I need help with this
[tex] \sqrt[3]{4} \times \sqrt{3} [/tex]
25 points.​

I Need Help With This [tex] \sqrt[3]{4} \times \sqrt{3} [/tex]25 Points.

Answers

Answer 1

Step-by-step explanation:

[tex]\sqrt[3]{4}[/tex][tex]\\\sqrt{3}[/tex]=[tex]\sqrt[6]{432}[/tex]

[tex]4^{1/3}[/tex][tex]3^{1/2}[/tex]=[tex]432^{1/6}[/tex]

Hope that helps :)


Related Questions

A blue and red dice are thrown simultaneously. Let A: the outcomes on the two dice are the same; B: the value on the red dice is greater or equal to the value on the blue dice. 4.1 Write down the sample pace for the experiment, and list events A and B in terms of set notation. 4.2 Determine P(A),P(B) and P(A|B)

Answers

P(A) = 6/36 = 1/6, P(B) = 21/36 = 7/12, P(A|B) = P(A∩B) / P(B) = 6/36 / 21/36 = 6/21 = 2/7.  The outcomes in both A and B are: {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}. The number of outcomes in A and B = 6.

4.1 Sample Space and Events in Set Notation:

When a blue and red die are thrown simultaneously, the sample space, denoted by S, consists of all possible outcomes. Since each die has six faces numbered 1 to 6, there are 36 possible outcomes in total.

Sample Space (S): {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

Event A represents the outcomes where the values on both dice are the same:

A = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}

Event B represents the outcomes where the value on the red die is greater than or equal to the value on the blue die:

B = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (4,4), (4,5), (4,6), (5,5), (5,6), (6,6)}

4.2 Calculating Probabilities:

P(A): To find the probability of event A, we divide the number of favorable outcomes (6) by the total number of outcomes (36).

P(A) = 6/36 = 1/6

P(B): To find the probability of event B, we divide the number of favorable outcomes (21) by the total number of outcomes (36).

P(B) = 21/36 = 7/12

P(A|B): To find the conditional probability of event A given event B, we need to find the probability of A and B occurring together and divide it by the probability of event B.

The outcomes in both A and B are: {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}

The number of outcomes in A and B = 6.

P(A|B) = P(A∩B) / P(B) = 6/36 / 21/36 = 6/21 = 2/7

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Classify the sequence as arithmetic or geometric; then write a rule for the nth term. 900,450,225,

Answers

Geometric sequence with a common ratio of 1/2. Rule for the nth term: an = 900  (1/2)^(n-1).

A sequence is considered arithmetic if the difference between consecutive terms is constant, and it is geometric if the ratio between consecutive terms is constant. In the given sequence, we can observe that each term is half of the previous term, indicating a constant ratio of 1/2.

To find the rule for the nth term of a geometric sequence, we start with the first term and multiply it by the common ratio raised to the power of (n-1), where n represents the position of the term. In this case, the first term is 900, and the common ratio is 1/2. Therefore, the rule for the nth term of the sequence is an = 900 (1/2)^(n-1).

Using this rule, we can find any term in the sequence by substituting the corresponding value of n into the formula. For example, the third term can be found by setting n = 3: a3 = 900 (1/2)^(3-1) = 225.

Learn more about geometric sequence here:

https://brainly.com/question/27852674

#SPJ11

(i) Find the roots of f(x) = x3 – 15x – 4 using the cubic formula. : (ii) Find the roots using the trigonometric formula.

Answers

The roots using the trigonometric formula is -2 + √3

What is the cubic formula?

The cubic formula is ax3 + bx2 + cx + d = 0. There is a wondering relation between the roots and the coefficients of a cubic polynomial.

The given function is

f(x) = x3 – 15x – 4

Using the Cardanos method we have

[tex]\sqrt[3]{2+11i} + \sqrt[3]{2-11i}[/tex]

Recall that the sum of the cubic root u of 2+11i with a cubic root u of 2-11i

Such that uv = -15/3 = 5

Now take u = 2+i and v = 2-i The indeed u³ = 2+11i, v³ = 2+11i and uv = 5

Therefore, 4(-u+v) is a root

But now take ω = -1/2 + √3/2i, Then ω² = -1/2 - √3i/2, ω = 1

and if you take u' = ωu, v' ω²v

u'' = ω²u, and v'' = ∈v

Then u' +v and u'' +v'' will be roots too

This means that -2±√3, v' + u' = -2 √3 and u'' + v'' = -2 +√3

Learn more about the cubic formula on https://brainly.com/question/27377982

#SPJ4

YALL JHITTS GO ADD MY T IK T OK

ITS >. * twoplayaany*

im following back

Answers

Answer:

Okay bestie ‼️

Step-by-step explanation:

help plsss. marking brainliest

Answers

Answer:

1. 3

2. 1

Step-by-step explanation:

Answer:

1.3. now mark brainlieet plsssssssssss like you said you would

In recent years the interest rate on home mortgages has declined to less than 6.0 percent. However, according to a study by Federal Reserve Board the rate charge on credit card debit is more than 14 percent. Listed below is the interest rate charged on a sample of 10 credit cards. 14.6 16.7 17.4 17.0 17.8 15.4 13.1 15.8 14.3 14.5 Is it reasonable to conclude the mean rate charged is greater than 14 percent? Use the 0.01 significance level. Assume the interest rate on home mortgages is normally distributed.

