Answer:
1.45g of FeCl3
Explanation:
The equation of the reaction is given as;
2Fe + 3Cl2 --> 2FeCl3
2 mol of Fe reracts with 3 mol of Cl2 to form 2 mol of FeCl3
Upon converting to mass using;
Mass = Number of moles * Molar mass
( 2 * 55.85 = 111.7g ) of Fe reacts with ( 3 * 71 = 213g ) of Cl2 to form ( 2 * 162.2 = 324.4g) of FeCl3
Cl2 is the limiting reactant as it determines how much of FeCl3 is formed
213g of Cl2 = 324.4g of FeCl3
0.950g of Cl2 = x
x = (0.950 * 324.4 ) / 213
x = 1.45g of FeCl3
Plz answer me will mark as brainliest
Explanation:
Valves
Blood capillaries
calculate the mass of N2 gas which has a volume 0.227 at STP
What are graphs? Give an example of a graph that would be useful to you in your everyday life
Answer:
A graph can be very handy in collecting data and storing it in one place. A graph can be a very effective tool in presenting visual information rather swiftly. Hope this helps! I am learning about graphs in my course!
Explanation:
Answer:
graph) a diagram showing the relation between variable quantities, typically of two variables, each measured along one of a pair of axes at right angles.
Explanation:
Graphing is used daily. From stockbrokers to performance evaluation in companies. All use them to boost sales and meet deadlines. Even simple calculations can be assessed better by using a graph.
(let me know if this helps?)
Which of these would be classified as a chemical property that could be measured quantitatively?
Volume
Flammability
рн
Solubility
Answer:
рн
Explanation:
From the given choices, pH is the only chemical property that can be measured quantitatively.
A chemical property is one that tells us about what a substance can do as regards to whether or not the substance reacts with other substances.
Examples are flammability, rusting of iron, precipitation, decomposition of water e.t.c
pH is the degree of acidity or alkanility of a solution. It is usually determined quantitatively using a pH scaleThe scale is graduated from 1 to 14 1 to 7 is for acids7 is for neutral compounds7-14 is for alkalines.
What metalloid has commonly been used as an insecticide due
to its effectiveness as a poison.
Answer:
Arsenic.
Explanation:
Hello there!
In this case, since insecticides are substances that act as poisons to get rid of insects in order to prevent their presence and/or reproduction in houses, companies, crops and others, a substance that has been widely used is the metalloid arsenic due to its direct affection of the insect's body (movement, performance, cellular functions).
In addition, high levels of arsenic in food could cause arsenic poisoning in humans as well, that is why such practice must be properly performed and by using the correct security protocol.
Best regards!
Answer:
As
Explanation:
hoffe das hilf jedem in der zukunft
What type of energy is defined as the kinetic energy of the atoms of a substance?
Explanation:Thermal energy, or heat, is the energy that comes from the movement of atoms and molecules in a substance. Heat increases when these particles move faster. Geothermal energy is the thermal energy in the earth. Motion energy is energy stored in the movement of objects.
I hope this helped!
Given the following balanced equation:
9 Fe2O3 + 2 NH3 → 6 Fe3O4 + N2 + 3 H2O
A) how many grams of NH3 are needed to react with 125 grams of Fe2O3?
B) how many grams of Fe3O4 will be produced?
Answer:
What mass of sodium hydroxide is needed to react completely with 10.0 g of iron( III) chloride? The conversion sequence is: A. B.
Explanation:
make me as brain liest
Why aren’t two hydrogen atoms bonded together considered a compound? Explain.
Answer:
Hydrogen gas (H2) is a molecule, but not a compound because it is made of only one element. Water (H2O) can be called a molecule or a compound because it is made of hydrogen (H) and oxygen (O) atoms. There are two main types of chemical bonds that hold atoms together: covalent and ionic/electrovalent bonds.
Explain how plucking occurs
Answer:
plucking is usually extracting hair
Explanation:
example: pluck the chicken feathers
pluck my brows
Our universe is made up of at least a
Is lead a representative metal or transitional metal?
Answer:
It's a representative metal
Explanation: Transitional metals are metals of various chemical elements and have valence electrons—i.e., electrons that can participate in the formation of chemical bonds.
Identify the oxidizing and reducing agent in the following reaction, and determine which element is oxidized and which is reduced. Fe2+(aq) + ClO2(aq) → Fe3+(aq) + ClO2–(aq) ClO2 is the reducing agent and Fe2+ is the oxidizing agent . Fe is oxidized and Cl is reduced. g
Answer:
Explanation:
Fe⁺²(aq) + ClO₂(aq) → Fe⁺³(aq) + ClO₂⁻(aq)
Here oxidation number of Fe is increased from +2 to +3 , so Fe is oxidised .
