Answer:
ma*XsinB
option 2 is correct
Read the scenario below and answer the question that follows. Randall is hiring cooks for his restaurant. The first applicant is a handsome man with an average resumé and average job experience. The second applicant is a far less attractive man with a slightly above average resumé and above average job experience. Randall decides to hire the first applicant. Based on this information and on Randall’s decision, what might a psychologist conclude about Randall’s social perception? Randall has an unconscious assumption that attractive people are more competent. Randall has a unconscious assumption that unattractive people are bad cooks. Randall has a conscious assumption that attractive people make better cooks. Randall has a conscious assumption that unattractive people are more competent.
Randall has an unconscious assumption that attractive people are more competent.
What is meant by assumption ?The term assumption can be described as an unspoken premise that underlies the conclusion.
Here,
The capacity to accurately evaluate and draw conclusions about other individuals based on their overall physical appearance, verbal behaviour, and nonverbal attitudes is referred to as social perception.
Given that, for his restaurant, Randall is employing chefs. The first applicant is a dashing man with an average resume and career history. The second candidate is a far less appealing man with an average to slightly above average resume and work experience. Randall chooses to hire the first candidate.
This shows the social perception of Randall and his unconscious assumptions against unattractive people.
Hence,
Randall has an unconscious assumption that attractive people are more competent.
To learn more about assumption, click:
https://brainly.com/question/28586425
#SPJ2
A small, free-to-rotate magnet is placed in a strong magnetic field. In what orientation will it come to rest
Answer:
South-North
Explanation:
This is for Lipor only.
Answer:
im here\
Explanation:
A 115 kg hockey player, Adam, is skating east when he tackles a stationary 133 kg player, Bob. Afterward, they move at 1.35 m/s east. What was Adam's velocity before the collision? (Unit = m/s)
Answer:
Explanation:
Conservation of momentum
115v + 133(0) = (115 + 133)1.35
v = 2.911304...
v= 2.91 m/s east
Answer:
The velocity east is 2.91
Explanation:
Fill in the box
2.91
5 kg block of iron is heated to 800°C. It is placed in the tub containing 2 L of water at 15°C. Assuming all the water is brought to the boil rapidly, calculate the mass of water which boils off. (The specific heat capacity of iron 800°C is 220 J kg-1 K-1)
Answer:
Heat Loss = 5 kg * 700 deg K * 220 J / (kg*deg K) = 7.70E5 J
Since there are 4.186 J/cal
Heat Loss = 7.70E5J / 4.186 J/cal = 1.84E5 cal
Heat Gain = 2000 g * 85 deg K / cal / (deg K g) + M * 540 cal/g
Heat Gain = 1.70E5 cal + M * 540 cal/g
M = (1.84 - 1.70) E5 g / 540
25.9 g
25.9 g or 25.9 cm^3 or .0259 L of water will boil away
A 2457 kg car moves with initial speed of 18 ms-l. It is stopped in 62 m by its brakes.
What is the force applied by the brakes?
Answer:
Explanation:
The work of the brakes will equal the initial kinetic energy of the car
Fd = ½mv²
F = mv²/2d
F = 2457(18²) / (2(62))
F = 6,419.903...
F = 6.4 kN
A farm tractor starting from the rest attains a speed of 36000 m/s after covering a distance of 2000 m. Work out the magnitude of the net force the tractor weighs 5000 kg.
Answer:
the answer is 3,888.7
Explanation:
Hope this answer helped!:)
Air is pumped into the tyre to inflate it.
This increases the temperature and the pressure of the air in the tyre.
Use ideas about molecules to explain why the air pressure in the tyre increases. *
Just need the answer
Answer:
1. 1, 2, 4 all show some form of refraction as the bending of a light ray when passing from one media to another.
Explanation:
Number 4 is the most accurate as it also shows some light being reflected and the bending of the refracted light ray in the correct direction for going from a medium of low refractive index (air) into a higher refractive index material (crown glass)
It velocity of light scalar or vector equality
Answer:
velocity is a vector quantity
Explanation:
velocity is a vector quantity because it has a mass and a direction
A race car, starting from rest, travels around a circular turn of radius 22.5 m. At a certain instant the car is still speeding up, and its angular speed is 0.541 rad/s. At this time, the car’s total acceleration vector (centripetal plus tangential) makes an angle of 39.0 with respect to the car’s velocity. What is the magnitude of the car’s total acceleration
Answer:
Explanation:
The answer:
https://www.chegg.com/homework-help/questions-and-answers/race-car-starting-rest-travels-around-circular-turn-radius-247-m-certain-instant-car-still-q402991
Total acceleration of car is 148.31 m/s².