Answers

We can conclude that, at the 0.01 significance level, there is sufficient evidence to support the claim that the mean rate charged on credit cards is greater than 14%.

How to calculate the value

The test statistic is calculated as follows:

t = (x - μ) / (s / √n)

In this case, the sample mean is 15.66%, the sample standard deviation is 1.544%, and the sample size is 10. Plugging these values into the formula for the test statistic, we get:

t = (15.66 - 14) / (1.544 / √10)

= 3.4

The critical value is the value of the test statistic that separates the rejection region from the non-rejection region. The critical value for a two-tailed test with a significance level of 0.01 and 9 degrees of freedom (10 - 1 = 9) is 2.821.

Since the test statistic (3.4) is greater than the critical value (2.821), we reject the null hypothesis. This means that there is sufficient evidence to conclude that the mean rate charged is greater than 14%.

We can conclude that, at the 0.01 significance level, there is sufficient evidence to support the claim that the mean rate charged on credit cards is greater than 14%.

Learn more about hypothesis on

https://brainly.com/question/11555274

#SPJ4


The quotient of 5 and the sum of 10 and twice y.

Answers

Answer:

2y + 10 / 5

Step-by-step explanation:

Quotient tells you you're dividing. Sum of 10 means add that to whatever else they say. Twice y = 2y.

Please lmk if you have questions.

Read the excerpt from The Fellowship of the Ring. On this occasion the presents were unusually good. The hobbit-children were so excited that for a while they almost forgot about eating. There were toys the like of which they had never seen before, all beautiful and some obviously magical. Many of them had indeed been ordered a year before, and all the way from the Mountain and from Dale, and were of real dwarf-make. Which detail in the excerpt identifies it as fantasy? Great presents are given at the party. The children almost forget to eat. Some of the toys are magical. The gifts have been ordered very early.

Answers

Answer:

c. some of the toys are magical

Step-by-step explanation:

The detail in the excerpt that identifies it as fantasy is "Some of the toys are magical." The correct option is 3.

What is The Fellowship of the Ring about?

J.R.R. Tolkien's novel The Fellowship of the Ring was published in 1954. The Lord of the Rings is the first book in the epic fantasy series.

"Some of the toys are magical," says the excerpt, identifying it as fantasy. Magical toys imply the presence of magical elements in the story, which is a common feature of fantasy literature.

Other details, such as great gifts being given at a party and the children almost forgetting to eat, are not necessarily unique to fantasy and could be found in other genres.

The fact that the toys were ordered from the Mountain and Dale a year before.

Thus, the correct option is 3.

For more details regarding The Fellowship of the Ring, visit:

https://brainly.com/question/30387224

#SPJ3

Which sentence is TRUE ??

Answers

Answer:

the bottom choice

Please help me
Find the surface area
If you can explain to that would be great if not that’s fine
4 m
12 m
18 m

Answers

Answer

672 meters²

Step-by-step explanation:

2×(18×12 + 18×4 + 12×4) = 672 meters²

hope this helps :))

On average, a banana will last 6.2 days from the time it is purchased in the store to the time it is too rotten to eat. Is the mean time to spoil less if the banana is hung from the ceiling? The data show results of an experiment with 16 bananas that are hung from the ceiling. Assume that that distribution of the population is normal.

3.9, 4.9,5.1, 3.9, 4, 5.8, 7, 5, 3.6, 4.3, 4.4, 6, 6.8, 6.7, 7.1, 5.2

What can be concluded at the the α = 0.05 level of significance level of significance?

Answers

Using a one-sample t-test, we cannot conclude that the mean time to spoil is significantly different when bananas are hung from the ceiling.

One sample t-test

3.9, 4.9, 5.1, 3.9, 4, 5.8, 7, 5, 3.6, 4.3, 4.4, 6, 6.8, 6.7, 7.1, 5.2

We can calculate the sample mean and sample standard deviation:

Sample mean (x) = (3.9 + 4.9 + 5.1 + 3.9 + 4 + 5.8 + 7 + 5 + 3.6 + 4.3 + 4.4 + 6 + 6.8 + 6.7 + 7.1 + 5.2) / 16 = 5.3

Sample standard deviation (s) = √[(Σ(xi - x)²) / (n - 1)] = √[(Σ( - 5.3)²) / 15] ≈ 1.273

We will perform a one-sample t-test using the null hypothesis (H0) that the mean time to spoil is equal to 6.2 days, and the alternative hypothesis (H1) that the mean time to spoil is less than 6.2 days.

The test statistic is calculated as:

t = (x - μ) / (s / √n)

Where μ is the hypothesized mean (6.2), s is the sample standard deviation (1.273), and n is the sample size (16).

Plugging in the values:

t = (5.3 - 6.2) / (1.273 / √16) ≈ -0.887

To determine the critical t-value for a one-tailed test at α = 0.05 level of significance with 15 degrees of freedom (n - 1), we refer to the t-distribution table or use statistical software. The critical t-value is approximately -1.753.

Since the test statistic (-0.887) does not exceed the critical t-value (-1.753), we fail to reject the null hypothesis. This means that there is not enough evidence to conclude that the mean time to spoil is less when bananas are hung from the ceiling compared to the average time of 6.2 days, at the α = 0.05 level of significance.

Therefore, we cannot conclude that the mean time to spoil is significantly different when bananas are hung from the ceiling.