The oxidation number of Cl is reduced from + 4 to +3 so Cl is reduced .
So ClO₂(aq) is oxidising agent and Fe⁺²(aq) is reducing agent .
Which is an example of a current research focus in chemistry?
A. applying gene therapy to treat certain diseases
B. using hook-and-loop tape in the clothing industry
C. developing smoke detectors for common use
D. studying coal combustion as an energy source
Answer:
b is the correct answer
do not trust answer one
Explanation:
Sodium carbonate, also known as soda ash, is used in glassmaking. It is obtained from a reaction between sodium chloride and calcium carbonate; calcium chloride is the other product. Calculate the percent yield of sodium carbonate if 92.6 g is collected when 112. g of sodium chloride reacts with excess calcium carbonate.
Answer:
The percentage yield of sodium carbonate is 91.47%
Explanation:
we start by writing the reaction equation:
2NaCl + CaCO3 ——-> Na2CO3 + CaCl2
From the reaction we can see that 2 moles of sodium chloride produced 1 mole of sodium carbonate
Let us calculate the actual number of moles of sodium chloride produced from 112 g of it
Mathematically,
number of moles = mass/molar mass
Molar mass of sodium chloride is 23 + 35.5 = 58.5 g/mole
So the number of moles of sodium chloride produced will be 112/58.5 = 1.91 moles
The number of moles of sodium carbonate produced is half of this = 1.91/2 = 0.955
The mass of sodium carbonate produced from 0.955 moles of it will be;
number of moles * molar mass
The molar mass of sodium carbonate is 106 g/mol
So the number of moles is = 0.955 * 106 = 101.23 g
Mathematically;
percentage yield = actual yield/theoretical yield * 100%
Percentage yield = 92.6/101.23 * 100% = 91.47%
Balance the equations by inserting coefficients as needed.
equation 1:
PCl_{3} + Cl_{2} -> PCl_{5}
PCl3+Cl2⟶PCl5
equation 2:
Mg_{3}N_{2} + HCl -> MgCl_{2} + NH_{3}
Mg3N2+HCl⟶MgCl2+NH3
Answer:
first one is already balanced
2. MgN2+6HCl->3MgCl2+2NH3
Explanation:
To balance the equations, we need to ensure that the same number of each type of atom is present on both sides of the equation. Here's how we can balance the given equations:
Equation 1: PCl₃ + Cl₂ -> PCl₅
In this equation, there are 1 phosphorus (P) atom, 3 chlorine (Cl) atoms, and 5 chlorine (Cl) atoms. To balance the equation, we can put a coefficient of 2 in front of PCl₃ to have 2 phosphorus atoms, and a coefficient of 5 in front of Cl₂ to have 10 chlorine atoms:
2PCl₃ + 5Cl₂ -> PCl₅
Now the equation is balanced with 2 phosphorus atoms and 10 chlorine atoms on both sides.
Equation 2: Mg₃N₂ + HCl -> MgCl₂ + NH₃
In this equation, there are 3 magnesium (Mg) atoms, 2 nitrogen (N) atoms, 2 hydrogen (H) atoms, and 1 chlorine (Cl) atom.
To balance the equation, we can put a coefficient of 3 in front of HCl to have 3 hydrogen atoms, and a coefficient of 2 in front of NH3 to have 2 nitrogen atoms:
Mg₃N₂ + 3HCl -> MgCl₂ + 2NH₃
Now the equation is balanced with 3 magnesium atoms, 2 nitrogen atoms, 6 hydrogen atoms, and 2 chlorine atoms on both sides.
Know more about coefficient:
https://brainly.com/question/12318261
#SPJ2
What does this diagram represent?
Answer:
Linear molecule with two domains
Explanation:
what’s the most abundant isotope of lawrencium
Answer:
266Lr
Thirteen isotopes of lawrencium are currently known; the most stable is 266Lr with a half-life of 11 hours, but the shorter-lived 260Lr (half-life 2.7 minutes) is most commonly used in chemistry because it can be produced on a larger scale.
Explanation:
hopefully that helps you
H3C - CH2 - CEC - CH3
Compound name
Answer:
2-pentene
hope this helps :)
Explanation:
the kind of bond present in CUSO4.5H20
Answer:
Both ionic bonds and covalent bonds (coordinate and non-coordinate) are present in crystalline [tex]\rm CuSO_4\cdot 5\, H_2O[/tex].
