Metal sphere A has a charge of -2 units and an identical sphere B has a charge of -4 units. If the spheres are brought into contact with each other and then separted the charge on sphere b will be

Answers

Answer 1

Answer:

 q1 = q₂=  -3

therefore each sphere has the same charge of -3 untis

Explanation:

The metallic spheres have mobile charge, so when the two spheres come into contact the total charge

           Q_total = q₁ + q₂

           Q_total = -2 -4

   

          Q_total = -6 units

it is distributed in between the two spheres evenly since the charges of the same sign repel each other.

When the spheres separate each one has

            q₁ = -6/2

            q1 = q₂=  -3

therefore each sphere has the same charge of -3 untis


Related Questions

Pluto's diameter is approximately 2370 km, and the diameter of its satellite Charon is 1250 km. Although the distance varies, they are often about 1.96×10^4 km apart, center-to-center.
Assuming that both Pluto and Charon have the same composition and hence the same average density, find the location of the center of mass of this system relative to the center of Pluto.

Answers

The center of mass of this system is located roughly 9,578 km away from Pluto's center.

The distance between Pluto and its satellite Charon varies, but it is usually about 1.96 × 104 km apart, center-to-center. Pluto's diameter is roughly 2,370 km, while the diameter of its satellite Charon is 1,250 km.

Given that both Pluto and Charon are made up of the same material and thus have the same average density, we need to find the location of the center of mass of this system in relation to the center of Pluto.

The formula for the location of the center of mass is:

Rcm = (m1r1 + m2r2) / (m1 + m2)

Where, Rcm represents the position of the center of mass, m1 and m2 represent the masses of the objects, and r1 and r2 represent the position vectors of the objects from the reference point.

We can take Pluto as the reference point for our system, and let's call it m1. Charon, on the other hand, is our second object, which we can refer to as m2.

To calculate the position vector for Pluto, we need to set r1 to zero, since Pluto is the reference point. Therefore, r2 will be the only position vector available, with a value of 1.96 × 104 km (as given in the problem).

We must first compute the masses of the two objects before we can continue. Substituting the given values into the formula to find the position of the center of mass of the system.

Rcm = (m1r1 + m2r2) / (m1 + m2)Rcm = (m1 * 0 + m2 * 1.96 × 104) / (m1 + m2)

Since the average densities of the two objects are equal, we can determine their masses using their volumes (since density = mass/volume), which are proportional to the cube of their radii (since volume = 4/3πr³).

m1 = (4/3πr1³) * ρm2 = (4/3πr2³) * ρ

Where, ρ represents the density of the two objects.

r1 = Pluto's radius = diameter/2 = 2370/2 = 1185 kmr2 = Charon's radius = diameter/2 = 1250/2 = 625 km

Substituting these values into the above formulas:

m1 = (4/3π × 1185³) × ρm2 = (4/3π × 625³) × ρ

Since both objects have the same average density, we can cancel out the density from both equations.

m1 = (4/3π × 1185³) = 7.153 × 1018 kgm2 = (4/3π × 625³) = 1.787 × 1018 kg

Now, substituting these values into the center of mass formula to obtain the location of the center of mass of the Pluto-Charon system.

Rcm = (m1r1 + m2r2) / (m1 + m2) Rcm = (7.153 × 1018 kg × 0 + 1.787 × 1018 kg × 1.96 × 104 km) / (7.153 × 1018 kg + 1.787 × 1018 kg) Rcm = 9578 km

Know more about center of mass here:

https://brainly.com/question/8662931

#SPJ11

What is the voltage of each light bulb individually?

Answers

The voltage drop in each light bulb is determined as; V₁ = 96 V and V₂ = 24 V

What is the voltage of each light bulb?

The voltage of each light bulb is calculated by applying ohms law as follows;

V = IR

where;

I is the current flowing in each light bulbR is the total resistance of the bulbs.

The total resistance of the bulbs is calculate das;

R = 480 ohms + 120 ohms

R = 600 ohms

The current flowing in the bulbs;

I = V/R

I = 120 / 600

I = 0.2 A

The voltage drop in each light bulb;

V₁ = IR₁ = 0.2 x 480 = 96 V

V₂ = IR₂ = 0.2 x 120 = 24 V

Learn more about voltage drop here: https://brainly.com/question/2491461

#SPJ1

an airplane propeller is rotating at 300 rpm. (a) compute the propeller’s angular velocity in rad/s. (b) how many seconds does it take for the propeller to turn through 45º?

Answers

An airplane propeller is rotating at 300 rpm.

(a) The propeller’s angular velocity is 10π rad/s.

(b) It take 0.25 seconds for the propeller to turn through 45º.

a) To compute the propeller's angular velocity in rad/s, we can convert from revolutions per minute (rpm) to radians per second (rad/s).

Angular velocity in rpm = 300 rpm

To convert to rad/s, we use the conversion factor:

1 revolution = 2π radians

Angular velocity in rad/s = (Angular velocity in rpm) * (2π radians / 1 revolution) * (1 minute / 60 seconds)

Angular velocity in rad/s = (300 rpm) * (2π radians / 1 revolution) * (1 minute / 60 seconds)

Angular velocity in rad/s = 10π rad/s

Therefore, the propeller's angular velocity is 10π rad/s.

(b) To find the time it takes for the propeller to turn through 45º, we can use the formula:

Time = Angle / Angular velocity

Angle = 45º = (45/180)π radians

Angular velocity = 10π rad/s

Time = (45/180)π radians / (10π rad/s)

Time = (45/180) * (1/10) seconds

Time = 0.25 seconds

Therefore, it takes 0.25 seconds for the propeller to turn through 45º.

To know more about angular velocity here

https://brainly.com/question/30237820

#SPJ4

A 10 kg box is pulled along a horizontal surface by a force of 40.0 N which is applied at an angle of 30.0° with respect to the horizontal. The coefficient of kinetic friction between the surfaces is 0.30. What is the horizontal acceleration of the box?

Answers

A 40.0 N force at 30.0° is applied to a 10 kg box on a horizontal surface with kinetic friction coefficient of 0.30. The box's horizontal acceleration is roughly 0.524 m/s².

To find the horizontal acceleration of the box, we need to analyze the forces acting on it and apply Newton's second law of motion.

