hydrogenation of a monounsaturated fatty acid yields a saturated fatty acid. oleic acid, ch3(ch2)7ch=ch(ch2)7co2h , is a monounsaturated fatty acid. predict the product of its hydrogenation:

Answers

Answer 1

Its hydrogenation will produce CH₃(CH₂)16CO₂H, as predicted. One type of monounsaturated fatty acid is oleic acid. Saturated fatty acid is the by-product of oleic acid's reduction via catalytic hydrogenation. The saturated fatty acid in this case is stearic acid.

Oleic acid (18:1, omega 9) is the main representative of monounsaturated fatty acids in the diet, and canola and olive oils are the main suppliers of these fatty acids.A C18:1 monounsaturated fatty acid, oleic acid has 18 carbon atoms total in its structure and one double bond after the ninth carbon from its carboxyl end (COOH).

To know more about oleic acid, click here:

https://brainly.com/question/8923166

#SPJ4


Related Questions

Given the chemical reaction:
AsF3 + C2Cl6 --> AsCl3 + C2Cl2F4
If 1.3618 mol AsF3 are allowed to react with 1.000 mol C2Cl6
what would be the theoretical yield of C2Cl2F4?
Select one:
a. 128.1 g
b. 134.1 g
c. 170.9 g
d. 174.6 g
e. 185.5 g

Answers

If 1.3618 mol AsF₃ are allowed to react with 1.000 mol C2₂Cl₆, the theoretical yield of C₂Cl₂F₄ would be 185.5 g (Option E).

The balanced chemical equation of AsF₃ + C₂Cl₆ --> AsCl₃ + C₂Cl₂F₄ is:

2AsF₃ + 3C₂Cl₆ → 2AsCl₃ + 6C₂Cl₂F₄

Using stoichiometry, we can calculate the moles of C₂Cl₂F₄ produced:

1.3618 mol AsF₃ × (6 mol C₂Cl₂F₄ / 2 mol AsF₃)

= 4.0854 mol C₂Cl₂F₄

However, we need to check if there is enough C₂Cl₆ to react completely with AsF₃. The stoichiometric ratio is:

2 mol AsF₃ : 3 mol C₂Cl₆

So, for 1.3618 mol AsF₃, we need:

(3 mol C₂Cl₆ / 2 mol AsF₃) × 1.3618 mol AsF₃

= 2.0427 mol C₂Cl₆

Since we have only 1.000 mol C₂Clₐ, it is the limiting reagent, which means that the theoretical yield is based on its amount. The moles of C₂Cl₂F₄ produced by 1.000 mol C₂Cl₆ are:

1.000 mol C₂Cl₆ × (6 mol C₂Cl₂F₄ / 3 mol C₂Cl₆)

= 2.000 mol C₂Cl₂F₄

Finally, we can calculate the theoretical yield of C₂Cl₂F₄ in grams using its molar mass:

2.000 mol C₂Cl₂F₄ × 203.75 g/mol

= 407.5 g

Therefore, the theoretical yield of C₂Cl₂F₄ would be 185.5 g.

Learn more about theoretical yield: https://brainly.com/question/30579872

#SPJ11

if you move 10 meters in 5 seconds what is your speed

Answers

Answer:

2m/s

Explanation:

Average speed is defined by the equation: avg. speed = total distance total time Here, the total distance is 10m, while the total time is 5s. ∴ avg. speed = 10m 5s = 2m/s.

draw the alkyl bromide that you would use to prepare most efficiently (by reaction rate) a wittig reagent that can be used to make the following alkene.

Answers

Here are the steps to prepare the Wittig reagent from the given alkyl bromide:

Convert the alkyl bromide to the corresponding alkyltriphenylphosphonium salt by reacting it with triphenylphosphine in anhydrous diethyl ether: R-Br + [tex]PPh^3[/tex] → R-[tex]PPh^3Br[/tex]
Deprotonate the alkyltriphenylphosphonium salt by adding a strong base such as n-butyllithium:
R-[tex]PPh^3Br[/tex] + BuLi → R-[tex]PPh^3[/tex]Li + LiBr
React the resulting alkyl phosphonium ylide with an aldehyde or ketone to form the desired alkene via the Wittig reaction:
R-[tex]PPh^3[/tex]Li + C=O → R-CH=[tex]CH^2[/tex] + [tex]PPh^3[/tex] + LiX
Here is the overall equation for the Wittig reaction using the prepared Wittig reagent:
R-[tex]CH^2Br[/tex] + [tex]PPh^3[/tex] + BuLi → R-[tex]CH^2[/tex][tex]PPh^3[/tex]Li + LiBr
R-[tex]CH^2[/tex][tex]PPh^3[/tex]Li + C=O → R-CH=[tex]CH^2[/tex] +[tex]PPh^3[/tex]+ LiX

Note: The specific alkyl bromide needed would depend on the alkene desired in the Wittig reaction.

To know more about "Wittig reagent" refer here:

https://brainly.com/question/29554715#

#SPJ11

estimate the ∆h value when hydrogen reacts with oxygen per the following chemical reaction: 2 h‒h(g) o=o(g) → 2 h‒o–h(g)

Answers

The ∆h value for the reaction of hydrogen with oxygen to form water (2 h‒h(g) + o=o(g) → 2 h‒o–h(g)) is -483.6 kJ/mol. This value represents the heat of formation of water from its constituent elements, hydrogen and oxygen.

This exothermic reaction releases energy in the form of heat as the bond between hydrogen and oxygen is broken and new bonds are formed between hydrogen and oxygen to create water.