What is centripetal acceleration?Centripetal acceleration is a characteristic of an object's motion along a circular path. Centripetal acceleration applies to any item travelling in a circle with an acceleration vector pointing in the direction of the circle's center.
Given parameters:
Radius of the circular path: r = 22.5 m.
Angular speed: ω = 0.541 rad/s.
So, centripetal acceleration; α = ω²r = (0.541)² × 22.5 m/s² = 6.58 m/s².
Tangential acceleration: [tex]\alpha_t[/tex] = αr = 6.58 × 22.5 = 148.16 m/s².
Hence, total acceleration = √(α² + [tex]\alpha_t[/tex]²) = √(6.58² +148.16²) = 148.31 m/s².
Learn centripetal acceleration here:
https://brainly.com/question/14465119
#SPJ2
An empty cylindrical barrel is open at one end and rolls without slipping straight down a hill. The barrel has a mass of 15.0 kg, a radius of 0.400 m, and a length of 0.800 m. The mass of the end of the barrel equals a fourth of the mass of its side, and the thickness of the barrel is negligible. The acceleration due to gravity is =9.80 m/s2.
What is the translational speed f of the barrel at the bottom of the hill if released from rest at a height of 33.0 m above the bottom?
Hi there!
We can use work and energy to solve this problem.
We know that:
Ei = Ef
Ei = Potential energy = mgh
Ef = Rotational kinetic + Translational kinetic = 1/2Iω² + 1/2mv²
The barrel is comprised of a hollow cylinder and disk-shaped bottom, so:
I (hollow cylinder) = mr²
I (disk) = 1/2mr²
Calculate the moment of inertias of each.
Since the mass on the base is one-fourth of its side:
x = mass of side
x + x/4 = 15
4x + x = 60
5x = 60
x = 12 kg
end mass = 3 kg
Solve for each moment of inertia:
Side: (12)(0.4²) = 1.92 Kgm²
Bottom: 1/2(3)(0.4²) = 0.24 Kgm²
Side + bottom = 2.16 Kgm²
We can now solve:
mgh = 1/2mv² + 1/2(2.16)v²/r²
(15)(9.8)(33) = 1/2(15)v² + 1/2(13.5)v²
4851 = 14.25v²
v = 18.45 m/s
The figure shown above is the circuit diagram for a simple dc power supply. Identify the type of rectifier circuit represented in the figure and explain the operation of the circuit with reference to the function of each component within the circuit.
Answer:
D1 FG 12 15×AG+5T×G7+3F
An object moving at a constant velocity of 5.4 m/s travels for 12 s. How far will it move during that time?
Free-fall Acceleration is -10 m/s^2
Answer:
we know that
s=vt
given
v=5.4 m/s
t=12 s
s=5.4 m/s*12 s=64.8m
Explanation:
Hope this helps:)
An initially stationary object experiences an acceleration of 6 m/s2 for a time of 15 s. How far will it travel during that time?
Free-fall Acceleration is -10 m/s^2
Answer:
Explanation:
s = s₀ + v₀t + ½at²
s = 0 + 0(15) + ½(6)(15²)
s = 675 m
Not sure what the free fall acceleration is needed for, but if the object is dropped from a high enough point, it will travel in 15 seconds
s = ½10(15²) = 2250 m if air resistance is ignored
A rocket ship has several engines and thrusters. While the Solid Rocket Booster (SRB) and main engines only work together during the first 2 minutes of flight, the main engines operate for a total of 8.5 minutes after the launch. Once the SRBs are released, the main engines alone accelerate the rocket from about 1341 m/s to 7600 m/s.
What is the acceleration of the SRB and main engine during the first 2.0 minutes of flight?
A. 52 m/s2
B. 13 m/s2
C. 9.8 m/s2
D. 11 m/s2
The acceleration of the SRB and main engine during the first 2.0 minutes of flight is 52.16 m/s².
The given parameters;
initial velocity of the engine, u = 1341 m/sfinal velocity of the engine, v = 7600 m/stime of motion, t = 2 minutes = 2 x 60 s = 120 sThe acceleration of the SRB and main engine is calculated as follows;
[tex]a = \frac{\Delta v}{\Delta t } \\\\a = \frac{7600 - 1341}{2 \times 60 s} \\\\a = 52.16 \ m/s^2[/tex]
Thus, the acceleration of the SRB and main engine during the first 2.0 minutes of flight is 52.16 m/s².