Given:

Mass of the box (m) = 10 kg

Applied force (F) = 40.0 N

Angle of applied force (θ) = 30.0°

Coefficient of kinetic friction (μk) = 0.30

First, we need to resolve the applied force into horizontal and vertical components. The horizontal component of the applied force can be calculated as:

[tex]F_horizontal[/tex] = F * cos(θ)

[tex]F_horizontal[/tex] = 40.0 N * cos(30.0°)

            ≈ 34.64 N

The vertical component of the applied force can be calculated as:

[tex]F_vertical[/tex] = F * sin(θ)

[tex]F_vertical[/tex] = 40.0 N * sin(30.0°)

          = 20.0 N

The force of kinetic friction ([tex]F_friction[/tex]) can be calculated using the equation:

[tex]F_friction[/tex] = μk * N

where N is the normal force exerted by the surface on the box. In this case, since the box is on a horizontal surface, the normal force (N) is equal to the weight of the box:

N = m * g

where g is the acceleration due to gravity (approximately 9.8 m/s²).

N = 10 kg * 9.8 m/s²

  = 98 N

Substituting the values, we can calculate the force of kinetic friction:

[tex]F_friction[/tex] = 0.30 * 98 N

          = 29.4 N

Now, we can calculate the net horizontal force acting on the box:

Net horizontal force = [tex]F_horizontal - F_friction[/tex]

Net horizontal force = 34.64 N - 29.4 N

                    = 5.24 N

Finally, we can apply Newton's second law of motion to find the horizontal acceleration (a):

Net horizontal force = m * a

5.24 N = 10 kg * a

a ≈ 0.524 m/s²

Therefore, the horizontal acceleration of the box is approximately 0.524 m/s².

To know more about the horizontal component refer here :

https://brainly.com/question/32317959#

#SPJ11

if the systolic pressures of two patients differ by 10 millimeters, by how much would you predict their diastolic pressures to differ? round the answer to three decimal places.

Answers

Systolic pressure variation is a non-invasive method to assess fluid responsiveness and volume status. In a positive pressure breath, it is the difference between the maximum and minimum systolic blood pressure values.

Thus, A positive pressure breath begins with a brief rise in systolic blood pressure (delta up), which is swiftly followed by a fall in systolic blood pressure (delta down) after four or five beats.

Because of decreased preload to the right ventricle, increased afterload to the right ventricle, and decreased afterload to the left ventricle, increases in intrathoracic pressure during positive pressure ventilation result in a decrease in systolic blood pressure.

When there is hypovolemia, this decline is higher. Hypovolemia has been identified using systolic pressure variations in response to respiratory fluctuation.

Thus, Systolic pressure variation is a non-invasive method to assess fluid responsiveness and volume status. In a positive pressure breath, it is the difference between the maximum and minimum systolic blood pressure values.

Learn more about Systolic pressure, refer to the link:

https://brainly.com/question/15175692

#SPJ1

The height, h meters, of a soccer ball kicked directly upward can be modeled by the equation h(t)=-4.9t2 + 13.1t+1, where t is the time, in seconds, after the ball was kicked.

Answers

The soccer ball is 38/5 or 7.6 meters high after 2 seconds.

How to solve for the height

The equation you've given is a quadratic function that models the height of the soccer ball over time, considering gravitational pull.

To find the height of the ball after 2 seconds, we substitute t = 2 into the equation:

h(t) = -4.9t² + 13.1t + 1.

Therefore,

h(2) = -4.9*(2)² + 13.12 + 1

= -4.94 + 26.2 + 1

= -19.6 + 26.2 + 1

= 7.6 meters.

So, the soccer ball is 7.6 meters high after 2 seconds.

Read more on height here:https://brainly.com/question/1739912

#SPJ1

The height, h meters, of a soccer ball kicked directly upward can be modeled by the equation h(t)=-4.9t2 + 13.1t+1, where t is the time, in seconds, after the ball was kicked.

How high is the ball after 2 seconds?

a worker stands still on a roof sloped at an angle of 27° above the horizontal. he is prevented from slipping by a static frictional force of 320 n. find the mass of the worker.

Answers

The mass of the worker is approximately 720.65 kg. To find the mass of the worker, we can use the equation relating static friction and the normal force on an inclined plane.

To find the mass of the worker, we can use the equation relating static friction and the normal force on an inclined plane.

The static frictional force (F_friction) acting on the worker is given as 320 N.

The force of gravity acting on the worker can be decomposed into two components: the normal force (N) perpendicular to the surface of the roof and the gravitational force (mg) acting vertically downward.

The normal force is equal in magnitude and opposite in direction to the component of the gravitational force perpendicular to the roof. This can be calculated as N = mg * cos(θ), where θ is the angle of the roof.

Since the worker is in equilibrium and not slipping, the static frictional force is equal in magnitude and opposite in direction to the component of the gravitational force parallel to the roof. This can be calculated as F_friction = mg * sin(θ).

We can rearrange the equation for the static frictional force to solve for the mass (m):

m = F_friction / sin(θ).

Substituting the given values, we have:

m = 320 N / sin(27°) ≈ 720.65 kg.

Therefore, the mass of the worker is approximately 720.65 kg.

To learn more about static friction click here

https://brainly.com/question/30886698

#SPJ11

A small car with mass 0.710 kg travels at constant speed on the inside of a track that is a vertical circle with radius 5.00 m the following figure.(Figure 1)
If the normal force exerted by the track on the car when it is at the top of the track (point B) is 6.00 N, what is the normal force on the car when it is at the bottom of the track (point A)? Express your answer with the appropriate units.
Figure 1
of 1
A
F 28.1
N
5.00 m
Submit
My Answers Give Up
Incorrect; One attempt remaining; Try Again
Provide Feedback
Continue

Answers

The normal force on the car when it is at the bottom of the track (point A) is 28.1 N.

At the bottom of the track (point A), the car is experiencing both its weight (mg) and the centripetal force (mv²/r) directed towards the center of the circular path. The normal force, represented by N, acts perpendicular to the track surface.

To find the normal force at point A, we need to consider the net force acting on the car. The net force is the vector sum of the weight and the centripetal force.