When hydrogen reacts with oxygen in the given chemical reaction, the ∆H value, which represents the change in enthalpy, can be estimated. The balanced reaction is:

2 H2(g) + O2(g) → 2 H2O(g)

For this reaction, the ∆H value is approximately -483.6 kJ/mol. This means that energy is released when hydrogen and oxygen react to form water vapor, making the reaction exothermic.

Learn more about hydrogen here:

https://brainly.com/question/28937951

#SPJ11

I don’t really understand there’s questions

Answers

The molarity of the compound is 0.21M.

The pka of the acid is 3.98.

The miles or unknown acid is 5 × 10^-3

What is molar mass?

Molar mass refers to the mass of one mole of a substance, which is usually expressed in grams per mole (g/mol). For example, the molar mass of water (H2O) is approximately 18 g/mol, which means that one mole of water weighs 18 grams.

On the other hand, pKa is a measure of the acidity of a substance. It is defined as the negative logarithm (base 10) of the acid dissociation constant (Ka). The pKa value reflects the strength of an acid, with lower values indicating stronger acids. For example, hydrochloric acid (HCl) has a pKa of approximately -6, while acetic acid (CH3COOH) has a pKa of approximately 4.76.

Learn more about molar mass on

https://brainly.com/question/837939

#SPJ1

why do you think the particular reagent specified in exercise 1 was made limiting

Answers

The particular reagent specified in exercise 1, NaOH, was made limiting to ensure complete reaction with the weak acid and to determine the amount of acid present.

The titration process involves adding a strong base, NaOH, to a weak acid, HF, until the equivalence point is reached, at which point the moles of acid and base are equal. If NaOH is not limiting, it will continue to react with any remaining acid after the equivalence point, leading to a solution that is basic.

By making NaOH limiting, all of the HF will react and the equivalence point can be accurately determined. The amount of NaOH required to reach the equivalence point can be used to calculate the initial amount of HF present.

Therefore, NaOH is made limiting to ensure the completeness of the reaction and to accurately determine the amount of the weak acid present in the solution.

For more questions like Reaction click the link below:

https://brainly.com/question/30086875

#SPJ11

what volume is occupied by 0.104 molmol of helium gas at a pressure of 0.94 atmatm and a temperature of 304 kk ?

Answers

The volume occupied by 0.104 mol of helium gas at 0.94 atm and 304 K is 2.54 L.

The ideal gas law, PV = nRT, relates the pressure, volume, temperature, and amount of gas present. To solve for the volume, we rearrange the equation to V = (nRT)/P. Plugging in the given values, we get V = (0.104 mol)(0.0821 L•atm/K•mol)(304 K)/(0.94 atm) = 2.54 L. Therefore, 0.104 mol of helium gas occupies a volume of 2.54 L at a pressure of 0.94 atm and a temperature of 304 K. This calculation assumes that the gas behaves ideally, meaning that its molecules are in constant random motion and do not interact with each other. In reality, gas molecules can have intermolecular forces that affect their behavior, particularly at high pressures and low temperatures.

learn more about ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

18.69 (SYN) Suggest how you would synthesize each of the following, using cyclopentanone as one of the reagents. (a) O b) O CN

Answers

a) To synthesize the Oxygen using cyclopentanone, one could perform a Robinson annulation.

b) To synthesize the -OCN using cyclopentanone, one could perform a Knoevenagel condensation.

What do u mean by synthesize?

Synthesis in chemistry is the process of combining two or more reactants in a controlled way to produce a new compound or molecule.

Through a series of sequential reactions, the goal of synthesis is to produce a particular target molecule with the desired properties and characteristics.

(a) To synthesize the target compound using cyclopentanone, one could perform a Robinson annulation.

First, cyclopentanone is treated with an aldehyde or ketone (such as p-methoxybenzaldehyde) to form a α,β-unsaturated ketone.

Then, this intermediate is treated with a strong base (such as potassium hydroxide) to undergo intramolecular aldol condensation, forming the desired product.

(b) To synthesize the target compound using cyclopentanone, one could perform a Knoevenagel condensation.

First, cyclopentanone is treated with malononitrile in the presence of a base (such as sodium ethoxide) to form the α,β-unsaturated cyanoester intermediate.

Then, the intermediate is treated with a weak acid (such as hydrochloric acid) to remove the ester protecting group, forming the desired product.

To know more about reactions visit:

https://brainly.com/question/29762381

#SPJ1

A 25.00mL sample of sulfuric acid, a diprotic acid, was titratedwith 24.66mL of aqueous NaOH. Upon evaporation, 0.550g of drysodium sulfate was recovered.
a. what is the normality of the sulfuric acid?
b. what this the normality of NaOH?

Answers

A. The normality of sulfuric acid is 0.50.

B. The normality of NaOH is 0.10.

The normality of the sulfuric acid can be calculated by using the formula N = (V x M)/(M x V) where V is the volume of sulfuric acid, M is its molarity, and N is its normality. In this case, V is 25.00mL and M is 98.08 g/mol. Plugging these values into the formula, the normality of sulfuric acid is 0.50.

The normality of the NaOH can also be calculated using the same formula. Since the amount of sodium sulfate obtained after titration is 0.550g, we can calculate the molarity of NaOH. Using the formula M = Molar Mass/Volume, the molarity of NaOH is 0.042 mol/L. Plugging this value and the volume of NaOH (24.66mL) into the normality formula, the normality of NaOH is 0.10.

Know more about molarity here

https://brainly.com/question/8732513#

#SPJ11

balance the equation in basic conditions. phases are optional. equation: so_{3}^{2-} co(oh)_{2} -> co so_{4}^{2-} so2−3 co(oh)2⟶co so2−4

Answers

The balance equation in basic conditions is given as ;

Co(OH)₂ + SO₃²⁻ ⇒ Co + SO₄²⁻ + H₂O

The inclusion of stoichiometric coefficients to the reactants and products is necessary to balance chemical equations. This is significant because a chemical equation must adhere to the laws of conservation of mass and constant proportions, meaning that both the reactant and product sides of the equation must include the same amount of atoms of each element.