Learn more on normal distribution: https://brainly.com/question/15414435

#SPJ1

whats 194 divided by 32

Answers

6.0625 is your answer

The assembly time for a product is uniformly distributed between 6 to 10 minutes. The probability of assembling the product in 8 minutes or less is a. 0.25 b. 0.75 c. 0.5 d. 1.5

Answers

The assembly time for a product is uniformly distributed between 6 to 10 minutes.

The probability of assembling the product in 8 minutes or less is 0.5 (option c).

Solution: Given, the assembly time for a product is uniformly distributed between 6 to 10 minutes. The range is a = 6 to b = 10.The probability of assembling the product in 8 minutes or less is to be determined.

Let's calculate the probability using the formula:  P(x < or = 8) = (x - a) / (b - a)Here, a = 6, b = 10, and x = 8.P(x < or = 8) = (8 - 6) / (10 - 6) = 2 / 4 = 0.5Therefore, the probability of assembling the product in 8 minutes or less is 0.5. So, the correct option is (c) 0.5.

To know more about probability refer to:

https://brainly.com/question/27342429

#SPJ11

i need help!!!! i have to identify the area and i forgot how to do it and it was due 2 days ago!

Answers

Answer: I think B is the answer.

Step-by-step explanation:

Answer:not sure but

Step-by-step explanation: you can multiply each box, so lets say we have 20 times 7cm you multiply that and you get your answer, so put that a side

and once you multiply in each box add the numbers up and that should get your answer and make sure to add the "cm" at the end

Evaluate ∫ x ds, where C is a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6) b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Answers

To evaluate the integral ∫ x ds, we need to parameterize the given curves and compute the arc length integral. In part (a), we evaluate the integral for the straight line segment from (0, 0) to (12, 6). In part (b), we evaluate the integral for the parabolic curve from (0, 0) to (2, 12).


(a) For the straight line segment x = t, y = t/2 from (0, 0) to (12, 6), we can parameterize the curve as follows: x = t, y = t/2. The differential arc length element ds is given by ds = √(dx² + dy²). Substituting the parameterizations, we have ds = √(dt² + (dt/2)²) = √(5/4 dt²). Thus, the integral becomes ∫ x ds = ∫ t √(5/4 dt²) = ∫ t (√5/2) dt. Integrating with respect to t from 0 to 12, we get (√5/2) ∫ t dt = (√5/2) (t²/2) evaluated from 0 to 12. Evaluating this expression, we find that the integral is equal to (√5/2) (144/2) = 36√5.
(b) For the parabolic curve x = t, y = 3t² from (0, 0) to (2, 12), we can parameterize the curve as before: x = t, y = 3t². The differential arc length element ds is given by ds = √(dx² + dy²). Substituting the parameterizations, we have ds = √(dt² + (6t dt)²) = √(1 + 36t²) dt. Thus, the integral becomes ∫ x ds = ∫ t √(1 + 36t²)dt. Integrating with respect to t from 0 to 2, we can use techniques like substitution or numerical methods to evaluate the integral and obtain the result.

Learn more about parabolic curves here
https://brainly.com/question/14680322



#SPJ11

What is the equation in point-slope form of the line passing through (0,5) and (-2, 11)?
Oy-5=-3(x + 2)
Oy-5= 3(x + 2)
Oy - 11 = -3(x - 2)
Oy - 11 = -3(x + 2)

Answers

Answer: y-11 = -3(x+2)

Find the distance between the points (–7,–9) and (–2,4).

Answers

Answer:

13.93

Step-by-step explanation:

see attached for explanation

Let f and g be functions defined on R" and c a real number. Consider the following two problems, Problem 1: max f(x) and Problem 2: max f(x) subject to g(x) = c. 1. Any solution of problem 1 is also a solution of problem 2. True or false? 2. If Problem 1 does not have a solution, then Problem 2 does not have a solution. True or false? 3. Problem 2 is equivalent to min - f(x) subject to g(x) = c. True or false? 4. In Problem 2, quasi-convexity of f is a sufficient condition for a point satisfying the first-order conditions to be a global minimum. True or false? 5. Consider the function f(x,y) = 5x - 17y. f is a) quasi-concave b) quasi-convex c) quasi-concave and quasi-convex d) no correct answer

Answers

True. Any solution of Problem 1 (max f(x)) is also a solution of Problem 2 (max f(x) subject to g(x) = c).

True. If Problem 1 does not have a solution, then Problem 2 does not have a solution.

True. Problem 2 (max f(x) subject to g(x) = c) is equivalent to min -f(x) subject to g(x) = c.

False. In Problem 2, the quasi-convexity of f is not a sufficient condition for a point satisfying the first-order conditions to be a global minimum.

The function f(x,y) = 5x - 17y is quasi-concave.

Any solution that maximizes f(x) will also satisfy the constraint g(x) = c. Therefore, any solution of Problem 1 is also a solution of Problem 2.

If Problem 1 does not have a solution, it means that there is no maximum value for f(x). In such a case, Problem 2 cannot have a solution since there is no maximum value to subject to the constraint g(x) = c.

Problem 2 can be reformulated as finding the minimum of -f(x) subject to the constraint g(x) = c. This is because maximizing f(x) is equivalent to minimizing -f(x) since the maximum of a function is the same as the minimum of its negative.

False. Quasi-convexity of f is not a sufficient condition for a point satisfying the first-order conditions to be a global minimum in Problem 2. Quasi-convexity guarantees that local minima are also global minima, but it does not ensure that the point satisfying the first-order conditions is a global minimum.