At the bottom of the track, the net force is directed towards the center of the circular path and is given by:

Net force = weight + centripetal force

Net force = mg + (mv²/r)

Since the car is traveling at a constant speed, the net force must be equal to the centripetal force. Therefore:

mv²/r = mg + (mv²/r)

Simplifying the equation, we have:

mv²/r - mv²/r = mg

0 = mg

This means that the net force at point A is equal to zero. Therefore, the normal force (N) at point A must equal the weight of the car, which is given as 28.1 N in the figure. Thus, the normal force on the car at the bottom of the track (point A) is 28.1 N.

To learn more about constant speed, here

https://brainly.com/question/24909693

#SPJ4

Which one of the following statements best explains why convection does not occur in solids? A. The molecules in a solid are not free to move throughout the volume of the solid. B. Molecules in a solid vibrate at a lower frequency than those in a liquid. C. Solids are less compressible than gases. D. Molecules in a solid are more closely spaced than in a gas.

Answers

The molecules in a solid are not free to move throughout the volume of the solid.

In solids, the molecules are closely packed, so there is not enough space for the molecules to move around freely, so they can only vibrate in their place. As a result, the molecules are unable to transfer energy by moving from one place to another, which is required for convection to occur. As a result, convection is not feasible in solids. Option A is correct.

A solid is a substance that retains its original form regardless of its container. Solids go to fluids at specific temperatures. 3. adjective. A solid substance is extremely firm or hard.

Know more about solid, here:

https://brainly.com/question/32439212

#SPJ11

You're driving your pickup truck around a curve that has a radius of 20 m. How fast can you drive around this curve before a steel toolbox slides on the steel bed of the truck?

Answers

To determine the maximum speed at which you can drive around the curve before the steel toolbox slides on the steel bed of the truck, we need to consider the centripetal force required to keep the toolbox in place.

The maximum speed can be calculated using the following equation:

v = √(μ * g * r)

where:

v is the maximum speed,

μ is the coefficient of friction between the toolbox and the truck bed (assumed to be 1 for steel on steel),

g is the acceleration due to gravity (approximately 9.8 m/s²),

and r is the radius of the curve (given as 20 m).

Substituting the values into the equation, we have:

v = √(1 * 9.8 * 20)

v = √(196)

v ≈ 14 m/s

Therefore, the maximum speed at which you can drive around the curve before the steel toolbox slides on the steel bed of the truck is approximately 14 m/s (or about 50 km/h).

To learn more about steel toolbox slides, Click here:

https://brainly.com/question/32683050

#SPJ11

A hammer is thrown upward with a speed of 14 m/s on the surface of planet X where the acceleration due to gravity is 3.5 m/s2 and there is no atmosphere. What is the speed of the hammer after 8.0 s?
Please show steps!

Answers

The surface of planet X where the acceleration due to gravity is 3.5 m/s2 and there is no atmosphere: The speed of the hammer after 8.0 s is 0 m/s.

When the hammer is thrown upward, it experiences the acceleration due to gravity acting in the opposite direction of its motion. In this case, the acceleration due to gravity on planet X is 3.5 m/s².

As the hammer moves upward, its velocity decreases due to the opposing acceleration until it comes to a momentary stop at the highest point of its trajectory. At this point, the hammer momentarily changes its direction and starts to fall back down.

Since the hammer reaches its highest point and comes to a stop after a certain time, its upward motion stops and it starts to fall downward. Thus, after 8.0 seconds, the hammer will have reached its highest point and started to descend, with a velocity of 0 m/s.

Therefore, the speed of the hammer after 8.0 s is 0 m/s.

To know more about acceleration due to gravity, refer here:

https://brainly.com/question/13860566#

#SPJ11

White light is sent through an interface of a 100% (w/v) glycerol solution (n1 = 1.474) and a 20% (w/v) sucrose solution (n2=1.364) At an angle of: A) Theta=33 degree, determine the angle of Theta2 in degrees (*) B) Theta 1 =0degree, determine the angle or Theta2 in degrees (*) A) Theta2= Number degree B) Theta2= Number degree

Answers

A) The angle of theta 2 is approximately 37.19 degrees and B) Theta 2 is 0 degrees.

A) When white light passes through an interface between two media with different refractive indices, it undergoes refraction. In this case, the light is passing from glycerol (n1 = 1.474) to sucrose (n2 = 1.364).

Using Snell's law, which states that n1sin(Theta1) = n2sin(Theta2), we can calculate Theta2.

Given:

n1 = 1.474

n2 = 1.364

Theta1 = 33 degrees

Plugging in the values into Snell's law, we have:

1.474 * sin(33) = 1.364 * sin(Theta2)

Now, solving for Theta2:

sin(Theta2) = (1.474 * sin(33)) / 1.364

Theta2 = arcsin((1.474 * sin(33)) / 1.364)

Using a calculator, we find that Theta2 is approximately 37.19 degrees.

Therefore, A) Theta2 = 37.19 degrees.

B) In this case, Theta1 is 0 degrees, meaning the light is incident perpendicular to the interface.

Using Snell's law:

n1 * sin(Theta1) = n2 * sin(Theta2)

Since sin(0) = 0, the equation simplifies to:

n1 * 0 = n2 * sin(Theta2)

As n1 and sin(0) are both zero, there is no bending or refraction of light. The light passes straight through the interface without changing direction. Therefore, B) Theta2 = 0 degrees.

In conclusion, A) Theta2 is approximately 37.19 degrees, and B) Theta2 is 0 degrees.

To learn more about theta, visit    

https://brainly.com/question/18441622

#SPJ11

a child's far point is 127 cm and her near point is 15.0 cm. in what follows, we assume that we can model the eye as a simple camera, with a single thin lens forming a real image upon the retina. We also assume that the child's eyes are identical, with each retina lying 1.80 cm from the eye's "thin lens." (a) What is the power, P, of the eye when focused upon the far point? (Enter your answer in diopters.) ____ diopters (b) What is the power, P, of the eye when focused upon the near point? (Enter your answer in diopters.) _____ diopters (c) What power in diopters) must a contact lens have in order to correct the child's nearsightedness? (Assume that the object distance is infinite) _________ diopters (d) Is this contact lens a corwerging or diverging lens? O converging O diverging

Answers

(a) The power of the eye, when focused on the far point, is approximately 0.79 diopters.

(b) The power of the eye, when focused on the near point, is approximately 6.67 diopters.

(c) The contact lens must have a power of approximately 5.88 diopters to correct the child's nearsightedness.

(d) The contact lens is a diverging lens. Option B is the correct answer.