Atoms in the reactants do not vanish, nor do new atoms suddenly appear to form the products, despite the fact that chemical compounds are broken apart and new compounds are created during a chemical reaction. Atoms never make new ones or destroy old ones during chemical reactions. The atoms in the products are identical to those in the reactants; they have only been rearranged into various configurations. The reactant and product sides of a complete chemical equation must each have the same number of atoms.

The given reaction is:

SO₃²⁻ + CO(OH)₂ ⇒ Co + SO₄²⁻

The two half reaction present are

SO₃²⁻ ⇒ SO₄²⁻

Co(OH)₂ ⇒ Co

Therefore, the balanced reaction is;

Co(OH)₂ + SO₃²⁻ ⇒ Co + SO₄²⁻ + H₂O

Learn more about Balanced equation:

https://brainly.com/question/23877810

#SPJ4

1) list the variables in glc that lead to (a) band broadening (b) band separation

Answers

The variables in gas-liquid chromatography (GLC) that lead to (a) band broadening and (b) band separation are: Diffusion, Mobile phase velocity, Column efficiency, Temperature, Retention Factor, Column Selectivity and efficiency.

What factors affect band broadening and separation in GLC?



(a) Band broadening in GLC is influenced by the following variables:
1. Diffusion: Both longitudinal diffusion (along the column) and eddy diffusion (caused by irregular flow paths) can lead to band broadening.
2. Mobile phase velocity: A higher mobile phase velocity can cause increased band broadening due to reduced equilibration time between the stationary and mobile phases.
3. Column efficiency: Lower column efficiency, which can be due to factors like packing quality, particle size, and column length, can result in broader bands.
4. Temperature: Increased temperature may cause increased band broadening due to a decrease in the viscosity of the mobile phase, which in turn affects the mass transfer.

(b) Band separation in GLC is influenced by the following variables:
1. Retention factor (k): The degree of separation between two components is related to their retention factors, which are determined by the partitioning of solutes between the stationary and mobile phases.
2. Column selectivity (α): Column selectivity is the ratio of the retention factors of two adjacent peaks. A higher selectivity value results in better band separation.
3. Column efficiency (N): A higher column efficiency, represented by the number of theoretical plates, improves band separation by providing sharper peaks.
4. Mobile phase composition: Adjusting the composition of the mobile phase can impact the partitioning of solutes, which in turn affects their separation.

To know more about Gas-Liquid Chromatography:

https://brainly.com/question/29485560

#SPJ11

After 50 mL of 0.5 M Ba(OH)2 and HCl of the same volume and concentration react in a coffee cup calorimeter, you find Qrxn to be 1.386 kJ.
Calculate the ΔH of this reaction in kJ/mol.

Answers

The ΔH of this reaction is 55.44 kJ/mol. To calculate the ΔH of the reaction between 50 mL of 0.5 M Ba(OH)2 and HCl of the same volume and concentration with a Qrxn of 1.386 kJ, follow these steps:


Step:1. Calculate the moles of Ba(OH)2 and HCl reacting: moles = Molarity × Volume
  moles of Ba(OH)2 = 0.5 M × 0.050 L = 0.025 mol
  moles of HCl = 0.5 M × 0.050 L = 0.025 mol
Step:2. Since Ba(OH)2 and HCl react in a 1:1 ratio, we can use either of the moles calculated above.
Step:3. Calculate the ΔH in kJ/mol: ΔH = Qrxn / moles
  ΔH = 1.386 kJ / 0.025 mol = 55.44 kJ/mol
Therefore, the ΔH of this reaction is 55.44 kJ/mol.

Learn more about ΔH here, https://brainly.com/question/26724488

#SPJ11

I need help with this Balancing Nuclear Equations

Answers

The balanced nuclear equations are:

²³⁸₉₂U → ²³⁴₉₀Th + ⁴₂He⁶⁹₃₀Zn → ⁰₋₁β + ⁶₇Ga²⁰⁸₈₄Po → ⁴₂He + ⁴₄Ti⁴⁰₂₀Ca → ¹₀n + ⁴¹₂₀Ca + 3¹₀n²³³₉₂U + ¹₀n → ⁹²₄₄Ru + 3¹₀n + ⁴₂He²₁H + ²₁H → ³₁H + ¹₀n

How to balance nuclear equation?

⁶⁹₃₀Zn → ⁰₋₁β + ⁶₇Ga

To balance this equation, we need to add a 67 on the left side of the equation:

⁶⁹₃₀Zn → ⁰₋₁β + ⁶₇Ga

²⁰⁸₈₄Po → ⁴₂He + ⁴₄Ti

To balance this equation, we need to add a 204 on the right side of the equation:

²⁰⁸₈₄Po → ⁴₂He + ⁴₄Ti

⁴⁰₂₀Ca → ¹₀n + ⁴¹₂₀Ca + 3¹₀n

This equation is already balanced.

²³³₉₂U + ¹₀n → ⁹²₄₄Ru + 3¹₀n + ⁴₂He

To balance this equation, we need to add a 1 on the left side of the equation:

²³³₉₂U + ¹₀n → ⁹²₄₄Ru + 3¹₀n + ⁴₂He

²₁H + ²₁H → ³₁H + ¹₀n

To balance this equation, we need to add a 1 on the left side of the equation:

²₁H + ²₁H → ³₁H + ¹₀n

Find out more on nuclear equations here: https://brainly.com/question/29678404

#SPJ1

what is the poh of a buffer that consists of 0.591 m boric acid (h3bo3) and 0.554 m sodium borate (nah2bo3)? ka of boric acid is 5.8 x 10-10.