Learn more here:https://brainly.com/question/17067013
science thanks sa points
Answer: Are these free point?
Explanation:
A wheel has a radius of 0.40 m and is mounted on frictionless bearings. A block is suspended from a rope that is wound on the wheel and attached to it (see figure). The wheel is released from rest and the block descends 1.5 m in 2.00 s without any slipping of the rope. The tension in the rope during the descent of the block is 20 N. What is the moment of inertia of the wheel?
The moment of inertia of the wheel is 4.27 kg.m²
The kinematics equation explains the variables associated and related of motion.
From the information given, applying the kinematic equation of motion to determine the acceleration of the block, we have:
[tex]\mathbf{y = ut + \dfrac{1}{2}at^2}[/tex]
[tex]\mathbf{y = (0)t + \dfrac{1}{2}at^2}[/tex]
[tex]\mathbf{y = \dfrac{1}{2}at^2}[/tex]
Making acceleration (a) the subject, we have:
[tex]\mathbf{a = \dfrac{2y}{t^2}}[/tex]
where;
y = 1.5 mt = 2.0 s[tex]\mathbf{a = \dfrac{2\times 1.5 }{2.0^2}}[/tex]
a = 0.75 m/s²
The angular acceleration of the wheel can be estimated by the formula:
[tex]\mathbf{\alpha = \dfrac{a}{r}}[/tex]
[tex]\mathbf{\alpha = \dfrac{0.75 \ m/s^2}{0.40 \ m}}[/tex]
[tex]\mathbf{\alpha = 1.875 \ rad/s^2}[/tex]
Finally, the torque acting on the wheel is:
[tex]\mathbf{\tau = I \alpha}[/tex]
[tex]\mathbf{Tr = I \alpha}[/tex]
where;
T = tensionr = radiusI = moment of inertia∝ = angular acceleration∴
[tex]\mathbf{I =\dfrac{T\times r}{\alpha} }[/tex]
[tex]\mathbf{I =\dfrac{20 \ N\times 0.40 \ m}{1.875 \ rad/s^2} }[/tex]
I = 4.27 kg.m²
Learn more about moment of inertia here:
https://brainly.com/question/15246709?referrer=searchResults
Saturn's mass is 5.68 x 1024 kg and its radius is 6.03 x 107 m. A. Calculate the gravitational field strength at Saturn's surface. (2 marks) B. Calculate the force of gravity at Saturn's surface on an object with a mass of 50 kg.
Hi there!
A.
We can calculate the gravitational field strength using the following equation:
[tex]g = \frac{Gm_p}{r^2}[/tex]
G = Gravitational Constant
mp = mass of planet (kg)
r = radius (m)
Plug in the given values:
[tex]g = \frac{(6.67*10^{-11})*(5.68*10^{24})}{(6.03*10^7)^2} = \boxed{0.104 N/kg}[/tex]
B.
The force can be calculated using:
[tex]F_g = \frac{Gm_1m_2}{r^2}[/tex]
Plug in the values:
[tex]F_g = \frac{(6.67*10^{-11})(5.68*10^{24})(50)}{(6.04*10^7)^2} = \boxed{5.209N}[/tex]
Answer:
[tex]\boxed {\boxed {\sf g=0.104 \ N/kg \ and \ F_g= 5.2 \ N }}[/tex]
Explanation:
A. Gravitational Field Strength
The gravitational field strength can be calculated using the following formula:
[tex]g= \frac{Gm}{r^2}[/tex]
G, or the universal gravitational constant, is 6.67 × 10⁻¹¹ N*m²/kg². The mass of Saturn is 5.68 × 10²⁴ kilograms. The radius of Saturn is 6.03×10⁷ meters.
Substitute these values into the formula.
[tex]g= \frac{ (6.67 \times 10^{-11} \ N*m^2/kg^2) (5.68 \times 10^{24} \ kg)}{(6.03 \times 10^{7} \ m )^2}[/tex]
Multiply the numerator and square the denominator.
[tex]g= \frac{ 3.78856 \times 10^{14} \ N *m^2/kg }{3.63609 \times 10^{15} \ m^2}[/tex]
Divide.
[tex]g= 0.1041932405 \ N/kg[/tex]
The original measurements of mass and radius have 3 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 1 in the ten-thousandth place tells us to leave the 4 in the thousandth place.