The power of the child's eye when focused on the far point is 0.79 diopters, indicating its ability to refract light. When focused on the near point, the eye has a power of 6.67 diopters, reflecting its increased refractive power to bring close objects into focus.

To correct the child's nearsightedness, a contact lens with a power of 5.88 diopters is needed. This lens will diverge the incoming light to compensate for the eye's excessive focusing power, enabling the child to see distant objects clearly. Thus, the contact lens required is a diverging lens, counteracting the eye's nearsightedness and providing the necessary correction.

Learn more about diverging lenses at

https://brainly.com/question/31480064

#SPJ4

the light energy produced from this led bulb came from a coal- fired power plant. what was the original source of the energy found in the coal that was used to produce the electricity for the light bulb? a. the oceans c. sunlight b. atmospheric gases d. uranium 238

Answers

The original source of the energy found in the coal that was used to produce the electricity for the light bulb was the sunlight. Coal was formed from the remains of dead plants and animals that lived millions of years ago. option c.

In ancient times, plants absorbed energy from the sun to form their tissues. Coal is a type of fossil fuel formed from the decayed remains of ancient plants that were buried deep beneath the earth's surface. The energy stored in the plants was converted into coal over time through a process called carbonization. When coal is burned in a coal-fired power plant to produce electricity, the energy stored in the coal is released as heat. This heat is used to create steam, which in turn drives a turbine to produce electricity. The energy that powers the light bulb, therefore, comes from the burning of coal in the power plant. However, the original source of the energy found in the coal was the sunlight that the plants absorbed during their lifetime. Coal-fired power plants are a major source of electricity around the world. They are relatively inexpensive to build and maintain, and coal is abundant in many parts of the world. However, burning coal also releases large amounts of carbon dioxide and other greenhouse gases into the atmosphere, contributing to climate change and other environmental problems.

to know more about carbonization visit:

https://brainly.com/question/30271313

#SPJ11

A driver travels northbound on a highway at a speed of 25.0 m/s. A police car, traveling southbound at aspeed of 36.0 m/s approaches with itssiren producing sound at a frequency of 2500 Hz.
(a) What frequency does the driver observe asthe police car approaches?
_____ Hz
(b) What frequency does the driver detect by after the police carpasses him?
____Hz
(c) Repeat parts (a) and (b) for the case when the police car istraveling northbound.
frequency as the police car approaches
_____ Hz
frequency after the police car passes
____ Hz

Answers

(a) The frequency observed by the driver as the police car approaches is 2978 Hz.

(b) The frequency detected by the driver after the police car passes him is 2022 Hz.

(c) When the police car is traveling northbound, the frequency observed by the driver as the police car approaches is 2022 Hz, and the frequency detected by the driver after the police car passes is 2978 Hz.

The observed frequency of a sound wave is affected by the relative motion between the source of the sound and the observer. In this case, the driver is the observer, and the police car is the source of the sound.

(a) As the police car approaches the driver, the frequency observed by the driver is given by the formula:

Observed frequency = Actual frequency * (Speed of sound + Speed of observer) / (Speed of sound - Speed of source)

Using the given values:

Actual frequency = 2500 Hz

Speed of sound = 343 m/s (approximately)

Speed of observer (driver) = 25.0 m/s (northbound)

Speed of source (police car) = 36.0 m/s (southbound)

Substituting these values into the formula, we get:

Observed frequency = 2500 Hz * (343 m/s + 25.0 m/s) / (343 m/s - 36.0 m/s)

≈ 2978 Hz

Therefore, the frequency observed by the driver as the police car approaches is approximately 2978 Hz.

(b) After the police car passes the driver, the frequency detected by the driver is given by the same formula as above, but with the speed of the observer and source switched:

Detected frequency = Actual frequency * (Speed of sound - Speed of observer) / (Speed of sound + Speed of source)

Using the given values, we substitute:

Detected frequency = 2500 Hz * (343 m/s - 25.0 m/s) / (343 m/s + 36.0 m/s)

≈ 2022 Hz

Therefore, the frequency detected by the driver after the police car passes is approximately 2022 Hz.

(c) When the police car is traveling northbound, the same calculations can be applied, but with the speeds reversed:

(a) The frequency observed by the driver as the northbound police car approaches is approximately 2022 Hz.

(b) The frequency detected by the driver after the northbound police car passes is approximately 2978 Hz.

(a) The driver observes a frequency of approximately 2978 Hz as the southbound police car approaches.

(b) The driver detects a frequency of approximately 2022 Hz after the southbound police car passes.

(c) When the police car is traveling northbound, the driver observes a frequency of approximately 2022 Hz as it approaches and detects a frequency of approximately 2978 Hz after it passes.

To know more about speed visit:

https://brainly.com/question/13262646

#SPJ11

what is type of cloud is especially prevalent when the atmosphere is very stable near the base of a thunderstorm.

Answers

The type of cloud that is especially prevalent when the atmosphere is very stable near the base of a thunderstorm is the Cumulus congestus cloud.

Cumulus congestus clouds are towering cumulus clouds that are particularly high and occur in areas where air rises and condenses, forming cloud layers. As a result, the cloud base grows to a great height, indicating that the atmosphere is extremely moist and unstable. When the clouds reach a certain height, they may start to produce rainfall. These clouds are frequently associated with thunderstorms, but they can also form on their own in the absence of thunderstorms.In addition, Cumulus congestus clouds can form in regions where there is a significant temperature difference between the ground and the upper atmosphere, which causes unstable atmospheric conditions. These clouds can grow to be quite large, with heights of up to 6 km (20,000 ft) or more. They are frequently linked with atmospheric instability, which can result in severe weather such as thunderstorms, tornadoes, and other severe weather events.

Know more about thunderstorm, here:

https://brainly.com/question/32480003

#SPJ11

at the end of 1/2 second an apple freely falling from rest has a speed of
A. 1 m/s. B. more than 10 m/s. C. 10 m/s.
D. 5 m/s.

Answers

At the end of 1/2 second an apple freely falling from rest has a speed of. the correct answer is D. 5 m/s.

At the end of ½ second, an apple freely falling from rest will have a speed of approximately 4.9 m/s, assuming no significant air resistance.

When an object is freely falling under the influence of gravity, its speed increases at a constant rate due to the acceleration of gravity (approximately 9.8 m/s² near the Earth’s surface). This acceleration causes the object to gain velocity over time.