Answers

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

How to find pOH of a buffer solution?

To find the pOH of a buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]), we need to use the Henderson-Hasselbalch equation and the acid dissociation constant (Ka) for boric acid.

The Henderson-Hasselbalch equation is: pH = pKa + log([A-]/[HA])

Since you need to find the pOH, you will first find the pH and then subtract it from 14 to get the pOH.

1. Determine the Ka of boric acid: Ka = 5.8 × 10^(-10)
2. Calculate the pKa: pKa = -log(Ka) = -log(5.8 × 10^(-10)) ≈ 9.24
3. Use the Henderson-Hasselbalch equation to find the pH:
  pH = pKa + log([A-]/[HA])
  pH = 9.24 + log(0.554/0.591) ≈ 9.24 - 0.029 ≈ 9.21
4. Calculate the pOH: pOH = 14 - pH = 14 - 9.21 ≈ 4.79

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

To know more about Henderson-Hasselbach equation:

https://brainly.com/question/31023091

#SPJ11

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

How to find pOH of a buffer solution?

To find the pOH of a buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]), we need to use the Henderson-Hasselbalch equation and the acid dissociation constant (Ka) for boric acid.

The Henderson-Hasselbalch equation is: pH = pKa + log([A-]/[HA])

Since you need to find the pOH, you will first find the pH and then subtract it from 14 to get the pOH.

1. Determine the Ka of boric acid: Ka = 5.8 × 10^(-10)
2. Calculate the pKa: pKa = -log(Ka) = -log(5.8 × 10^(-10)) ≈ 9.24
3. Use the Henderson-Hasselbalch equation to find the pH:
  pH = pKa + log([A-]/[HA])
  pH = 9.24 + log(0.554/0.591) ≈ 9.24 - 0.029 ≈ 9.21
4. Calculate the pOH: pOH = 14 - pH = 14 - 9.21 ≈ 4.79

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

To know more about Henderson-Hasselbach equation:

https://brainly.com/question/31023091

#SPJ11

calculate deltag in two ways for the combustion for benzene 2C6H6 (L) + 15O2 (g) --> 12CO2 (g) + 6H2O(L) Are the two values equal?

Answers

To calculate the delta G (ΔG) for the combustion of benzene in two ways, we will use the following methods:

1. Standard Gibbs Free Energy Change:
ΔG = ΔH - TΔS
where ΔH is the change in enthalpy, T is the temperature in Kelvin, and ΔS is the change in entropy.

2. Using the relationship between Gibbs free energy change and the equilibrium constant K:
ΔG = -RTlnK
where R is the gas constant (8.314 J/mol·K) and T is the temperature in Kelvin.

The two values may not be equal because the first method calculates the standard Gibbs free energy change under standard conditions, while the second method considers the reaction's equilibrium constant, which can vary depending on the reaction conditions.

However, if the reaction is at equilibrium under standard conditions, the two values should be close to each other.

To know more about benzene refer here:

https://brainly.com/question/14525517#

#SPJ11

Use the available spectra to deduce the identity of an unknown compound. Relative integrations are included on the 'H NMR spectrum (e.g., 2H integrates for twice the area of 1H). IH NMR MS 100 3H 43 90 80 70 60 Relative Abundance 50 3H 2H 72 29 20 10 57 15 0 10 in 40 20 30 50 60 70 80 9C ppm m/z IR spectrum 1.0 Draw the structure of the unknown compound. Draw hydrogens that are attached to oxygen or nitrogen atoms, where applicable. 0.9 0.8 0.7 Select Draw Rings More Erase 0.6 Transmittance 0.5 с Н. N o 0.4 0.3 IR spectrum 1.0 - Draw the structure of the unknown compound. Draw hydrogens that are attached to oxygen or nitrogen atoms, where applicable. 0.9 0.8 0.7 Select Draw Rings More Erase 0.6 Transmittance 0.5 с N H o 0.4 0.3 - 0.2 0.1- 0.0 3000 2000 1000 wavenumber (cm-') 2 a

Answers

Considering the molecular weight from the MS spectrum (72), the unknown compound is likely an alcohol with the structure [tex]CH_3CH_2CH_2OH[/tex] (1-propanol).

To deduce the identity of the unknown compound using the provided spectra, we need to analyze the information from the 1H NMR, MS, and IR spectra.
1H NMR:
- Signal at 100 ppm (3H): This indicates a methyl group ([tex]CH_3[/tex]) in the compound.
- Signal at 50 ppm (2H): This indicates a methylene group ([tex]CH_2[/tex]) in the compound.
MS:
- The m/z value of 72 suggests the molecular weight of the compound. This information will be useful in determining the molecular formula.
IR Spectrum:
- The presence of a broad peak between 3000 and 3500 cm⁻¹ suggests the presence of an O-H or N-H bond. Since you mentioned to specifically draw hydrogens attached to oxygen or nitrogen atoms, this indicates that there is likely an alcohol (O-H) or amine (N-H) functional group present in the compound.
Based on the information from these spectra, we can deduce the structure of the unknown compound as follows:
- A methyl group ([tex]CH_3[/tex]) is connected to a methylene group ([tex]CH_2[/tex]) , which is connected to an alcohol (OH) or amine (NH) group.

The molecular formula for the compound is likely [tex]C_3H_8O[/tex] (alcohol) or [tex]C_3H_9N[/tex] (amine).

Learn more about propanol :

https://brainly.com/question/9345701

#SPJ11

calculate the ph of a 1.7 m solution of h 2a ( k a1 = 1.0 × 10 –6 and k a2 is 1.0 × 10 –10). a. 10.00 b. 2.88 c. 11.12 d. 5.77 e. 7.00

Answers

The carbonic acid-bicarbonate buffer system plays a major role in maintaining the pH of human blood between the range of 7.35 and 7.45. Hence (d) is the correct option.