The function f(x,y) = 5x - 17y is quasi-concave. A function is quasi-concave if the upper contour sets, which are defined by f(x,y) ≥ k for some constant k, are convex. In this case, the upper contour sets of f(x,y) = 5x - 17y are convex, satisfying the definition of quasi-concavity.

Learn more about function  here :

https://brainly.com/question/31062578

#SPJ11

1) According to one study, brain weights of men are normally distributed with a mean of 1.10 kg and a standard deviation of 0.14 kg. Use the data to answer questions (a) through (e).

a. Determine the sampling distribution of the sample mean for samples of size 3.

b. Determine the sampling distribution of the sample mean for samples of size 12.

d. Determine the percentage of all samples of three men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg.

e. Determine the percentage of all samples of twelve men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg.

_________________________________________

2) According to a study, brain weights of men in country A are normally distributed with mean 1.60 kg and standard deviation 0.12 kg. Apply the 68.26-95.44-99.74 rule to fill in the blanks.

68.26% of men in country A have brain weights between ___ kg and __kg

_____________________________________________

Answers

a) Sample distribution follows normal distribution with mean( μ) = 1.10 kg,

and standard deviation σ = 0.081

b) Sample distribution follows normal distribution with mean( μ)  = 1.10 kg,

and standard deviation σ = 0.04

d) The percentage of all samples of three men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg is 79.77%.

e) The percentage of all samples of twelve men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg is 99.3%.

2) 68.26% of men in country A have brain weights between 1.48 kg and 1.72 kg.

Solution:

Population standard deviation is the measure of how spread out the population data is. It measures the difference of the individual items from the mean. A standard deviation is a statistic that measures the dispersion of a dataset relative to its mean. It is calculated as the square root of variance by determining the variation between each data point relative to the mean.

1)

Given mean = 1.10 kg, standard deviation = 0.14 kg

a) To find the sampling distribution of the sample mean for samples of size 3.

Standard error of mean = σ/√n

= 0.14/√3

=0.081

Sample distribution follows normal distribution with mean( μ) = 1.10 kg,

and standard deviation σ = 0.081

b) To find the sampling distribution of the sample mean for samples of size 12.

Standard error of mean = σ/√n

= 0.14/√12

= 0.04

Sample distribution follows normal distribution with mean( μ)  = 1.10 kg,

and

standard deviation σ = 0.04

d) Determine the percentage of all samples of three men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg.

Sample distribution follows normal distribution with mean( μ)  = 1.10 kg,

and

standard deviation σ = 0.081

Z = (x - μ) / σZ

= (1.1 + 0.1 - 1.1) / 0.081

= 1.23

Z = (1.1 - 0.1 - 1.1) / 0.081

= -1.23

P ( -1.23 < Z < 1.23) = 0.7977

The percentage of all samples of three men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg is 79.77%.

e) Determine the percentage of all samples of twelve men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg.

Sample distribution follows normal distribution with mean( μ )= 1.10 kg,

and

standard deviation σ = 0.04

Z = (x - μ) / σ

Z = (1.1 + 0.1 - 1.1) / 0.04

= 2.5

Z = (1.1 - 0.1 - 1.1) / 0.04 = -2.5

P ( -2.5 < Z < 2.5) = 0.993

The percentage of all samples of twelve men that have mean brain weights within 0.1 kg of the population mean brain weight of 1.10 kg is 99.3%.

2)

Given mean = 1.60 kg,

standard deviation = 0.12 kg

68.26% of men in country A have brain weights between μ - σ and μ + σ

68.26% of men in country A have brain weights between 1.48 kg and 1.72 kg.

To know more about standard deviation, visit:

https://brainly.com/question/29808998

#SPJ11


The graph of the function f(x) = ax^2 + bx + c has vertex at (0, 2) and passes through the point
(1, 8). Find a, b and c

Answers

Answer:

Step-by-step explanation:

You need to use vertex form of a quadratic to solve this.

Consider the vertex to be [tex](h,k)[/tex]

Another way of representing a quadratic is in "vertex form":

[tex]f(x) = a(x-h)^2+k[/tex]

Now all you have to do is solve for a.  You know that the vertex is [tex](0,2)[/tex] and you have know the point of [tex](1,8)[/tex].  Now, all you have to do is plug in these values and solve for a.

[tex]8 = a(1-0)^2+2\\8=a(1)^2+2\\8=a+2\\a=6[/tex]

Now you know the equation is [tex]f(x) = 6(x-0)^2+2[/tex] , but you need it in quadratic form.  All you have to do is solve is distribute the 6:

[tex]6x^2+2[/tex]

You get:

a = 6

b = 0

c = 2

Please mark this as brainliest if it satisfies your question

Which rectangular equation represents the parametric equations x =t Superscript one-half and y = 4t? y = 4x2, for x ≥ 0 y = one-fourth x squared, for x greater-than-or-equal-to 0 y = 16x2, for x ≥ 0 y = StartFraction 1 Over 16 EndFraction x squared, for x greater-than-or-equal-to 0

Answers

Answer:

Answer is Option A

Step-by-step explanation:

the things people do for points smh :/

The rectangular equation which represents the parametric equations; x = t^(¹/2) and y = 4t is; y = 4x2, for x ≥ 0.

Rectangular Equation from Parametric equations

From the task content, it follows that the parametric equations given are;

x = t^(¹/2) and y = 4t

Hence, it follows that; t = x² and y= 4t

Ultimately, upon substitution of for t; the resulting rectangular equation is; y = 4t².

