equal to zero. Let's rearrange the terms:
2. -2x³ + 5x² - x - 9 = 0
Now, we can try to factor or use numerical methods to solve the equation. However, factoring a cubic equation can be complex and time-consuming. In this case, we'll use numerical methods to approximate the solutions.
One common numerical method is the Newton-Raphson method, which involves making an initial guess for the solutions and iterating to converge on a more accurate solution.
Using numerical software or calculators, we can find the approximate solutions of the equation as follows:
x ≈ -1.607, x ≈ 1.279, and x ≈ 3.328
For more such information on: system of equation:
https://brainly.com/question/13729904
#SPJ8
Si 3,390 kg de plomo ocupan un volumen de 0.3m3. Encuentra la densidad del plomo
The density of lead is 11.3 kg/m³.
The density of lead can be calculated by using the formula D = M/V, where D represents density, M represents mass and V represents volume. The density of lead is the ratio of the mass of lead to the volume occupied by it.
Density of Lead:
Given that the lead has a mass of 3.390 kg and occupies a volume of 0.3 m³.
Density of Lead (D) = Mass of Lead (M) / Volume of Lead (V)D = 3.390 kg / 0.3 m³D = 11.3 kg/m³
Therefore, the density of lead is 11.3 kg/m³.
For more such questions on density, click on:
https://brainly.com/question/26364788
#SPJ8
NO LINKS!! URGENT HELP PLEASE!!
Please help with #3
Answer: See the flowchart proof below.
Explanation:
The given info is indicated by the marked angles. We also use the reflexive property to say that BG = BG. After that we use the ASA (angle side angle) property to prove the triangles are congruent. The triangles are mirrored clones of one another. The mirror line is segment BG.
A flowchart proof that proves that the two triangles are congruent is shown in the image below.
What are the properties of similar triangles?In Mathematics and Geometry, two triangles are said to be similar when the ratio of their corresponding side lengths are equal and their corresponding angles are congruent.
In this context, we can prove that triangle BIG is congruent with triangle BAG by completing the two-column proof shown above with the following reasons:
Statements Reasons
∠IBG ≅ ∠ABG Given
∠IGB ≅ ∠AGB Given
BG ≅ BG Reflexive property
ΔBIG ≅ ΔBAG ASA Congruence
Based on the angle, side, angle (ASA) similarity theorem, we can logically deduce that triangle BIG and triangle BAG are both congruent.
Read more on triangle here: brainly.com/question/9858556
#SPJ1
write and equation for the nth term of the geometric sequence for 2,8,32,128
then find a6 round to the nearest tenth if necessary.
The sixth term of the geometric sequence is 2048.
The given geometric sequence is 2, 8, 32, 128. We can observe that each term is obtained by multiplying the previous term by 4. Therefore, the common ratio (r) of the sequence is 4.
The formula for the nth term (an) of a geometric sequence is given by:
an = a1 * r^(n-1)
where a1 is the first term and r is the common ratio.
For this sequence, a1 = 2 and r = 4. Plugging in these values into the formula, we get:
an = 2 * 4^(n-1)
To find a6, we substitute n = 6 into the formula:
a6 = 2 * 4^(6-1)
= 2 * 4^5
= 2 * 1024
= 2048
For more such questions on geometric,click on
https://brainly.com/question/19241268
#SPJ8
The Probable question may be:
Write an equation for the nth term of the geometric sequence 2, 8, 32, 128,
Then find a6. Round to the nearest tenth if necessary.
a = 5×4 X
a1 = n-1 X
A merchant could sell one model of digital cameras at list price and receive $432 for all of them. If he had three more cameras, he could sell each one for $12 less and still receive $432. Find the list price of each camera.
The list price of each camera is approximately $26.59.
Let's assume the list price of each camera is represented by 'x'.
According to the given information, the merchant sold a certain number of cameras at the list price and received a total of $432. This can be expressed as:
Number of cameras * List price = Total revenue
x * Number of cameras = $432
Now, if the merchant had three more cameras and sold each one for $12 less, the new selling price would be (x - $12). The total revenue would still be $432. This can be expressed as:
(New number of cameras) * (New selling price) = Total revenue
(x + 3) * (x - $12) = $432
Expanding the equation:
x^2 - $12x + 3x - $36 = $432
x^2 - 9x - $468 = 0
To solve this quadratic equation, we can factor it or use the quadratic formula. Factoring this equation may not yield integer solutions, so we'll use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -9, and c = -468. Plugging these values into the quadratic formula:
x = (-(-9) ± √((-9)^2 - 4 * 1 * (-468))) / (2 * 1)
x = (9 ± √(81 + 1872)) / 2
x = (9 ± √(1953)) / 2
Calculating the square root of 1953 gives us approximately 44.17. Therefore, the two possible values for x are:
x1 = (9 + 44.17) / 2 ≈ 26.59
x2 = (9 - 44.17) / 2 ≈ -17.59
Since the price of a camera cannot be negative, we discard x2. Therefore, the list price of each camera is approximately $26.59.