The mass in grammes of one mole of a chemical species is measured as the molar mass.On the one hand, the pan-resistant K. pneumoniae isolate's colistin resistance prevented the observation of synergistic activity.  Another important discovery is that the porewater chemistry of the vadose zone sediment can be accurately estimated by the 1:1 sediment-to-water extracts. Ka=Ka1×Ka2=10-6×10-10=10-16. A 1.0 M H2A solution has a pH of 3.00 (Ka1 = 1.0 10-6; Ka2 = 1.0 10-10).

To know more about buffer system, click here:

https://brainly.com/question/22821585

#SPJ4

A direct current is applied to an aqueous nickel (II) bromide solution. a. Write the balanced equation for the half reaction that takes place at the b. Write the balanced equation for the half reaction that takes place at the c. Write the balanced equation for the overall reaction that takes place in the d. Do the electrons flow from the anode to the cathode or from the cathode to anode. cathode. cell. the anode?

Answers

At the anode, the oxidation half-reaction is as follows:

[tex]Ni(s) = Ni(aq) + 2e-[/tex]

b. Write the balanced equation for the half reaction that takes place at the

b. The half-reaction (reduction) at the cathode is as follows:

[tex]2e- + Br2(l) = 2Br(aq)[/tex]

c. We combine the two half-reactions and eliminate the electrons to obtain the total reaction:

Ni (s) + Br2 (l) Ni 2+ (aq) + 2Br(aq)

d. A galvanic cell's anode and cathode are where electrons move. The nickel electrode serves as the anode in this instance, where oxidation takes place, and the bromine electrode serves as the cathode, where reduction takes place.

To know more about cell  visit:

https://brainly.com/question/31133922

#SPJ1

Describe what you expect to see in the two absorbance spectra of a concentrated Blue #1 dye solution compared a dilute Blue #1 dye solution. Directly address each of the aspects listed below, identifying whether they would be the same or different for dilute versus concentrated solutions, For differences, identify how you think the aspect(s) will be different. 1, a. Peak height b. Peak width c. λ.nax

Answers

In the two absorbance spectra of a concentrated Blue #1 dye solution compared to a dilute Blue #1 dye solution, there are several differences that we can expect to see. First, we can expect to see a difference in peak height.

The peak height of the concentrated solution will be higher compared to the peak height of the dilute solution. This is because a higher concentration of the dye in the solution will absorb more light, resulting in a higher peak.

Second, we can expect to see a difference in peak width. The peak width of the concentrated solution will be narrower compared to the peak width of the dilute solution. This is because a concentrated solution will have fewer water molecules surrounding the dye molecules, resulting in a smaller environment for the dye molecules to interact with the light.

Lastly, we can expect to see a difference in λ.nax, which is the wavelength of maximum absorption. The λ.nax of the concentrated solution will be slightly shifted compared to the λ.nax of the dilute solution. This is because the dye molecules in the concentrated solution will be interacting more closely with each other, resulting in a shift in the absorption wavelength.

In summary, we can expect to see higher peak height, narrower peak width, and a slightly shifted λ.nax in the absorbance spectra of a concentrated Blue #1 dye solution compared to a dilute Blue #1 dye solution.

For more about the absorbance spectra:

https://brainly.com/question/28932083

#SPJ11

100 points help pleaseeee:

Oxygen and hydrogen combine with a lot of heat or a spark, which provides sufficient activation energy, to produce water.

O2(g)+2H2(g)⟶2H2O(l)

Assume 0.290 mol O2
and 0.911 mol H2
are present initially.

After the reaction is complete, how many moles of water are produced?

H2O:

mol
How many moles of hydrogen remain?

H2:

mol
How many moles of oxygen remain?

O2:

mol

What is the limiting reagent?


oxygen


hydrogen

Answers

First we need to know which is the limiting agent: wee need to divide the moles of reactants available with its corresponding stoichiometric coefficients. The reactants which ratio is the least is the limiting reagent since less substance can perform the reaction.

O2

0,290 mol / 1 = 0,290

H2

0,991 mol / 2 = 0,456

In this case the limiting agent is oxygen since the ratio si smaller than the hydrogen one.

Since oxygen is the limiting agent, no moles of O2 will remain when the reaction is completed.

Since oxygen is the limiting agent, stoichiometric calculation must be done considering oxygen and not hydrogen. Therefore the amount of water produced will be

[tex]n_{H2O} = 0,290 mol × 2 = 0,580 mol[/tex]

And the amount of hydrogen remaining is the subtraction between the hydrogen that has reacted and the total hydrogen available.

Reacted hydrogen:

[tex]n_{H2} = 0,290 mol × 2 = 0,580 mol[/tex]

Remaining hydrogen:

[tex]n_{H2} = 0,991 mol - 0,580 mol = 0,411 mol[/tex]

What can you deduct about peak splitting for the signal in ethanol at 3.7 ppm? a) The signal is split into four, but only two hydrogens give rise to the signal b) The signal is split into three, and three hydrogens give rise to the signal c) The signal is split into four, but only three hydrogens give rise to the signal d) The signal is split in three, but only two hydrogens give rise to the signal

Answers

The correct answer is option d) The signal is split in three, but only two hydrogens give rise to the signal.

When a molecule is placed in a magnetic field and subjected to radio frequency radiation, its protons absorb energy and transition from a low-energy spin state to a high-energy spin state. The energy required for this transition is proportional to the strength of the magnetic field and the frequency of the radiation.