Read more on rectangular equations;

https://brainly.com/question/20338165


The hourly number of emergency telephone calls coming in to a police command and control centre has approximately a Normal distribution with mean of 130 and standard deviation of 25.
a) Assuming that calls arrive evenly throughout any hour and that one operator can deal with 24 calls in an hour, what is the probability that 6 operators will be able to deal with all the calls that arise in an hour? (30 marks)

b) Making the same assumptions as in (a), how many operators should there be to ensure that there is sufficient capacity to meet 95% of demand? (30 marks)

c) One possible scheme for increasing the efficiency of command and control centres is to combine the work of two such centres into one centre. For example, suppose a second centre has a similar workload to the one described above.
(i) Assuming that calls to the combined centre arrive evenly throughout any hour and that one operator can still deal with 24 calls in an hour, what is the probability that 12 operators will be able to deal with all the calls that arise in an hour? (20 marks)
(ii) Making the same assumptions again, how many operators should there be in the combined centre to ensure sufficient capacity to meet 95% of demand? (20 marks)

Answers

Given information: The hourly number of emergency telephone calls coming in to a police command and control center has approximately a normal distribution with a mean of 130 and standard deviation of 25. One operator can deal with 24 calls in an hour.

a) The probability that 6 operators will be able to deal with all the calls that arise in an hour is 0.7642.

b) The number of operators should be 203 to ensure that there is sufficient capacity to meet 95% of demand.

c) (i) The probability that 12 operators will be able to deal with all the calls that arise in an hour is 0.7852.

(ii) The number of operators should be 336 to ensure that there is sufficient capacity to meet 95% of demand.

a) Probability that 6 operators will be able to deal with all the calls that arise in an hour.

Mean, µ = 130, Standard Deviation, σ = 25.

Operator can deal with in an hour, n = 24.

Let X = number of emergency calls coming in an hour.

The number of emergency telephone calls coming in to a police command and control center in an hour can be assumed to be Poisson with λ = 130.

Since each operator can handle 24 calls in an hour, therefore, the number of operators required to handle all the calls can be obtained as follows: [tex]$$\frac{X}{24}$$[/tex].

This can be converted to a Standard Normal Variable Z using the formula:[tex]$$Z=\frac{(\frac{X}{24}-\mu)}{\sigma}$$[/tex].

Probability that 6 operators will be able to deal with all the calls that arise in an hour can be calculated as follows:

[tex]$$\begin{aligned} \frac{X}{24} &\leq 6 \\ X &\leq 6 \times 24 \\ X &\leq 144 \end{aligned}$$[/tex]

Now, we need to find the probability of Z ≤ [tex]$$(\frac{144}{24}-130)/25=0.72$$[/tex].

Using normal distribution tables, we get P(Z ≤ 0.72) = 0.7642.

Hence, the probability that 6 operators will be able to deal with all the calls that arise in an hour is 0.7642.

b) To find the number of operators should there be to ensure that there is sufficient capacity to meet 95% of demand.

Let X = number of emergency calls coming in an hour.

The number of emergency telephone calls coming in to a police command and control center in an hour can be assumed to be Poisson with λ = 130.

Since each operator can handle 24 calls in an hour, therefore, the number of operators required to handle all the calls can be obtained as follows:[tex]$$\frac{X}{24}$$[/tex].

This can be converted to a Standard Normal Variable Z using the formula:[tex]$$Z=\frac{(\frac{X}{24}-\mu)}{\sigma}$$[/tex].

To ensure sufficient capacity to meet 95% of demand, we need to find the value of X such that: P(X ≤ x) = 0.95.

Using the Z table, we can find that the probability of Z ≤ 1.645 is 0.95.

Now, we can use the formula:

[tex]$$\frac{X}{24}-130/25=1.645$$[/tex]

[tex]$$X= 1.645\times 25\times 24+130$$[/tex]

[tex]$$X=202.63$$[/tex]

Therefore, the number of operators should be 203 to ensure that there is sufficient capacity to meet 95% of demand.

c) Two centers are combined and let X_1 and X_2 be the number of calls at centers 1 and 2, respectively.

Then the total number of calls, X = X_1 + X_2, follows a normal distribution with

mean = 130 + 130

mean = 260, and

standard deviation = sqrt(25^2 + 25^2)

= 35.36

i) Probability that 12 operators will be able to deal with all the calls that arise in an hour can be calculated as follows:

[tex]$$\begin{aligned} \frac{X}{24} &\leq 12 \\ X &\leq 12 \times 24 \\ X &\leq 288 \end{aligned}$$[/tex]

Now, we need to find the probability of Z ≤ [tex]$$(\frac{288}{24}-260)/35.36=0.789$$[/tex].

Using normal distribution tables, we get P(Z ≤ 0.789) = 0.7852.

Hence, the probability that 12 operators will be able to deal with all the calls that arise in an hour is 0.7852.

ii) To ensure sufficient capacity to meet 95% of demand, we need to find the value of X such that: P(X ≤ x) = 0.95.

Using the Z table, we can find that the probability of Z ≤ 1.645 is 0.95.

Now, we can use the formula:

[tex]$$\frac{X}{24}-260/35.36=1.645$$[/tex]

[tex]$$X= 1.645\times 35.36\times 24+260$$[/tex]

[tex]$$X=335.58$$[/tex]

Therefore, the number of operators should be 336 to ensure that there is sufficient capacity to meet 95% of demand.