The velocity of a falling object can be calculated using the equation:

V = gt

Where v is the final velocity, g is the acceleration due to gravity, and t is the time elapsed.

In this case, after ½ second (0.5 seconds), plugging the values into the equation, we have:

V = (9.8 m/s²) × (0.5 s) = 4.9 m/s

Therefore, the correct answer is D. 5 m/s. The apple will have a speed of approximately 4.9 m/s after ½ second of free fall. It is important to note that this calculation assumes no air resistance, which can affect the actual velocity of the falling object in real-world scenarios.

Learn more about gravity here:

https://brainly.com/question/14874038

#SPJ11

An inductor is connected to an AC supply. Increasing the frequency of the supply the current through the inductor. a. decreases b. does not change c. increases

Answers

c. increases; Increasing the frequency of the AC supply through an inductor causes the current through the inductor to decrease.

When an inductor is connected to an AC supply, the behavior of the inductor is determined by its inductive reactance (XL), which depends on the frequency of the supply. The formula for inductive reactance is given by XL = 2πfL, where f is the frequency and L is the inductance of the inductor.

As the frequency of the AC supply increases, the inductive reactance also increases. According to Ohm's law, the current flowing through an inductor is inversely proportional to the inductive reactance. Therefore, as the inductive reactance increases with increasing frequency, the current through the inductor decreases. Similarly, as the frequency decreases, the inductive reactance decreases, and the current through the inductor increases.

Increasing the frequency of the AC supply through an inductor causes the current through the inductor to decrease. This behavior is due to the increase in inductive reactance with higher frequencies. It is important to consider the frequency and its impact on inductive reactance when analyzing the behavior of an inductor in an AC circuit.

To know more about inductor visit:

https://brainly.com/question/31327382

#SPJ11

Consider the damped mass-spring system for mass of 0.3 kg, spring constant 4.4 N/m, damping 0.36 kg/s and an oscillating force 2.1cos(ωt) Newtons. That is,
0.3x′′+0.36x′+4.4x=2.1cos(ωt).
What positive angular frequency ω leads to maximum practical resonance?
ω=
What is the maximum displacement of the mass in the steady state solution when the we are at practical resonance:
C(ω)=

Answers

The positive angular frequency ω leads to a maximum practical resonance is ≈ 3.77 rad/s.

The maximum displacement of the mass in the steady-state solution when we are at practical resonance is ≈ 0.392 m.

To find the positive angular frequency (ω) that leads to maximum practical resonance in the given damped mass-spring system, we can use the concept of the resonant frequency.

The resonant frequency (ωr) can be calculated using the formula:

ωr = √(k / m - (ζ² / 4m²))

where k is the spring constant, m is the mass, and ζ is the damping coefficient.

In this case, the given values are:

k = 4.4 N/m

m = 0.3 kg

ζ = 0.36 kg/s

Substituting these values into the formula, we can solve for ωr:

ωr = √(4.4 / 0.3 - (0.36² / 4(0.3)²))

= √(14.6667 - 0.432)

= √(14.2347)

≈ 3.77 rad/s

Therefore, the positive angular frequency (ω) that leads to maximum practical resonance is approximately 3.77 rad/s.

Now, let's calculate the maximum displacement of the mass in the steady-state solution when we are at practical resonance.

The amplitude of the steady-state solution (C(ω)) can be calculated using the formula:

C(ω) = F0 / √((k - mω²)² + (ζω)²)

where F0 is the amplitude of the oscillating force.

Given:

F0 = 2.1 N

k = 4.4 N/m

m = 0.3 kg

ζ = 0.36 kg/s

ω = ωr (at practical resonance)

Substituting these values into the formula, we can calculate C(ω):

C(ωr) = 2.1 / √((4.4 - 0.3(3.77)²)² + (0.36(3.77))²)

≈ 0.392 m

Therefore, the maximum displacement of the mass in the steady-state solution when we are at practical resonance is approximately 0.392 meters (or 39.2 cm).

Learn more about practical resonance at

https://brainly.com/question/31482302

#SPJ4

what is the area of the triangle in this coordinate plane? responses 17.5 units² 17.5 units² 21.0 units² 21.0 units² 35.5 units² 35.5 units² 49.0 units²

Answers

The area of the triangle in this coordinate plane with vertices at (0, 0), (4, 0), and (0, 7) is 14 units².

To find the area of a triangle in a coordinate plane, we can use the formula:

Area = 0.5 * base * height

In this case, the base is the distance between the points (0, 0) and (4, 0), which is 4 units. The height is the distance between the point (0, 0) and the line containing the point (0, 7).

The line containing the point (0, 7) is vertical and parallel to the y-axis, so the height is simply the y-coordinate of the point (0, 7), which is 7 units.

Plugging these values into the formula, we have:

Area = 0.5 * 4 * 7

= 14 units²

Therefore, the area of the triangle is 14 units².

To know more about area of the triangle, here

brainly.com/question/19305981

#SPJ4

--The complete Question is, Consider a triangle in a coordinate plane with vertices at (0, 0), (4, 0), and (0, 7). What is the area of the triangle? --

WILL GIVE BRAINLIEST!!!


There are many natural processes that shape the Earth's surface. These processes can act as constructive forces, destructive forces, or both.


In general, natural processes act as constructive forces


A) only at high elevations.


B) only at sea level.


C) when they wear down landforms.


D) when they build up landforms

Answers

Answer:

D) when they build up landforms.

Explanation:

Natural processes such as deposition, volcanic activity, and plate tectonics can create new landforms and build up the Earth's surface. For example, volcanic eruptions can create new islands or add layers of rock and ash to existing landforms, while sediment deposition can build up river deltas and beaches. However, natural processes such as weathering, erosion, and mass wasting can also act as destructive forces, wearing down and reshaping landforms over time.

#SPJ1

investigation 10b question 01 a. warm b. cold c. stationary d. occluded

Answers

In weather systems, an occluded front occurs when a fast-moving cold front overtakes a slower-moving warm front.