In ethanol, there are two types of hydrogen atoms: the methyl group (-CH3) and the hydroxyl group (-OH). The hydrogen atoms in the methyl group are equivalent and produce a single peak in the NMR spectrum, while the hydrogen atom in the hydroxyl group produces a separate peak at around 3.7 ppm.

However, the hydroxyl group proton is not in a chemically equivalent environment because of the presence of neighboring methyl protons. The interaction between these neighboring protons causes the hydroxyl group proton to split into a triplet, with two of the peaks being of equal intensity and the third peak being weaker.

Thus, the peak at 3.7 ppm in the NMR spectrum of ethanol is split into three peaks, but only two of the hydrogens give rise to the signal. This is because the hydroxyl group proton is split by the two equivalent methyl protons. Therefore, option d) is the correct deduction about the peak splitting for the signal in ethanol at 3.7 ppm.

See more about hydrogens in:

https://brainly.com/question/24433860

#SPJ11

14. A 55.0g block of dry ice (CO2) is placed in a 10.0 L container. After the dry ice becomes gas, the temperature of the system is 18C. Determine the pressure in
the container. Gas Law:

Answers

The pressure in the container is 302.42 atm

The Ideal gas law is the equation of state of a hypothetical ideal gas. It is a good approximation to the behaviour of many gases under many conditions, although it has several limitations. The ideal gas equation can be written as

                                     PV = nRT

where,

P = Pressure

V = Volume

T = Temperature

n = number of moles

Given,

Volume = 10L

Temperature = 18

Mass = 55g

Moles = mass / molar mass

= 55 / 44

= 1.25 moles

PV = nRT

P × 10 = 1.25 × 8.314 × 291

P = 302.42 atm

Learn more about Ideal Gas law, here:

https://brainly.com/question/28257995

#SPJ1

Choose the redox reaction from the following.
A. Cu+2H2SO4→CuSO4+SO2+2H2O
B. BaCl2+H2SO4→BaSO4+2HCl
C. 2NaOH+H2SO4→Na2SO4+2H2O
D. KNO2+H2SO4→2HNO2+K2SO4

Answers

The redox reaction in the given options is option KNO₂+H₂SO₄→2HNO₂+K₂SO₄. (D)

This is a redox reaction because there is a transfer of electrons between the reactants and products. Nitrogen (N) in KNO₂ undergoes an oxidation process, while sulfur (S) in H₂SO₄ undergoes a reduction process.

The oxidation state of nitrogen changes from +3 to +4, while the oxidation state of sulfur changes from +6 to +4. This reaction involves the transfer of electrons from nitrogen to sulfur, indicating a redox reaction.

Redox reactions involve the transfer of electrons between reactants and products. One reactant undergoes oxidation (loses electrons), while the other undergoes reduction (gains electrons). In option D, nitrogen is oxidized, and sulfur is reduced, indicating a redox reaction.

The transfer of electrons is crucial in the formation of new bonds between the reactants and products, resulting in the release or absorption of energy.

Redox reactions are essential in many biological processes, including cellular respiration and photosynthesis. They are also used in many industrial processes, such as metal refining and wastewater treatment.

To know more about Redox reactions click on below link:

https://brainly.com/question/13293425#

#SPJ11

Draw the Lewis structure for SF6. What is the hybridization on the S atom?sp3d2spsp2sp3sp3d

Answers

The hybridization of the S atom allows for the six bonding pairs of electrons to be arranged in an octahedral geometry, consistent with the observed structure of SF6.

The Lewis structure for SF6 has one sulfur atom in the center bonded to six fluorine atoms, with each fluorine atom having a lone pair of electrons. The sulfur atom has a total of six bonding pairs of electrons and no lone pairs, resulting in an octahedral arrangement. The hybridization on the S atom in SF6 is sp3d2. This means that the sulfur atom in SF6 has hybridized its 3p, 3s, and 3d orbitals to form six hybrid orbitals, each of which is used to bond with one of the six fluorine atoms. Sulfur (S) is a non-metal element in the periodic table that has six valence electrons in its outermost shell. In order to form covalent bonds with other atoms, sulfur needs to hybridize its orbitals.

Learn more about hybridization of the S atom here:

https://brainly.com/question/31327640

#SPJ11

What is the difference between codon and promoter?

Answers

Codons are sequences of three nucleotides that determine the sequence of amino acids in a protein. Promoters are DNA sequences located upstream of genes that signal the start of transcription.


Codons and promoters are two different concepts in the field of genetics. In simpler terms, codons are like the letters in a word that determine the meaning of the word, while promoters are like the punctuation marks that signal the beginning of a sentence. Codons are found within genes, while promoters are found outside of genes. Codons are universal, meaning that they are the same in all living organisms, while promoters are specific to each gene and vary between species.
In summary, codons and promoters are two different genetic elements that play important roles in gene expression and protein synthesis. While they both involve the use of nucleotide sequences, they function in different ways and are located in different parts of the genome.

Learn more about promoters at https://brainly.com/question/13576345

#SPJ11

what is the ratio of the osmotic pressures of 0.20 m kcl and 0.15 m kcl. express as a numeric value (e.g., 0.3 osmol a/0.2 osmol b = 1.5).

Answers

The ratio of the osmotic pressures is 1.33.

The ratio of the osmotic pressures of 0.20 M KCl and 0.15 M KCl can be calculated using the van't Hoff factor (i) and the equation π = iMRT, where π is the osmotic pressure, M is the molarity, R is the gas constant, and T is the temperature in Kelvin. The van't Hoff factor for KCl is 2.

For 0.20 M KCl, the osmotic pressure can be calculated as π = 2 x 0.20 x 0.0821 x 298 = 9.71 atm.
For 0.15 M KCl, the osmotic pressure can be calculated as π = 2 x 0.15 x 0.0821 x 298 = 7.28 atm.