To know more about normal distribution, visit:

https://brainly.com/question/15103234

#SPJ11

Pls someone help me

Answers

Answer:

Step-by-step explanation:

455

You plan to manufacture a Product X in Cote d'Ivoire (one of the poorest nations in the world): 8,000 units in 1st year, 15,000 units in 2nd year, and 20,000 in 3rd year. Fixed costs (e.g. rent, insurance, salaries…) are $10,000 in 1st year, $12,000 in 2nd year, and $18,000 in 3rd year. You plan to purchase equipment to manufacture Product Xs at $12,000 (at Year zero), with the life of the equipment of 3 years. Apply the straight-line depreciation method.

Product X will be sold at $5 (no change in 3 years) each in over 12 African countries. Cost of Goods Sold (e.g. raw materials, packaging, direct labor) of each Product X is $3 (no change in 3 years). NGOs help you to distribute GPs to customers. The tax rate is 30%. The change in net working capital in the Year zero is -$10,000 and $10,000 in Year 3.

Assume the expected rate of return is 5%.

What is the operating cash flow (not to be confused with total projected cash flow!) in Year 1?

Group of answer choices

$5400

$6320

$7600

$8200

Answers

You plan to manufacture a Product X in Cote d'Ivoire, the operating cash flow in Year 1 is $6,320.

To calculate the operating cash flow in Year 1, we need to consider the following components: revenue, cost of goods sold (COGS), fixed costs, depreciation, taxes, and changes in net working capital.

Revenue: The revenue is calculated by multiplying the number of units sold by the selling price per unit. In this case, the revenue is 8,000 units x $5 = $40,000.

COGS: The cost of goods sold is the cost per unit multiplied by the number of units sold. Here, the COGS is 8,000 units x $3 = $24,000.

Fixed Costs: The fixed costs are given as $10,000.

Depreciation: Since the equipment has a life of 3 years and was purchased for $12,000, the annual depreciation expense is $12,000/3 = $4,000.

Taxes: The tax rate is 30%. We calculate the taxable income by subtracting the COGS, fixed costs, and depreciation from the revenue: $40,000 - $24,000 - $10,000 - $4,000 = $2,000. The tax liability is then $2,000 x 30% = $600.

Changes in Net Working Capital: The change in net working capital in Year 1 is -$10,000.

Now, we can calculate the operating cash flow: Operating Cash Flow = Revenue - COGS - Fixed Costs + Depreciation - Taxes + Changes in Net Working Capital = $40,000 - $24,000 - $10,000 + $4,000 - $600 - (-$10,000) = $6,320.

Therefore, the operating cash flow in Year 1 is $6,320.

Learn more about selling here:

https://brainly.com/question/27796445

#SPJ11

which equation has no real solutions?

2x²+2x+15=0

2x²+5x-3=0

x²+7x+2=0

x²-4x+2=0​

Answers

Answer:

A

Step-by-step explanation:

x=

−b±√b2−4ac

2a

x=

−(2)±√(2)2−4(2)(15)

2(2)

x=

−2±√−116

4

and there is really no solution

3. The experimental probability that Cindy will catch a fly ball is equal to 3. About what percent of the time will 7 Cindy catch a fly ball?

Answers

Correct question:

The experimental probability that Cindy will catch a fly ball is equal to 3/7. About what percent of the time will Cindy catch a fly ball?

Answer:

42.9%

Step-by-step explanation:

Given that:

Experimental probability of catching a fly is 3/7

This can be interpreted as : Out of 7 tries, Cindy caught a fly only 3 times

Expressing this as a percentage :

3/7 * 100%

0.4285714 * 100%

42.857%

= 42.9%

Hence, Cindy will catch a fly at about 42.9% of the time

When you reflect a shape, you (blank) over an axis or line.

Answers

Answer:

poison

Step by Step Explanation

When you reflect a shape, you flip over an axis or line, the answer is flip.

What is geometric transformation?

It is defined as the change in coordinates and the shape of the geometrical body. It is also referred to as a two-dimensional transformation. In the geometric transformation, changes in the geometry can be possible by rotation, translation, reflection, and glide translation.

As we know the reflection will change the orientation not the shape or size after reflection we will get mirror image of the body.

When you reflect a shape, you flip over an axis or line.

Thus, when you reflect a shape, you flip over an axis or line the answer is flip.

Learn more about the geometric transformation here:

brainly.com/question/16156895

#SPJ2

As part of a larger study investing attitudes towards relationships, a survey was administered to unmarried, currently married, and formerly married adults. First married adults had more positive perceptions of marriage than singles or remarried adults, F(2, 39) = 5.34, p = 042

Answers

It is clear that First-married adults had more positive perceptions of marriage than singles or remarried adults.

Attitudes towards relationships are often studied to determine how they affect people's perception of them. A survey was given to unmarried, currently married, and formerly married adults as part of a broader study of attitudes toward relationships. In this study, it was discovered that first-married adults had more positive attitudes toward marriage than single or remarried adults. The statistical values from the study are provided below:First married adults had more positive perceptions of marriage than singles or remarried adults, F(2, 39) = 5.34, p = 0.042.F stands for F-test, which is a statistical test used to compare whether the means of two or more groups differ from each other significantly. Here, the F-test indicated that there was a statistically significant difference in the attitudes of first-married adults, unmarried adults, and remarried adults towards marriage. Additionally, the p-value is 0.042, which indicates that there is a statistically significant difference between the groups' attitudes towards marriage.