[tex]\boxed {g \approx 0.104 \ N/kg}[/tex]
B. Force of Gravity
The force of gravity is calculated using the following formula:
[tex]F_g= mg[/tex]
The mass of the object is 50 kilograms. We just calculated the gravitational field strength, which is 0.104 Newtons per kilogram. Substitute these values into the formula.
[tex]F_g= (50 \ kg)(0.104 \ N/kg)[/tex]
Multiply. The units of kilograms cancel.
[tex]\boxed {F_g=5.20 \ N}[/tex]
A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so small that it can be ignored. A sandbag of mass m is dropped onto the merry-go-round, at a position designated by r. The sandbag does not slip or roll upon contact with the merry-go-round.
The figure shows a top view of a merry-go-round of radius capital R rotating counterclockwise. A sandbag is located on the merry-go-round at a distance lowercase r from the center.
Rank the following different combinations of m and r on the basis of the angular speed of the merry-go-round after the sandbag "sticks" to the merry-go-round.
The angular speed of the merry-go-round reduced more as the sandbag is
placed further from the axis than increasing the mass of the sandbag.
The rank from largest to smallest angular speed is presented as follows;
[m = 10 kg, r = 0.25·R]
[tex]{}[/tex] ⇩
[m = 20 kg, r = 0.25·R]
[tex]{}[/tex] ⇩
[m = 10 kg, r = 0.5·R]
[tex]{}[/tex] ⇩
[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]
[tex]{}[/tex] ⇩
[m = 10 kg, r = 1.0·R]
Reasons:
The given combination in the question as obtained from a similar question online are;
1: m = 20 kg, r = 0.25·R
2: m = 10 kg, r = 1.0·R
3: m = 10 kg, r = 0.25·R
4: m = 15 kg, r = 0.75·R
5: m = 10 kg, r = 0.5·R
6: m = 40 kg, r = 0.25·R
According to the principle of conservation of angular momentum, we have;
[tex]I_i \cdot \omega _i = I_f \cdot \omega _f[/tex]
The moment of inertia of the merry-go-round, [tex]I_m[/tex] = 0.5·M·R²
Moment of inertia of the sandbag = m·r²
Therefore;
0.5·M·R²·[tex]\omega _i[/tex] = (0.5·M·R² + m·r²)·[tex]\omega _f[/tex]
Given that 0.5·M·R²·[tex]\omega _i[/tex] is constant, as the value of m·r² increases, the value of [tex]\omega _f[/tex] decreases.
The values of m·r² for each combination are;
Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²
Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²
Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²
Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²
Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²
Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²
Therefore, the rank from largest to smallest angular speed is as follows;
Combination 3 > Combination 1 > Combination 5 = Combination 6 >
Combination 2
Which gives;
[m = 10 kg, r = 0.25·R] > [m = 20 kg, r = 0.25·R] > [m = 10 kg, r = 0.5·R] > [m =
10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R] > [m = 10 kg, r = 1.0·R].
Learn more here:
https://brainly.com/question/15188750
A race car traveling at 100 m/s enters an unbanked turn of 400 m radius. The coefficient of (static) friction between the tires and the track is 1.1. The track has both an inner and an outer wall. Which statement is correct
Answer:
The race car will crash into the outer wall
Explanation:
max fr = μsN = 1.1 mg = 11 m
mv2/R = m(100)2/(400) = 25 m > fr
what is the meaning of word thermodynamics
Answer:
physics that deals with the mechanical action or relations of heat.
what memory are you using to remember who the president of the united states is
Answer:
The First 8 Presidents
For this exercise, we're going to use a silly story made of silly sentences. The letters that represent the last names of these presidents are W, A, J, M, M, A, J, V. One silly sentence to help you remember this sequence is: Wilma and John made merry and just vanished
working memory.
sensory memory.
short-term memory.
long-term memory.
Which is the main gas that makes up the Earth's atmosphere?
Answer:
78 percent nitrogenExplanation:
I hope it's helpful for you
The current in a resistor is 2.0 A, and its power is 78 W. What is the voltage?
Answer:
39 volts
Explanation:
Use the equation [tex]P=VI[/tex]
[tex]78=V(2)[/tex]
[tex]V=39[/tex]
what is the acceleration of the cart at t=8 seconds?
a) 0 m/s^2
b) 10 m/s^2
c) 20 m/s^3
d) -20m/s^2
What is the acceleration of the cart at t=8 seconds?
a) 0 m/s^2b) 10 m/s^2c) 20 m/s^3d) -20m/s^2Hence the answer us letter a) 0 m/s^2.