Explanation: When an occluded front forms, a cold front catches up to a warm front, lifting the warm air mass off the ground. This interaction creates a complex weather system characterized by a combination of warm and cold air masses. As the colder air overtakes the warm air, it creates a wedge of cooler air between the two fronts. This lifting of warm air can lead to the formation of clouds and precipitation along the front. The occluded front is typically associated with the deterioration of weather conditions, often bringing a mix of rain, snow, or sleet. The type of precipitation depends on the temperature contrast between the air masses involved. Occluded fronts are commonly found in mid-latitude cyclones and are indicative of mature or decaying storm systems. Understanding the characteristics and behavior of occluded fronts is important in weather forecasting and predicting the associated weather patterns.

To learn more about warm front, Click here:

https://brainly.com/question/19611205

#SPJ11

beam are members that carry transverse load and are subjected to bending.

Answers

Beams are structural members that are specifically designed to carry transverse loads and are subjected to bending. They are commonly used in various engineering applications, such as bridges, buildings, and machinery.

When a beam is loaded perpendicular to its longitudinal axis, it experiences bending moments that cause it to deform. This bending can be visualized as the beam curving or flexing under the applied load. The ability of a beam to resist this bending deformation is crucial for its structural integrity. Beams are typically designed to have a cross-sectional shape that maximizes their strength and stiffness while efficiently utilizing the material. Common beam shapes include rectangular, I-shaped (also known as H-beams or W-beams), and circular sections. The selection of the beam shape depends on factors such as the magnitude and distribution of the loads, the span length, and the available materials.

To ensure that beams can withstand the bending forces and support the desired loads, engineers perform calculations and analysis based on principles of structural mechanics, such as Euler-Bernoulli beam theory and moment-curvature relationships. These calculations help determine the required dimensions, material properties, and reinforcement if needed. In summary, beams are structural members specifically designed to carry transverse loads and are subjected to bending. Their shape, size, and material properties are carefully chosen to ensure they can effectively resist bending and support the desired loads in various engineering applications.

Learn more about structural mechanics here:

https://brainly.com/question/29120498

#SPJ11

Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable
for 20 ms, then travels at a constant speed for another 30 ms.

a) During this total time of 50 ms, 1/20 of a second, how far does the tongue reach?

Answers

Thus, during the total time of 50 m/s, the tongue reaches 0.0006 m + 0.0036 m = 0.0042 m or 4.2 millimeters. The tongue extends quickly to a distance of 1.5 times the length of the chameleon's body to catch the prey.

In a typical strike, a chameleon's tongue accelerates at a remarkable pace for 20 milliseconds, then travels at a constant speed for another 30 milliseconds.

During this total time of 50 milliseconds, or 1/20 of a second, how far does the tongue reach?

The average chameleon tongue length is 1.5 times the length of its body. The tongue's mucus-covered tip is inflated to catch prey.

When prey is within range, the tongue's muscles contract, propelling the tongue toward the prey at a speed of 60 miles per hour (97 km/h) in just 0.07 seconds.

The tongue's acceleration, on the other hand, is 6 m/s2. Given the initial velocity is 0 m/s, we can use the following formula:

Distance = (Acceleration × Time²) / 2 = (6 × 0.02²) / 2 = 0.0006 m.

We can now calculate the tongue's velocity by dividing the distance travelled during acceleration by the duration of the acceleration:

Velocity = Acceleration × Time = 6 × 0.02 = 0.12 m/s.

During the remaining 30 milliseconds, the tongue moves at a constant velocity of 0.12 meters per second, giving a distance of:

Distance = Velocity × Time = 0.12 × 0.03 = 0.0036 m (or 3.6 mm).

to know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

A solenoid that is 85.2 cm long has a radius of 1.67 cm and a winding of 1110 turns; it carries a current of 4.46 A. Calculate the magnitude of the magnetic field inside the solenoid.

Answers

Therefore, the magnitude of the magnetic field inside the solenoid is 3.33 × [tex]10^{(-4)[/tex] Tesla (T).

What is magnetic field?

The magnetic field is a fundamental concept in physics that describes the region around a magnet or a current-carrying wire where magnetic forces are experienced. It is a vector field, meaning it has both magnitude and direction.

To calculate the magnitude of the magnetic field inside a solenoid, we can use the formula:

B = μ₀ * N * I / L

Let's plug in the given values:

N = 1110 turns

I = 4.46 A

L = 85.2 cm = 0.852 m

μ₀ = 4π ×[tex]10^{(-7)[/tex] T*m/A

Using these values, we can calculate the magnetic field:

B = (4π ×[tex]10^{(-7)[/tex] T*m/A) * (1110 turns) * (4.46 A) / (0.852 m)

B ≈ 3.33 × [tex]10^{(-4)[/tex] T

Therefore, the magnitude of the magnetic field inside the solenoid is 3.33 × [tex]10^{(-4)[/tex] Tesla (T).

To learn more about magnetic field,

https://brainly.com/question/14848188

#SPJ4

true/false. multiple transformations occur when a of energy transformations are needed to do work

Answers

False. Multiple energy transformation are not needed to do work. In the context of work, energy transformations occur to convert one form of energy into another, but typically a single transformation is sufficient to perform the desired work.

The principle of conservation of energy states that energy cannot be created or destroyed, but it can be converted from one form to another. Therefore, energy transformations are a means of transferring energy between different forms, rather than requiring multiple transformations to accomplish work. For example, when lifting an object, the chemical potential energy stored in our muscles is transformed into mechanical energy as we apply a force to raise the object against the force of gravity. This single transformation from chemical potential energy to mechanical energy allows us to do work by lifting the object. Similarly, in electrical circuits, electrical energy from a power source is transformed into other forms such as light, heat, or mechanical motion, enabling various devices to perform work.

To learn more about transformation, Click here:

https://brainly.com/question/30462000

#SPJ11

Complete the sentences by selecting the appropriate term for each blank. 1. Common to both Asia and Central America. ____ is known for its ice-cold touch and translucent beauty.
2. The ancient technique of _____ involves shaping metal by hammer blows 3. Made from the teeth and tusks of large mammals, most often elephants. _____ is very rare to come by today. 4. Originally an Asian Invention, ___ is traditionally made from tree sop, which hardens into a smooth, glasslike coating. 5. Native American basket weavers often incorporated a small, barely noticeable imperfection, called Click to enlarge into their works to let spirits enter and exit. jade forging ivory lacquer dau

Answers

1. Common to both Asia and Central America, jade is known for its ice-cold touch and translucent beauty.

2. The ancient technique of forging involves shaping metal by hammer blows.

3. Made from the teeth and tusks of large mammals, most often elephants, ivory is very rare to come by today.

4. Originally an Asian invention, lacquer is traditionally made from tree sap, which hardens into a smooth, glasslike coating.