For more question on price visit:
https://brainly.com/question/29023044
#SPJ8
Maria wrote the equation of a line that has a slope of Four-thirds and passes through point (3, 5). Which statement is true?
The y-intercept is 4.
The slope-intercept equation is y = four-thirds x + 1.
The point-slope equation is y minus 3 = four-thirds (x minus 5).
The line also passes through the point (0, –2)
Answer:
The slope-intercept equation is y = four-thirds x + 1
Step-by-step explanation:
slope: [tex]\frac{4}{3}[/tex]
point: (3, 5)
y = mx + b
[tex]y=\frac{4}{3}x+b[/tex]
[tex]5=\frac{4}{3}(3)+b[/tex]
[tex]5=4+b[/tex]
[tex]b=5-4[/tex]
[tex]b=1[/tex]
Equation: [tex]y=\frac{4}{3}x+1[/tex]
[tex]-2=\frac{4}{3}(0)+1[/tex]
[tex]-2=0+1[/tex]
[tex]-2\neq 1[/tex]
Thus, the second statement is true!
help please its due in 50 minutes ill mark brainliest answer too and no need to show work
The function f(x) and the inverse function h(x) for which the function f(x) is defined by the values (0,3), (1,1), (2,-1) are f(x) = 3 -2x and h(x) = [tex]\frac{3 - x}{2}[/tex]
What is a Function?A function is a rule which takes each member x of a set and assigns, or maps it to the same value y known at its image.x → Function → yA letter such as f, g or h is often used to stand for a function.
The Function which squares a number and adds on a 3, can be written as f(x) = x2+ 5.
Let the linear function be f(x) = mx + cwhen x = 0, f(x) = 33 = m(0) + cTherefore, c = 3
when x = 1, f(x) = 11 = m(1) + c but c = 31 = m + 3
Therefore m = 1 - 3, which is -2
The linear equation f(x) = 3 - 2x
To solve for inverse function h(x)let y = 3 - 2xmaking x the subject of the equation2x = 3 - yx =[tex]\frac{3 - y}{2}[/tex]replacing x with h(x) and y with x, we haveh(x) = [tex]\frac{3 - x}{2}[/tex]
Learn more about inverse functions: https://brainly.com/question/3831584
#SPJ4
What are the values of x and y?
A) x = 18√3; y = 9√3
B) x = 9; y = 9√3
C) x = 9√3; y = 9
D) x = 9√2; y = 9
The values of x and y are 9√3 and 9. Thus, option C is the answer.
From the figure, we know that angle A = 60°, angle C = 30° and side AC =18 units.
We have to use trigonometric ratios to find the values of x and y.
sin30° = Opposite side/Hypotenuse
But, we also know that sin30° = 1/2
Substituting the value in the above equation, we get
1/2 = y/18
Thus, the value of y = 18/2 = 9.
Now, sin60° = Opposite Side/ Hypotenuse
sin60° = √3/2
Substituting the value, we get
√3/2 = x/18
Thus, x = 9√3.
Therefore, the values of x and y in the given triangle are 9√3 and 9.
Read more about Trigonometry ratios here:
https://brainly.com/question/13276558
what is $2^{-3}\cdot 3^{-2}$.
Answer:
[tex]\frac{1}{72}[/tex]
Step-by-step explanation:
[tex]2^{-3}\cdot 3^{-2}=\frac{1}{2^3}\cdot\frac{1}{3^2}=\frac{1}{8}\cdot\frac{1}{9}=\frac{1}{72}[/tex]
B
C
W
A
E
Use the given diagram to answer the question,
Which line is the intersection of two of the planes
shown?
Which line intersects one of the planes shown?
Which line has points on three of the planes shown?
G
The line that intersects two of the planes is : Line X
The line that intersects one of the planes is : Line Z
The line that that has points on three of the planes shown is Line Y
How to find the intersection line on the plane?From this figure you can see that there are 3 different levels and 3 different lines. One line intersects two planes (line X), another line intersects only one plane (line Z). Line Y, on the other hand, has points in all three planes.
A line y has points A and B in all three planes.
A plane is simply a plane that can be intersected by a straight line connecting any two points on the plane.
Therefore, we can conclude from the figure
A line that intersects two planes is: line x
A line that intersects one of the planes is: line Z
A line with points on the three planes shown is Line Y.
Read more about Intersection Line at: https://brainly.com/question/1655368
#SPJ1
how many pattern block rhombuses would 4 triangles create?
With 4 triangles, you can create a total of 3 pattern block rhombuses, depending on their arrangement.
To determine the number of pattern block rhombuses that can be created using 4 triangles, let's start by understanding the properties and arrangement of these shapes.