Explanation:
[tex]\rm CuSO_4\cdot 5\, H_2O[/tex] can be formed by adding water to the anhydrous salt [tex]\rm CuSO_4[/tex].
[tex]\rm CuSO_4[/tex] itself is an ionic compound consisting of [tex]\rm Cu^{2+}[/tex] ions and [tex]\rm {SO_4}^{2-}[/tex] ions. Ionic bonds are present between these ions. However, within each sulfate [tex]\rm {SO_4}^{2-}[/tex] ion, covalent bonds connect the central sulfur atom to each of the oxygen atoms.
Water molecules [tex]\rm H_2O[/tex] are highly polar. Partial negative charges surround the oxygen atom in each water molecule.
When water is added to anhydrous [tex]\rm CuSO_4[/tex], the negatively-charged portion of these [tex]\rm H_2O\![/tex] molecules would be attracted to the positively-charged [tex]\rm Cu^{2+}[/tex] ions in [tex]\rm CuSO_4\![/tex].
Lone pairs on oxygen atoms in [tex]\rm H_2O\!\![/tex] would form coordinate covalent bonds with [tex]\rm Cu^{2+}\![/tex] ions. (These bonds are considered "coordinate" because both electrons in each of these bonds come from the oxygen atom, not the [tex]\rm Cu^{2+}[/tex] ion.) That would produce coordination complexes with one [tex]\rm Cu^{2+}\!\![/tex] ion and five [tex]\rm H_2O\!\!\![/tex] "ligands" each.
Because the [tex]\rm H_2O[/tex] ligands carry no electric charge, each of these complexes would also carry a charge of [tex](+2)[/tex] (same as the charge on one [tex]\rm Cu^{2+}\!\![/tex] ion.) Ionic bonds would be present between the positively-charged coordination complexes and the negatively-charged [tex]\rm {SO_4}^{2-}[/tex] ions.
Summary:
Covalent bonds are present within [tex]\rm {SO_4}^{2-}[/tex] ions and [tex]\rm H_2O[/tex] ligands.Coordinate covalent bonds are present between [tex]\rm H_2O[/tex] ligands and [tex]\rm Cu^{2+}[/tex] ions.Ionic bonds are present between [tex]\rm {[Cu\, (H_2O)_5]}^{2+}[/tex] coordination complexes and sulfate ions [tex]\rm {SO_4}^{2-}[/tex].Which statement describes how this rock was likely formed?
slow cooling of magma beneath the surface of Earth
rapid cooling of magma beneath the surface of Earth
slow cooling of lava on the surface of Earth
rapid cooling of lava on the surface of Earth
I will mark Brainlyest
Answer:
A
Explanation:
Slow cooling of magma beneath the surface of earth
To solve this we must be knowing each and every concept related to rock and its formation. Therefore, the correct option is option A among all the given options.
What is rock?Rock is a naturally occurring mineral aggregate that is cohesive and composed of one or even more minerals. These aggregates often take the shape of recognisable and mappable volumes and are the fundamental building block of the solid Earth.
Mineral crystals as well as the sorts of rocks that serve as their hosts cycle through many forms as geologic materials. Temperature, weight, time, and variations in the climate in the Earth's crust and on its surface all play a role in the process. Slow cooling of magma beneath the surface of Earth is the statement that best describes the formation of rock.
Therefore, the correct option is option A.
To learn more about rock, here:
https://brainly.com/question/29767269
#SPJ2
A hydrocarbon molecule contains carbon and hydrogen atoms in equal numbers. Its molar mass is 130.18 g/mol. What is the molecular formula for the hydrocarbon
Answer:
The molecular formula of the hydrocarbon is C10H10
Explanation:
Here, we are interested in finding the molecular formula for the hydrocarbon.
Since there are equal number of moles of carbon and hydrogen, then we have the molecular formula looking like;
CnHn
Kindly recall that the atomic mass of carbon is 12 a.m.u while that of hydrogen is 1 amu
so calculating the atomic mass of the compound, we have;
12(n) + 1(n) = 130.18
13n = 130.18
n = 130.18/13
n = 10.01
So the molecular formula will be C10H10
Answer:
C10H10
Explanation:
A hydrocarbon is a binary compound of carbon and hydrogen. Hence a hydrocarbon is a compound of the general formula (CH)n
Thus;
(12 + 1) n = 130.18
n= 130.18/13
n = 10
Hence the molecular formula of the compound is C10H10
These are two metamorphic rocks.