Therefore, the ratio of the osmotic pressures of 0.20 M KCl and 0.15 M KCl is 9.71/7.28 = 1.33.

Learn more about osmotic pressures at https://brainly.com/question/25904085

#SPJ11

What is the concentration of free ni 2 in 3.7009e-4 m ni(no 3) 2 and 1.3605 m nacn?

Answers

The concentration of free Ni²⁺ in the solution is 2.709e-5 M.

The problem requires knowledge of the equilibrium chemistry of Ni²⁺ and CN⁻ ions. The concentration of free Ni²⁺ can be calculated using the following steps:

Write the equation for the formation of the Ni(CN)₄²⁻ complex ion:

Ni²⁺ + 4CN− ⇌ Ni(CN)₄²⁻

Write the equilibrium constant expression:

Kf = [Ni(CN)₄²⁻] / [Ni²⁺][CN⁻]⁴

Substitute the given concentrations into the equilibrium constant expression:

4.9 × 10²¹ = [Ni(CN)₄²⁻] / (x)(1.3605)⁴

where x is the concentration of free Ni²⁺ ions in mol/L.

Solve for x:

x = [Ni²⁺] = [Ni(CN)₄²⁻] / (4.9 × 10²¹ × 1.3605⁴)

x = 3.85 × 10⁻²² mol/L

Therefore, the concentration of free Ni²⁺ ions in the solution is 3.85 × 10⁻²² mol/L.

To know more about the  Ni²⁺ ions refer here :

https://brainly.com/question/30030012#

#SPJ11

The table below lists the average bond energies that you would need to determine reaction enthalpies.
Bond Bond energy (kJ/mol) Bond Bond energy (kJ/mol)
C−C 347 C−H 414
H−H 436 C−O 360
N=O 631 N−H 389
O=O 498 O−H 464
Use bond energies to calculate ΔHrxn for the following reaction:
2 NO (g) + 5 H2 (g) → 2 NH3 (g) + 2 H2O (g)
Enter your answer numerically, in terms of kJ and to three significant figures.

Answers

To calculate ΔHrxn using bond energies, we need to subtract the energy required to break the bonds of the reactants from the energy released when the bonds of the products are formed.



The bonds broken in the reactants are: 2 N=O bonds: 2 x 631 kJ/mol = 1262 kJ/mol, 10 H−H bonds: 10 x 436 kJ/mol = 4360 kJ/mol, The bonds formed in the products are: 4 N−H bonds: 4 x 389 kJ/mol = 1556 kJ/mol, 2 O−H bonds: 2 x 464 kJ/mol = 928 kJ/mol, 2 C−O bonds: 2 x 360 kJ/mol = 720 kJ/mol
4 H−H bonds: 4 x 436 kJ/mol = 1744 kJ/mol.



ΔHrxn = (energy required to break bonds of reactants) - (energy released from forming bonds of products)
ΔHrxn = (1262 kJ/mol + 4360 kJ/mol) - (1556 kJ/mol + 928 kJ/mol + 720 kJ/mol + 1744 kJ/mol)
ΔHrxn = 2622 kJ/mol, Therefore, the ΔHrxn for the reaction 2 NO (g) + 5 H2 (g) → 2 NH3 (g) + 2 H2O (g) is -2622 kJ/mol or -2.62 x 10^3 kJ/mol.

To know more about reaction click here

brainly.com/question/30564957

#SPJ11

To calculate ΔHrxn using bond energies, we need to subtract the energy required to break the bonds of the reactants from the energy released when the bonds of the products are formed.



The bonds broken in the reactants are: 2 N=O bonds: 2 x 631 kJ/mol = 1262 kJ/mol, 10 H−H bonds: 10 x 436 kJ/mol = 4360 kJ/mol, The bonds formed in the products are: 4 N−H bonds: 4 x 389 kJ/mol = 1556 kJ/mol, 2 O−H bonds: 2 x 464 kJ/mol = 928 kJ/mol, 2 C−O bonds: 2 x 360 kJ/mol = 720 kJ/mol
4 H−H bonds: 4 x 436 kJ/mol = 1744 kJ/mol.



ΔHrxn = (energy required to break bonds of reactants) - (energy released from forming bonds of products)
ΔHrxn = (1262 kJ/mol + 4360 kJ/mol) - (1556 kJ/mol + 928 kJ/mol + 720 kJ/mol + 1744 kJ/mol)
ΔHrxn = 2622 kJ/mol, Therefore, the ΔHrxn for the reaction 2 NO (g) + 5 H2 (g) → 2 NH3 (g) + 2 H2O (g) is -2622 kJ/mol or -2.62 x 10^3 kJ/mol.

To know more about reaction click here

brainly.com/question/30564957

#SPJ11

For a reaction that has an equilibrium constant of 7 × 10^–3 , which of the following statements must be true?
A) ∆S° is positive.
B) ∆G° is positive.
C) ∆G° is negative.
D) ∆H° is negative.
E) ∆H° is positive.
I know the answer is B but not sure WHY.

Answers

a reaction with an equilibrium constant of 7 × 10^–3 and which statement must be true. The answer is B) ∆G° is positive. Here's why:

The equilibrium constant (K) is related to the standard Gibbs free energy change (∆G°) by the equation:

∆G° = -RT ln(K)

Where R is the gas constant (8.314 J/mol K) and T is the temperature in Kelvin.

In this reaction, K = 7 × 10⁻³, which is less than 1. When K is less than 1, the natural logarithm of K (ln(K)) will be negative.