That's all I know, Hope it help :)
how does the structure of compounds determines the properties of the compounds?
Answer:
The chemical structure of the molecule is responsible for each of these characteristics. The chemical structure is comprised of the bonding angle, the kind of bonds, the size of the molecule, and the interactions that occur among the molecules. Even little changes in the chemical structure of a molecule may have a significant impact on the characteristics of the substance.
Explanation:
Hope it helps:)
a convex mirror and a plane mirror both give virtual and erect images still a convex mirror is used in vehicles. why?
Pls answer thiss
Answer:Convex mirrors are used because these mirrors provide a wider viewing angle than a plane mirror. This wide angle will help you getting more information/overview than what is happening at a narrow spot right behind the car if you use a plane mirror.
With a convex mirror you are for example able to detect an overtake (by the car behind you) early, if you for some reason wanted to turn left into another lane at the same moment the overtake took place - so you then can prevent a collision. Convex mirrors are simply covering a much larger area behind the car than plane mirrors do. And in the US, on the mirrors there is a text explaining that the vehicle behind you is closer than it appears - some kind of an idiot explanation in case some driver took the mirror image literally….because in the mirror image of a convex mirror, everything looks smaller and further away than they actually are.
Explanation: mark me as brainliest this is my best answer till now
A gold doubloon 6.1 cm in diameter and 2.0 mm thick is dropped over the side of a pirate sheep. When it comes to rest on the ocean floor at a depth of 770 m, how much has its volume changed?
The definition of volume modulus and the variation of pressure with depth allows to find the result for the variation of the volume of the coin is:
ΔV = 2.15 10⁻⁸ m³
The pressure with the depth is given by the relation
P = P₀ + ρ g h
Where P is the pressure, ρ is the density anf h depth.
The size of the bodies is determined by the distance of their atomic and molecular bonds, therefore the size of the bodies changes under external interations, in the case of hydrostatic pressure a constant called volumetric modulus is defined.
[tex]B = - \frac{\Delta P}{\frac{\Delta V}{Vo} } \\\Delta V = - \frac{\Delta P }{B} \ V_o[/tex]
Where ΔP is the pressure change, V₀ and V are the volume change and the initial volume of the body, the negative sign is introduced so that the volumetric modulus is a positive quantity.
They indicate the diameter and thickness of the coin (d = 6.1 cm and e =0.20 cm) on the sea surface and the depth to which it is submerged
h = 770 m
Let's look for the volume of the coin.
V₀ = π r² h = [tex]\pi \ \frac{d^2}{4} \ e[/tex]
V₀ = [tex]\pi \ \frac{0.061^2 }{4} \ 0.002[/tex]
V₀ = 5.84 10-6 m³
Let's find the pressure at the depth of y = 770 m, the density of sea water is ρ = 1025 kg / m³, the pressure at the surface is the atmospheric pressure P₀ = 1 10⁵ Pa, the volumetric modulus of water is B = 0.21 10¹⁰ Pa.
P = 1 10⁵ + 1025 9.8 770
P = 1 10⁵ + 7,735 10⁶
P = 7.84 10⁶ Pa
Let's calculate
ΔV =[tex]- \frac{1 \ 10^5 - 7.84 \ 10^6 }{0.21 \ 10^{10}} \ 5.845 \ 10^{-6}[/tex]
ΔV = 2.15 10-8 m³
In conclusion using the definition of volume modulus and the variation of pressure with depth we can find the result for the variation of the volume of the coin is:
ΔV = 2.15 10-8 m³
Learn more here: brainly.com/question/22138043
How does a balanced chemical equation demonstrate the Law of Conservation of Mass? it shows that only physical changes follow the Law of Conservation of Mass it shows that only physical changes follow the Law of Conservation of Mass it shows that the properties of the elements stay the same after the reaction it shows that the properties of the elements stay the same after the reaction it shows that all compounds remain bonded after the reaction it shows that all compounds remain bonded after the reaction it shows that no atoms have been gained or lost during the reaction
Answer:
it shows that the properties of the elements stay the same after the reaction
it shows that the properties of the elements stay the same after the reaction
it shows that all compounds remain bonded after the reaction
it shows that all compounds remain bonded after the reaction
it shows that only physical changes follow the Law of Conservation of Mass
it shows that only physical changes follow the Law of Conservation of Mass
it shows that no atoms have been gained or lost during the reaction
it shows that no atoms have been gained or lost during the reaction