5. Native American basket weavers often incorporated a small, barely noticeable imperfection, called dau, into their works to let spirits enter and exit.

Determine the jade?

Jade, a term commonly associated with Asia and Central America, is prized for its unique characteristics of being cold to the touch and having a translucent beauty.

The ancient technique of forging involves shaping metal through hammer blows, allowing artisans to create intricate and durable objects.

Ivory, which comes from the teeth and tusks of large mammals like elephants, has become increasingly rare and difficult to obtain in modern times due to conservation efforts.

Lacquer, originally invented in Asia, is made by collecting tree sap and applying it in layers that harden into a smooth and glossy finish. Native American basket weavers incorporated a subtle imperfection called dau into their works, believing it served as a portal for spirits to enter and exit the baskets, adding a spiritual element to their creations.

To know more about mammals, refer here:

https://brainly.com/question/31237908#

#SPJ4

A hammer in an out-of-tune piano hits two strings and produces beats of 4 Hz. One of the strings is tuned to 129 Hz.
Randomized Variables
fB = 4 Hz
f1 = 129 Hz
Part (a) What is the highest frequency the other string could have?
Part (b) What is the lowest frequency the other string could have?

Answers

The lowest frequency the other string could have is 125 Hz.

Beats are produced when two waves of varying frequencies clash, resulting in both constructive and destructive interference. The subsequent impedance is a vibration of the wave, which is capable as an increment and lessening in the plentifulness of the sound heard; These changes are called beats.

Beats help musicians tune instruments like pianos, guitars, and violins, making them useful in music. Two strings of various frequencies and beats A sledge in an unnatural piano hits two strings and delivers beats of 4 Hz. The frequency of one of the strings is 129 Hz.

Let's say the second string has a frequency of f2. We can compute the recurrence of the other string as:

f1-f2 = 4 Hzf1 = 129 Hzf2 = 129 - 4 Hzf2 = 125 Hz, which means that the other string's lowest possible frequency is 125 Hz.

The number of times an event occurs in a given amount of time is known as its frequency. It is also sometimes referred to as temporal frequency for clarity and to distinguish it from spatial frequency. The frequency of recurrence is estimated to be one hertz (Hz), or one occasion per second.

Know more about frequency, here:

https://brainly.com/question/29739263

#SPJ11

if weight=gravitational force
why does weight= mass*gravitational field strength like aren't gravitational force and gravitational field strength and weight all the same?? pls someone help I have exams tmr

Answers

Answer:

While weight, gravitational force, and gravitational field strength are related concepts, they are not the same thing. Let's clarify their definitions and relationships:

Mass: Mass is a fundamental property of matter and represents the amount of material in an object. It is a scalar quantity and is measured in kilograms (kg). Mass is independent of the location of the object and is the same regardless of the gravitational field it is in.

Gravitational Field Strength: Gravitational field strength (g) represents the intensity of the gravitational field at a specific location. It is a vector quantity and is measured in meters per second squared (m/s^2). Gravitational field strength depends on the mass of the celestial body (such as the Earth) creating the gravitational field and the distance from the center of that body. On the surface of the Earth, the average gravitational field strength is approximately 9.8 m/s^2.

Weight: Weight is the force exerted on an object due to gravity. It is a vector quantity and is measured in newtons (N). Weight depends on both the mass of the object and the gravitational field strength at the location of the object. The formula for weight is given by the equation: weight = mass * gravitational field strength.

To clarify the relationship between these concepts, consider the following example: If you have an object with a mass of 10 kg on the surface of the Earth (where the gravitational field strength is approximately 9.8 m/s^2), the weight of the object would be approximately 98 N (weight = 10 kg * 9.8 m/s^2).

So, while weight is determined by multiplying the mass of an object by the gravitational field strength, they are distinct concepts. Weight is the force experienced by an object due to gravity, whereas gravitational field strength represents the intensity of the gravitational field at a specific location.




If the Wronskian W of f and g is te2t, and if f(t) = t, find g(t). - NOTE: Use c as an arbitrary constant. Enter an exact answer. g(t) =

Answers

If the Wronskian W of f and g is te2t, and if f(t) = t, g(t) =  (1/3)t - (1/9)e^(4t) + Ce^t

To find g(t), we can use the Wronskian (W) relationship between f(t) and g(t). The Wronskian (W) is defined as:

W(f, g) = f(t)g'(t) - f'(t)g(t)

Given that the Wronskian W of f(t) and g(t) is te^2t, and f(t) = t, we can substitute these values into the Wronskian equation:

te^2t = t * g'(t) - 1 * g(t)

Simplifying the equation, we have:

te^2t = tg'(t) - g(t)

Now, let's solve this differential equation for g(t). We can rearrange the equation to isolate the derivative term:

tg'(t) - g(t) = te^2t

Next, we'll use an integrating factor to solve the equation. The integrating factor (denoted as μ) is given by:

μ = e^∫(-1) dt = e^(-t)

Multiplying both sides of the equation by the integrating factor, we get:

e^(-t) * [tg'(t) - g(t)] = e^(-t) * te^2t

Simplifying further:

e^(-t) * tg'(t) - e^(-t) * g(t) = te^(t + 2t) = te^(3t)

Now, we can rewrite the left side of the equation using the product rule for differentiation:

d/dt (e^(-t) * g(t)) = te^(3t)

Integrating both sides with respect to t:

∫d/dt (e^(-t) * g(t)) dt = ∫te^(3t) dt

Integrating the left side yields:

e^(-t) * g(t) = ∫te^(3t) dt

The integral on the right side can be solved using integration by parts. Applying integration by parts, we have:

∫te^(3t) dt = (1/3)te^(3t) - (1/3)∫e^(3t) dt

Simplifying further:

∫te^(3t) dt = (1/3)te^(3t) - (1/9)e^(3t) + C

where C is the constant of integration.

Therefore, the equation becomes:

e^(-t) * g(t) = (1/3)te^(3t) - (1/9)e^(3t) + C

To solve for g(t), we divide both sides by e^(-t):

g(t) = (1/3)t - (1/9)e^(4t) + Ce^t

where C is the arbitrary constant.