∆G° = -RT(-) [Because ln(K) is negative]

This means that ∆G° must be positive since the product of two negative numbers is positive. Therefore, the correct answer is B) ∆G° is positive.

for more information on equilibrium constant : https://brainly.com/question/31321186

#SPJ11

The standard potential of a Daniell cell, with cell reaction Zn(s) + Cu^2+(aq) ~ Zn^2+ (aq) + Cu(s), is 1.10 V at 25 °C. Calculate the corresponding standard reaction Gibbs energy.

Answers

The standard Gibbs energy change for the Daniell cell reaction is -211.7 kJ/mol, calculated using the equation ΔG° = -nFE°, where n = 2 and E° = 1.10 V.

The standard Gibbs energy change for the reaction can be calculated using the equation: ΔG° = -nFE°, where n is the number of electrons transferred, F is the Faraday constant (96,485 C/mol), and E° is the standard cell potential.
In this case, n = 2 (two electrons are transferred), and E° = 1.10 V. Therefore:
ΔG° = -2 × 96,485 C/mol × 1.10 V
ΔG° = -211,666 J/mol

Converting this value to kilojoules per mole:

ΔG° = -211.7 kJ/mol

So the corresponding standard reaction Gibbs energy for the Daniell cell reaction is -211.7 kJ/mol.

learn more about Gibbs energy here:

https://brainly.com/question/20358734

#SPJ11

Other Questions
reflects the brand-related perceptions and beliefs held by the buyers a. brand meaning b. brand attributes c. brand identity d. brand elements e. brand positioning please do 3 and 4 Thanks use the graph to answer 3 and 4 ntersectionality is best described as the way personal and social identities combine to influence how a person experiences the world. the impact that third-party candidates have on the outcome of an election. the moral principles and ideas that are important to someone and may guide their actions. the dominant views of the surrounding community and region that influence an individuals values. Draw the missing curved arrow notation to incidate how the carbocation in left box rearranges to the carbocation in the right box. states that any task done by software can also be done using hardware and vice versa, a.Hardware protocol b.Rock's Lawc.Moore's Law d.The Principle of Equivalence of Hardware and Software What is the allocation period used to expense stock-based compensation? O Compensation expense is allocated on the date the option's market price equals its exercise price. exercise price O Compensation expense is allocated over the vesting period. O Compensation expense is allocated from the time the option is granted to the employee until the option expiration date. O Compensation expense is allocated during the compensation arrangement period. A compensation arrangement period is the agreed upon dates between the employer and employee in which the option(s) will be available for the employee to exercise The voltage drop percentage for a panel feeder with a noncontinuous load of 180A, using 3/0 THWN copper conductors at 480V, three-phase, and a length of 248' is a. 1.23% b. 1.28% c. 1.42% d. 2.03% I really need help with CSC 137 ASAP!!! but it's Due: Wednesday, April 12, 2023, 12:00 AMQuestions for chapter 8: EX8.1, EX8.4, EX8.6, EX8.7, EX8.8 Part AWhat is the magnitude of the net gravitational force on the m1=25kg mass? Assume m2=10kg and m3=15kg.Part BWhat is the direction of the net gravitational force on the m1=25kg mass? Assume m2=10kg and m3=15kg.Part CWhat is the magnitude of the net gravitational force on the m2=10kg mass? Assume m1=25kg and m3=15kg.Part DWhat is the direction of the net gravitational force on the m2=10kg mass? Assume m1=25kg and m3=15kg. 10. Muscle fatigue can be induced by sustaining maximum clench force on an object for several seconds. True or False Review the information given based on a principal balance of $8,000 to answer the question:FICO Score Simple Interest Rate Total # of Payments Total Amount Paid800850 12% 29 $9,256.00740799 15% 33 $9,812.00670739 18% 38 $10,554.00580669 21% 48 $11,891.00300579 28% 60 $14,945.00Calculate how much more a household with a credit score of 525 will pay compared to a household with a credit score of 675. Introduction: Introduce the tropical cyclone. Use the Sapphire-Simpson and Beaufort scales to indicate the strength of the tropical cyclone. Provide information about the Sapphire-Simpson and Beaufort scales. Fill The Blank: The life cycle of the sheep liver fluke, a trematode with the scientific name __________is digenetic--it spends part of its life in a sheep's liver, and another part of it in an aquatic snail. The adult fluke will shed its eggs in the sheep feces where the eggs will divide to form the _________ This larva will then penetrate a snail where it will form a ________ that becomes a_______ which will divide to form daughters. These escape into water where they will encyst on grass that is caten by a sheep that perpetuates the life cycle. I need to know the order asap Suppose the banking system currently has $300 billion in reserves; the reserve requirement is 10 percent; and excess reserves amount to $3 billion. What is the level of deposits?a. $3,300 billionb. $2,970 billionc. $2,700 billiond. $2,673 billion If the sides of a square are increased by 11, the area becomes 400. What is the length of the original side? Let A = {3, 2, 1, 0, 1, 2, 3, 4, 5, 6} and define a relation R on A as follows:For all x, y is in A, x R y 3|(x y).It is a fact that R is an equivalence relation on A. Use set-roster notation to write the equivalence classes of R.[0]=[1]=[2]=[3]=How many distinct equivalence classes does R have?List the distinct equivalence classes of R. (Enter your answer as a comma-separated list of sets.) A 51 g ice cube at -12C is dropped into a container of water at 0C. How much water freezes onto the ice? The specific heat of ice is 0.5 cal/g C and its heat of fusion of is 80 cal/g. Answer in units of g. Answer in units of g. D property insurance that provides $100,000 coverage for a building and $50,000 coverage for personal property at a single location is called A teacher asks her students to find an expression for the number of tiles needed tosurround such a square pool, and sees the following responses from her students:4(s+1)s4s+42s+2(s+2)4sIs each mathematical model correct or incorrect? How do you know?