To know more about perceptions :

https://brainly.com/question/27164706

#SPJ11

The sentence given "First married adults had more positive perceptions of marriage than singles or remarried adults, F(2, 39) = 5.34, p = 042" is a claim made in the larger study that was conducted investigating attitudes towards relationships.

The F(2, 39) = 5.34 indicates that the claim is statistically significant and the p-value is less than 0.05, which is the generally accepted level of significance, indicating that the findings are not due to chance.

The terms "part" and "positive" are related to the study but do not specifically apply to this claim. The claim made in this sentence is that first-married adults had more positive perceptions of marriage than singles or remarried adults. The F(2, 39) = 5.34 indicates that the claim is statistically significant. F-statistic is the ratio of between-group variance to within-group variance. Here, the between-group variance is the variance among the perceptions of different types of adults (i.e., first-married, singles, remarried) and the within-group variance is the variance within each group. Since the F-value is statistically significant, we can reject the null hypothesis and accept that there are differences in perceptions of different types of adults. The p-value is the probability of finding such results by chance. Here, the p-value is less than 0.05, which is the generally accepted level of significance, indicating that the findings are not due to chance.

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11

Let be a fixed vector in and vector be a solution to where Q is a m*n matrix.
Prove every solution to the equation is in the form?

Answers

Given a fixed vector b and a vector x is a solution to Qx = b, it is required to prove that every solution to the equation is in the form x = xh + xp where xh is a particular solution to Qx = b and xp is a solution to the equation Qxp = 0.

Let xh be a particular solution to Qx = b, so that Qxh = b.

Now consider the homogeneous equation Qx = 0.

This is an m × n system of homogeneous linear equations in the n unknowns x1, x2, ..., xn, whose coefficient matrix is Q.

Since xh is a solution to the equation Qx = b, it follows that the equation Q(x - xh) = Qx - Qxh = b - b = 0.

This means that x - xh is a solution to the homogeneous equation Qx = 0.

Now any solution to Qx = b is of the form x = xh + xp, where xp is any solution to the homogeneous equation Qxp = 0.

Thus, every solution to the equation is in the form x = xh + xp, as required.

Know more about vectors:

https://brainly.com/question/24256726

#SPJ11

The fourth-grade students are taking a field trip and need to rent minivans. Each minivan will hold 8 people. There are 135 people
going on the trip. How many people will not be able to go if they only rent 16 minivans?
A)6 people
B)7 people
C)8 people
D)9 people



HELP ASAP ILL GIVE BRAINLIEST

Answers

Answer:

B. 7 people

Step-by-step explanation:

If you multiply 8x16 you get: 128. Then you subtract 135 from 128 and get: 7.  Therefore, 7 people will not be able to go if they only rent 16 minivans.