Left: red and white rock with rounded grains and coarse texture. Right: flat, gray rock composed of thin layers.
Which statement about the rocks is accurate?
The rock on the right is foliated.
The rock on the left formed from granite.
The rock on the left is formed from cooled magma.
The rock on the right has randomly arranged grains.
Answer:
A. the rock on the right is foliated
Explanation:
because if you look at the image then you see that the rock is arranged in layers so you can see that it is a foliated rock and also I got it right on my quiz
HOPE IT HELPS!!!
help me please i’ll give u a good rating
Answer:
d
Explanation:
For each of the following molecules draw the Lewis structure on a separate sheet of paper. MAKE SURE TO FOLLOW THE RULES FROM CLASS (ie do not break the octet rule unless necessary to connect all the atoms). Then based on your structure indicate:
the total number of valence electrons.
the electronic and molecular shapes (choose from: linear, trigonal planar, bent, tetrahedral, trigonal pyramidal, trigonal bipyramidal, seesaw, T-shaped, octahedral, square pyramidal, or square planar).
whether or not the molecule is polar (Y/N).
Note: The central atom is the first atom listed, except for HCN, H2CO, and OCN-, where carbon is the central atom (underlined).
Formula Valence electrons Electronic Shape Molecular Shape Polar (Y/N)
HCN
PH3
CHCl3
NH4+
H2CO
SO42-
SeF2
CO2
O2
ClO4-
HBr
PF5
BeH2
PO43-
BH3
Br3-
Answer:
Kindly check the explanation section.
Explanation:
Without mincing words let us dive right into the solution to the question above, taking each compound at a time.
NB: Kindly Check attachment for the Lewis Structure of each of the chemical compounds.
Therefore, the number of valence electrons, electronic shape, molecular shape and whether the molecules are polar(Polarity) is given below for each chemical compound.
(1). Compound: HCN
(a). number of valence electrons = 10.
(b). electronic shape =linear.
(c). molecular shape = linear.
(d). Polarity = Y.
(2). Compound: PH3
(a). number of valence electrons = 8.
(b). electronic shape = Tetrahedral.
(c). molecular shape = Trigonal Pyramidal.
(d). Polarity = Y.
(3). Compound: CHCl3.
(a). number of valence electrons = 26.
(b). electronic shape = tetrahedral.
(c). molecular shape = tetrahedral.
(d). Polarity = Y.
(4). Compound: NH4^+
(a). number of valence electrons = 8
(b). electronic shape = tetrahedral
(c). molecular shape = tetrahedral
(d). Polarity = Y.
(5). Compound: H2CO
(a). number of valence electrons = 12.
(b). electronic shape = Trigonal planar.
(c). molecular shape = Trigonal planar
(d). Polarity = Y.
(6). Compound: SO4^2-
(a). number of valence electrons = 32.
(b). electronic shape = Tetrahedral.
(c). molecular shape = Tetrahedral.
(d). Polarity = N.
(7). Compound: SeF2.
(a). number of valence electrons = 20.
(b). electronic shape = Tetrahedral.
(c). molecular shape = bent.
(d). Polarity = Y.
(8). Compound: CO2.
(a). number of valence electrons = 16.
(b). electronic shape = linear.
(c). molecular shape = linear.
(d). Polarity = N.
(9). Compound: O2
(a). number of valence electrons = 32.
(b). electronic shape = Trigonal planar.
(c). molecular shape = Linear.
(d). Polarity = N.
(10). Compound: ClO4-.
(a). number of valence electrons = 32.
(b). electronic shape = Tetrahedral.
(c). molecular shape = Tetrahedral.
(d). Polarity = N.
(11). Compound: HBr.
(a). number of valence electrons = 8.
(b). electronic shape = Linear.
(c). molecular shape = Linear.
(d). Polarity = Y.
(12). Compound: PF5.
(a). number of valence electrons = 40.
(b). electronic shape = Trigonal Bipyramidal.
(c). molecular shape = Trigonal Bipyramidal.
(d). Polarity = N.
(13). Compound: BeH2.
(a). number of valence electrons = 4.
(b). electronic shape = Linear.
(c). molecular shape = Linear.
(d). Polarity = N.
(14). Compound: PO4^3-.
(a). number of valence electrons = 32.
(b). electronic shape = Tetrahedral.
(c). molecular shape = Tetrahedral.
(d). Polarity = N.