Pattern block rhombuses are a type of geometric shape commonly used in mathematics education. Each rhombus is made up of 2 triangles, specifically two congruent (equal) acute triangles. The triangles are placed together in a specific way to form the rhombus shape.
When 4 triangles are used, they can be arranged in different configurations to create different numbers of pattern block rhombuses. Let's explore the possibilities:
Arrangement 1:
In this arrangement, you can create 2 pattern block rhombuses. The triangles are placed side by side, with two triangles forming one rhombus, and the other two triangles forming another rhombus.
Arrangement 2:
In this arrangement, you can create 1 pattern block rhombus. The triangles are placed on top of each other, forming a larger triangle. Since a pattern block rhombus requires two acute triangles, only one rhombus can be formed in this case.
So, with 4 triangles, you can create a total of 3 pattern block rhombuses, depending on how the triangles are arranged.
for such more question on triangles
https://brainly.com/question/17335144
#SPJ8
How can identify which form of verb is appropriate to use in paragraph among present simple, past simple, present perfect and past perfect tense.
To determine the appropriate verb form, consider the time of the action, its relation to the present or past events, and whether it is a general fact, completed action, ongoing situation, or action preceding another. Choose the verb tense that accurately conveys the intended meaning in the paragraph.
To determine which form of verb is appropriate to use in a paragraph, you need to consider the context and the intended meaning of the sentence or paragraph. Here are some general guidelines for using different tenses:
Present Simple Tense:
Use the present simple tense to talk about general facts, habits, routines, and permanent situations.
Example: "The sun rises in the east."
Past Simple Tense:
Use the past simple tense to talk about completed actions or events in the past.
Example: "She studied abroad last year."
Present Perfect Tense:
Use the present perfect tense to talk about past actions or events that have a connection to the present or when the exact time of the action is not specified.
Example: "I have visited Paris several times."
Past Perfect Tense:
Use the past perfect tense to talk about an action or event that happened before another past action or event.
Example: "She had already eaten dinner when I arrived."
To determine which tense to use, consider the timeline of events and the relationship between them. If you are referring to a specific time in the past, the past simple tense might be appropriate. If you want to emphasize the connection to the present, the present perfect tense might be suitable. If you need to establish a sequence of events in the past, the past perfect tense could be used.
However, it's important to note that these guidelines are not absolute, and there can be variations based on specific contexts and writing styles. It's always best to consult grammar rules and consider the meaning and context of your sentences to choose the most appropriate verb tense for your paragraph.
for such more question on verb form
https://brainly.com/question/10271166
#SPJ8
Triangle 1 103, 32 Triangle 2 103,25 are these Triangle similar
Triangle 1 and Triangle 2 are not similar triangles.
To determine if two triangles are similar, we need to compare their corresponding sides and angles. In this case, we have Triangle 1 with vertices (10, 3) and (32, 10), and Triangle 2 with vertices (10, 3) and (25, 10). Let's compare the corresponding sides and angles:
1. Side lengths:
The length of side AB in Triangle 1 is [tex]√[(32 - 10)^2 + (10 - 3)^2] = √[22^2 + 7^2] = √(484 + 49) = √533.[/tex]
The length of side AB in Triangle 2 is [tex]√[(25 - 10)^2 + (10 - 3)^2] = √[15^2 + 7^2] = √(225 + 49) = √274.[/tex]
2. Angle measurements:
To compare the angle measurements, we need to find the slopes of the sides of the triangles.
The slope of side AB in Triangle 1 is (10 - 3)/(32 - 10) = 7/22.
The slope of side AB in Triangle 2 is (10 - 3)/(25 - 10) = 7/15.
Based on the side lengths and angle measurements, we can see that the side lengths are different and the slopes of the sides are different. Therefore, Triangle 1 and Triangle 2 are not similar triangles.
Similar triangles have corresponding sides that are proportional in length and corresponding angles that are congruent. In this case, the side lengths and angles of Triangle 1 and Triangle 2 are not proportional or congruent, indicating that the triangles are not similar.
for more such question on Triangle visit
https://brainly.com/question/1058720
#SPJ8
6.) Find the area of the circle shown.
a.
16 m²
b.
25 m²
c.
d.
50 m²
101 m²
7.) Find the perimeter of the circle shown in the previous question.
a. 12.5 m
b.
25 m
C. 50 m
d. 101 m
8.) Find the area of the figure. Assume right angles
a. 122u²
b. 126u²
c. 114u²
d. 156u²
9.) Find the geometric mean between 8 and 25.
a. 33
b. 17
c. 10√2
d. 20
13
10.) The perimeter of an equilateral triangle is 18. Find the measure of the altitude.
a. 3
b. 6
с 3V2
d. 3√3
Solution
verified
Verified by Toppr
The circumference of circle is 2πr=176
2×
7
22
×r=176
r=176×
22
7
2
1
r=7×4=28cm
Area of circle is πr
2
=
7
22
×28×28=88×28=2464cm
2