Other Questions
The partnership of T. Rios and L. Sioux agree that the partnerswill share profits and losses in a 75% to 25% ratio, respectively.Rios' capital balances is $10,000 and Sioux's capital balance is$5,0 A 104 A current circulates around a 2.50-mm-diameter superconducting ring. What is the ring's magnetic dipole moment? Express your answer with the appropriate units Sample standard deviation for283,269,259,265,256,262,268 which of the following compounds is the most soluble? A. fes (ksp = 3.72 x 10-19) B. pbcro4 (ksp = 2.8 x 10-13) C. cr(oh)3 (ksp = 6.30 x 10-31) D. mnco3 (ksp = 2.24 x 10-11) E. laf3 (ksp = 2.0 x 10-19) wo sun blockers are to be compared. One blocker is rubbed on one side of a subjects back and the other blocker is rubbed on the other side. Each subject then lies in the sun for two hours. After waiting an additional hour, each side is rated according to redness. Subject No. 1 2 3 4 5 Blocker 1 2 7 8 3 5 blocker 2 2 5 4 1 3 According to the redness data, the research claims that blocker 2 is more effective than block 1. (a) Compute the difference value for each subject. (b) Compute the mean for the difference value. (c) Formulate the null and alternative hypotheses. (d) Conduct a hypothesis test at the level of significance 1%. (e) What do you conclude? 5. A machine cost 2550 on 1st January 2015, and 3930 on 1st January 2019. The average inflation rate over these four years was 7 % per year. What is true percentage increase in the cost of the machine from 2015 to 2019? (0.5 point) a. 14.95% b. 54.12% c. 7.00% d. 17.58% e. 35.11% 6. A corporation purchased a machine for 60000 five years ago. It had an estimated life of 10 years and an estimated salvage value of 9000. The current BV of this machine is 34500. If current MV of the machine is 40500, and the effective income tax rate 29%, what is the after-tax investment value of machine? (0.5 point) a 28755 b. 40500 C. 38760 d. 37455 e. 36759 question a) the cost of barley decreases from $0.35 to $0.30 per pound. do the binding constraints change? an object has a kinetic energy KE and a potential energy PE. It also has a rest energy E0. Which one of the following is the correct way to express the object's total energy E? E = KE + PE. E = E0 + KE. E = E= + KE + PE E = E0 + KE - PE The kinetic energy of an object of mass m is equal to its test energy. What is the magnitude p of the object's momentum ? p = mc p = 2mc p = 4mc p = mc p = 3mc which of the following statements regarding limited liability companies is false? multiple choice state laws do not limit the number of members or the type of entity that can be a member in an llc. every member of an llc has limited liability for the llc's debts. an llc with more than one member is generally treated as a partnership for income tax purposes. an llc with only one member is generally treated as a corporation for income tax purposes. an irs-allowed reduction in your income for yourself, your spouse, and any dependents that is subtracted before you compute your taxes is called a(n) a) itemized exemptions. b) standard exemptions. c) marital exemptions. d) personal exemptions. Assume that gasoline is sold in a perfectly competitive industry. In some state, absent any gasoline taxes, the gasoline price would be $4.00 per gallon and 10 billion gallons would be sold per year. Economists have estimated supply and demand functions for gasoline, using linear estimations of supply and demand curves. They estimate that the supply price of gasoline (the marginal cost) increases by $0.10 per gallon for every increase in sales of 1 billion gallons per year. They estimate that in the long run, the demand for gasoline would decline by 0.5 billion gallons per year for every $1.00 per gallon increase in the price of gasoline. Analysts have identified a set of externalities associated with using gasoline, including safety costs of additional driving, environmental impacts, and energy security impacts. Assume that they estimate all these externalities as having a total value of $1.00 per gallon of gasoline. State planners are examining how large should be the gasoline tax in the state. In their planning and your analysis you should ignore any second-best problems associated with other pre-existing taxes. a) (10 points) Show that a gasoline tax of $1.00 per gallon would lead to an economically efficient use of gasoline, if that tax were costlessly redistributed back to the economy. b) (10 points) What is the dollar value of the welfare gain that could be achieved by imposing the economically efficient gasoline tax, in comparison to having no tax at all? c) (5 points) If the producer of the commodity were charged a $1.00 per gallon excise tax, how much tax would be collected per year? d) (10 points) Assume now that all the gasoline tax revenues are always spent on highway construction, but that the benefit to society of such construction is equal to 80% of its cost. Is total welfare increased or decreased by the joint implementation of the $1.00 tax and the expenditure program? Show a numeric answer and give an explanation for your answer. e) (10 points) Describe two other policy alternatives to a gasoline tax to correct for the externalities. Briefly discuss the advantages and disadvantages compared to the tax of implementing your proposed policies. A manufacturing company employs two devices to inspect output for quality control purposes. The first device can accurately detect 99.2% of the defective items it receives, whereas the second is able to do so in 99.5% of the cases. Assume that five defective items are produced and sent out for inspection. Let X and Y denote the number of items that will be identified as defective by inspecting devices 1 and 2, respectively. Assume that the devices are independent. Find: a. fy|2(y) Y fyiz(y) 0 1 2 3 b. E(Y|X=2)= and V(Y/X=2)= 4. 20pts Consider A random sample of 150 in size is taken from a population with a mean of 1640 and unknown variance. The sample variance was found out to be 140. a. Find the point estimate of the population variance W b. Find the mean of the sampling distribution of the sample mean Weights of Elephants A sample of 8 adult elephants had an average weight of 11,801 pounds. The standard deviation for the sample was 23 pounds. Find the 95% confidence interval of the population mean for the weights of adult elephants. Assume the variable is normally distributed. Round intermediate answers to at least three decimal places. Round your final answers to the nearest whole number ______ Suppose you are a British venture capitalist holding a major stake in an e-commerce start-up in Silicon Valley. As a British resident, you are concerned with the pound value of your U.S. equity position. Assume that if the American economy booms in the future, your equity stake will be worth $954, and the exchange rate will be $1.29/. If the American economy experiences a recession, on the other hand, your American equity stake will be worth $882, and the exchange rate will be $1.42/. You assess that the American economy will experience a boom with a 70 percent probability and a recession with the remaining probability. Estimate the Covariance between P and S (X.XXX) Bob is thinking about leasing a car the lease comes with an interest rate of 8% determine the money factor that will be used to calculate bonus payment. A. 0.00033 B. 0.00192 C. 0.00333 D. 0.01920 In the chemical process industry, there are various routes for manufacturing chemicals. A search of the literature reveals many different processes to produce chemical (Sulfuric Acid). Assume 8000 operational hours per year. Land cost is not included in the total capital investment. Prepare a detailed production report and answer the following questions. (Assume suitable data wherever necessary. Give proper references if data collection is from external sources. (* Each student will be given a separate chemical product) a) Select the various available processes used in the industry and discuss the major differences between each process. Prepare a qualitative flow sheet for one selected process. b) Calculate the total cost of all major equipment used in the above process for a 50,000 tons per year production capacity. c) Estimate fixed capital investment and the total capital investment cost if the working capital is 14% of total capital investment. d) Calculate the production cost per unit and total gross profit for the given production capacity. Compare the production cost per unit with the market cost. Evaluate the given definite integral. 4et / (et+5)3 dt A. 0.043 B. 0.017 C. 0.022 D. 0.031 A company produces a product with a contribution margin per unit of $36. If the company incurs $62,000 in total fixed costs and expects to sell 2.500 units their income would be: Need help? Revlew these concept resources: Rend About the Concept Federal Open Markets Committee has decided to buy $500 million in US Treasury securities. Federal Reserve Bank has set reserve requirements at 4%. The public's cash to deposit ratio is 4.0%. The impact of this policy action on the money supply is O Decrease money supply by $12,500 million O Increase money supply by $6,250 million O Decrease money supply by $6,250 million O Increase money supply by $12,500 million The polynomials: P = 1, P2 = x-1, P3 = (x - 1) form a basis S of P. Let v = 2x - 5x + 6 be a vector in P. Find the coordinate vector of v relative to the basis S.