(15). Compound: BH3.
(a). number of valence electrons = 6.
(b). electronic shape = Trigonal planar.
(c). molecular shape = Trigonal planar.
(d). Polarity = N
(16). Compound: Br3-.
(a). number of valence electrons = 32.
(b). electronic shape = Trigonal Bipyramidal.
(c). molecular shape = Linear.
(d). Polarity = N.
WHOEVER ANSWERS THIS GETS A SHOUTOUT ON INSTA LIKE I DONT EVEN CARE HELP
The heater used in a 4.33 m x 3.43 m x 3.03 m dorm room uses the combustion of natural gas (primarily methane gas) to produce the heat required to increase the temperature of the air in the dorm room. Assuming that all of the energy produced in the reaction goes towards heating only the air in the dorm room, calculate the mass of methane required to increase the temperature of the air by 7.35 °C. Assume that the specific heat of air is 30.0 J/K-mol and that 1.00 mol of air occupies 22.4 L at all temperatures. Enthalpy of formation values can be found in this table. Assume gaseous water is produced in the combustion of methane.
Answer:
The answer is 7.89
Explanation:
Mass of methane required to increase the temperature of the air in the room by 7.35 °C is 7.95 g
The volume of air in the room is first calculated:
Volume of air in the room = 4.33 m x 3.43 m x 3.03 = 45.00 m³
1 m³ = 1000 L
45.00 m³ = 45.00 m³ * 1000 L/m³
Volume of air in L = 45000 L
Number of moles of air in 45000 L of air is then determined:
1.00 moles of air occupies 22.4 L
number of moles of air in 45000 L = 45000 L * 1 mole / 22.4 L
number of moles of air = 2008.93 moles of air
Energy that is needed to heat the room by 7.35 °C is then calculated:
Quantity of energy needed = Specific heat capacity * number of moles * temperature increase
Specific heat capacity of air = 30.0 J/K/mole
Quantity of energy needed = 30.0 * 2008.93 * 7.35
Quantity of energy needed = 442969.065 J = 443.00 kJ
The amount of methane required to produce that amount of energy is then calculated:
Equation of combustion of methane : CH₄ + 2 O₂ ---> CO₂ + 2 H₂O
Enthalpy of combustion of methane = −890.3 kJ/mole
Number of moles of methane required = 443.00 kJ / 890.8 kJ/mole = 0.497 moles
Mass of 1 mole of methane = 16.0 g
mass of 0.497 moles of methane = 16.0 * 0.497 = 7.95 g
Therefore, mass of methane required to increase the temperature of the air in the room by 7.35 °C is 7.95 g
Learn more at: https: brainly.com/question/4213585
The pH of a solution of 19.5 g of malonic acid in 0.250 L is 1.47.The pH of a 0.300 M Solution of sodium hydrogen malonate is 4.26. What are the values of Ka1and Ka2
Answer:
[tex]Ka_1=1.61x10^{-3}[/tex]
[tex]Ka_2=1.01x10^{-8}[/tex]
Explanation:
Hello.
In this case, since the stepwise dissociation of malonic acid which is a diprotic acid that we are going to symbolize by H₂A, is:
[tex]H_2A\rightleftharpoons H^++HA^-;Ka_1\\\\HA^-\rightleftharpoons H^++A^-;Ka_2[/tex]
The first ionization has the following equilibrium expression:
[tex]Ka_1=\frac{[H^+][HA^-]}{[H_2A]}[/tex]
Whereas the concentration of H⁺ equals the concentration of HA⁻ and is computed via the pH:
[tex][H^+]=[HA^-]=10^{-pH}=10^{-1.47}=0.0339M[/tex]
Next, we compute the molarity of the 19.5 g of malonic acid (molar mass = 104.06 g/mol) as shown below:
[tex][H_2A]=\frac{19.5g/(104.06 g/mol)}{0.250L}=0.750M[/tex]
Thus, Ka1 turns out:
[tex]Ka_1=\frac{(0.0339)(0.0339)}{0.750-0.0339}=1.61x10^{-3}[/tex]
Now, for the second ionization, since the 0.300-M sodium hydrogen malonate is the source of HA⁻, and the pH is 4.26, we can compute the concentration of both H⁺ and A⁻² again by considering the pH:
[tex][H^+]=[A^-^2]=10^{-4.26}=5.50x10^{-5}M[/tex]
Therefore Ka2 turns out:
[tex]Ka_2=\frac{[H^+][A^{-2}]}{[HA^-]}=\frac{(5.50x10^{-5})(5.50x10^{-5})}{0.300-(5.50x10^{-5})}\\ \\Ka_2=1.01x10^{-8}[/tex]
Best regards!