So, the exact form of g(t) is:

g(t) = (1/3)t - (1/9)e^(4t) + Ce^t

To learn more about arbitrary constant, click here:

https://brainly.com/question/31727362

#SPJ11

Other Questions
If demand is P = 100 - 2Q and supply is P = 20 + 3Q, what is the value of the Producer Surplus? Peggy had a cutting board measuring 2 m 4 cm. She cut off 78 cm. How long is the board now, in meters? Olivia is sending a recipe to her mother in Mexico. Among other things, the recipe calls for 4 ounces of rice and a baking temperature of 350 degrees fahrenheit. Convert these measurements to metric, rounding to the nearest gram and nearest degree. Imported wool fabric is $12.99 per meter. What is the cost, to the nearest cent of a piece that measures 3 m to 70 cm? While on vacation in Canada, Jalo became ill and went to a health clinic. They said he weighed 80.9 kilograms and was 1.83 meters tall. Find his weight in pounds and height in feet. Round to nearest tenth.Each serving of punch at the wedding reception will be 180 mL. How many liters of punch are needed for 75 people? A transverse wave on a rope is given by y(x,t)= (0.750cm)cos([(0.400cm1)x+(250s1)t]).Part A Find the amplitude.Part B Find the periodPart C Find the frequencyPart D Find the wavelengthPart E Find the speed of propagation.Part F Is the wave traveling in the +x- or x-direction? ANSWER PLEASEEEEEE !!!!!!!!!!!!!! ) Perform error checking for the data point entries. If any of the following errors occurs, output the appropriate error message and prompt again for a valid data point. If entry has no comma Output: Error: No comma in string. (1 pt) If entry has more than one comma Output: Error: Too many commas in input. (1 pt) If entry after the comma is not an integer Output: Error: Comma not followed by an integer. (2 pts) 1.what is tbe mechanics of the poem "AN AFRICAN THUNDERSTORM" 2.Identify the literary devices. 3.which line is the literary device found. 4.why is it used? The wedge is one-eighth of the wheel of cheese. A cylindrical-shaped wheel of cheese has a radius of 3 inches and height of 1 inch. A wedge of cheese is sliced from the whole. a. Find the surface area of the cheese before it is cut, round to the nearest hundredth. The surface area of the cheese before it is cut is in. $^2$ . b. Find the surface area of the remaining cheese after the wedge is removed, round to the nearest hundredth. The surface area of the remaining cheese after the wedge is removed is about square inches. Question 2 Did the surface area increase, decrease, or remain the same A semi circle of diameter 6cm is cut from rectangle with sides 6cm and 8cm.Calculate the perimeter of the shaded shape correct to 1 decimal place.(My words) Add working steps if possible :) The governor's power of appointment is the most significant of the executive powers because it allows the governor to appoint a. individuals to numerous agencies, commissions, and boards in Texas. b. individuals to represent Texas in the U.S. Senate. c. mayors and city council members. d. individuals to leadership positions in the legislature. z=xe^y,x=u^2v^2,y=u^2 v^2, find z/u and z/v. the variables are restricted to domains on which the functions are defined. odarta Corporation applies manufacturing overhead to products on the basis of standard machine-hours. The company's predetermined overhead rate for fixed manufacturing overhead is $1.20 per machine-hour and the denominator level of activity is 6,600 machine-hours. In the most recent month, the total actual fixed manufacturing overhead was $8,340 and the company actually worked 6,400 machine-hours during the month. The standard hours allowed for the actual output of the month totaled 6,480 machine-hours. What was the overall fixed manufacturing overhead volume variance for the month A technique of: 40 mAs with 60 kV an exposure of 100mR. If we change to 20 mAs value what should the new kV value be to maintain exposure? (-4,9);m=-1/2Write the equation in point slope form A spring attached to a wall was displaced horizontally to model simple periodic motionWhich function represents the oscillations of the spring it it had amplitude of 5, a frequency of 3/(2pi) and midine of 4? Do not show me a link I want the answer the question is in the picture Many today consider the gothic style to be quite however most renaissance-era scholars found gothic work Ill give the Brainliest to who answers these questions with reasonable explanations.1. The manager of the soda shop decides that youre a good customer, you may use a flavour as many times as youd like. How many different possible mixtures can you make know (remember, you have 13 flavours available to you and you must choose 6)?2. You realize that, despite what you expected, the soda actually tastes different depending on which flavour you choose first, second, etc. With this in mind, how many different sodas can you make? Emily bought a pack of pencils. Before she sharpened them, she measured one pencil and it was 0.22 m long When she sharpened one, she shaved off 1.2 cm. How many centimeters is her sharpened pencil? 5. Mi primoConjuga los siguientes verbos en la forma correcta del pretrito y traduce el verbo a ingls.1. Vernica y yo(almorzar) a las dos. We ate lunch2. Mi to(pagar) mi boleto de avin.3. Yo(explicar) mis planes para el viaje.4. T(sacar) libros de la biblioteca.(jugar) al baloncesto.6. Yo(practicar) deportes.7. Mis abuelos(comenzar) a hacer ejercicio.8. Yo(llegar) tarde al cine.9. Mara y t(tocar) el piano.10.(empezar) a llover a las siete.11. Ayer, yo(ir) de compras.12. El concierto(ser) increble.13. Ellos(ver) el despertador.14. Nosotros(dar) dinero a la iglesia.15. T(hacer) el postre para la fiesta.16. Ustedes no(dar) una fiesta.17. Mariano(hacer) el proyecto.18. T(ir) a la escuela.19. Yo(comprar) el jabn.20. Mi amigo y yo(usar) el lavabo.21. Yo(abrir) la bebida.22. T(disfrutar) con los amigos.23. Sarita y Homero(vender) libros.24. La clase(comer) mucha pizza.25. Usted(escribir) el ensayo.(correr) ayer.26. Mis abuelos y t fill in the blanks with suitable adverbs. Do you __travell on weekends? At the beginning of the tax year, Barnaby's basis in the BBB Partnership was $50,000, including his $5,000 share of partnership debt. At the end of the tax year, his share of debt was $8,000. His share of the partnership's income for the year was $20,000, and he received cash distributions totaling $12,000. In addition, his share of the partnership's nontaxable income was $1,000.Required:Determine Barnaby's basis at the end of the tax year.