Label each of the following changes as a physical change or chemical change. Give evidence to support your answer.
A catalytic converter changes nitrogen dioxide to nitrogen gas and oxygen gas
Answer:
A catalytic converter changes nitrogen dioxide to nitrogen gas and oxygen gas is a chemical change.
Explanation:
Hello.
In this case, since physical changes do not modify the molecular composition and structure of the material undergoing it whereas the chemical change does, for catalytic converters we should know they promote chemical reaction in which the composition is changed; for instance, for the given example, the following chemical reaction is the evidence:
[tex]2NO_2\rightarrow N_2+O_2[/tex]
As you can see, nitrogen and oxygen are no longer bonded but separated by themselves, therefore, this is a chemical change.
Best regards.
What is the frequency of a wave having 4.90 x 10 -12 J of energy?
Answer:
The answer is
[tex] \huge 7.40 \times {10}^{21} Hz[/tex]
Explanation:
To find the frequency of the wave we use the formula
[tex]f = \frac{E}{h} \\ [/tex]
where
E is the energy
f is the frequency
h is the Planck's constant which is
6.626 × 10-³⁴ Js
From the question
E = 4.90 × 10-¹² J
So we have
[tex]f = \frac{4.90 \times {10}^{ - 12} }{6.626 \times {10}^{ - 34} } \\ [/tex]
We have the final answer as
[tex]7.40 \times {10}^{21} \: \: Hz[/tex]
Hope this helps you
For the solution resulting from dissolved 0.32 g of naphthalene (C10H8) in 25 g of benzene (C6H6) at temperature of 26.1°C, calculate the vapor pressure lowering, the boiling point elevation, and the freezing point depression. The vapor pressure of benzene at the temperature of the experiment is 100 torr. (Kf of benzene = 2.67 °C/m, Kb of benzene = 5.12 °C/m)
Answer:
See explanation
Explanation:
Number of moles of naphthalene = 0.32g/128.1705 g/mol = 0.0025 moles
Molality = number of moles/ mass of Solvent in kilograms
Molality = 0.0025/0.025 Kg
Morality = 0.1 m
But
∆T= K × i × m
Where ∆T = boiling point elevation
i= number of particles (this is equal to 1 because naphthalene is molecular and not ionic)
m= molality of naphthalene = 0.1 m
K= boiling point elevation constant = 5.12 °C/m
∆T= 5.12 °C/m ×0.1 = 0.512°C
For freezing point depression
∆T= K× i × m
Where ∆T= freezing point depression
i= number of particles (this is equal to 1 because naphthalene is molecular and not ionic)
m= molality of naphthalene = 0.1 m
K= freezing point depression constant = 2.67 °C/m
∆T= 2.67 °C/m ×0.1 = 0.267°C
From Raoult's law;
∆P = XBPA°
Where;
∆P = vapour pressure lowering
XB = mole fraction of solute
PA° = vapour pressure of pure solvent
Number of moles of solvent = mass/molar mass = 25g/ 78 g/mol= 0.3205 moles
Total number of moles = number of moles of solute + number of moles of solvent = 0.0025 moles + 0.3205 moles = 0.323 moles
Mole fraction of solute = 0.0025 moles/0.323 moles = 0.0077
Vapour pressure of benzene = 100 torr
Therefore;
∆P = 0.0077 × 100torr = 0.77 torr
Hence;
∆P = 0.77 torr
How many milliliters of 10.7 M perchloric acid solution should be used to prepare 5.50 L of 0.200 M
Answer:
102.8 mL.
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M1) = 10.7 M
Molarity of diluted solution (M2) = 0.2 M
Volume of diluted solution (V2) = 5.5 L
Volume of stock solution needed (V1) =.?
The volume of the stock solution needed can be obtained by using the following formula:
M1V1 = M2V2
10.7 × V2 = 0.2 × 5.5
10.7 × V2 = 1.1
Divide both side by 10.7
V2 = 1.1 / 10.7
V2 = 0.1028 L
Finally, we shall convert 0.1028 L to millilitres (mL) in order to obtain the desired result. This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.1028 L = 0.1028 L × 1000 mL / 1 L
0.1028 L = 102.8 mL
Therefore, 0.1028 L is equivalent to 102.8 mL.
Thus, 102.8 mL of the stock solution (i.e perchloric acid) is needed.