how to find AX? help for III) and II) too​

How To Find AX? Help For III) And II) Too

Answers

Answer 1

The length of line AX is 3p/4q.

The length of side AY is  9p²/4q + 3p/4.

What is the length of AX?

The length of line AX is calculated as follows;

From the given figure, we can apply the principle of congruent sides of the parallellogram.

AD/DC = CX/AX

8q/6p = 1/AX

AX = 6p/8q

AX = 3p/4q

The length of side AY is calculated by applying the following formula as shown below.

Apply similar principle of congruent sides;

AX/CX = AY/CY

3p/4q / 1 = AY/(3p + q)

AY = 3p/4q(3p + q)

AY = 9p²/4q + 3p/4

Learn more about side lengths of parallelogram here: https://brainly.com/question/14386432

#SPJ1


Related Questions

I NEED HELP ON THIS ASAP!!!!

Answers

When dealing with exponential functions given by y = (a + c)^x, where the constant 'c' is used to achieve horizontal shifts, there are particular effects on the domain, range, and asymptotes

Effects of constant on domain, range, and asymptotes

The function's output values, or range, persist unchanged since it can assume any positive value for input from the vertical axis. Similarly, factorizing by adding constants does not impact the function's input values, otherwise known as the domain.

While horizontally shifting the exponentially-decreasing function, its horizontal asymptote remains unaffected; however, the positional shift depends on the magnitude and direction of said diasporic events. Equivalently, rightward shifts append positively and leftward motions take away from the aforementioned translation distance.

Learn more about exponential functions at

https://brainly.com/question/2456547

#SPJ1

1. assuming interest rates are 5 pr, what is the value at t0 of each of the following 4 year annuities:

Answers

The value at t0 of a 4-year annuity depends on the payment amount and the interest rate. Assuming the interest rate is 5%, the value of each of the following 4-year annuities can be calculated using the present value of an annuity formula.

An annuity that pays $10,000 at the end of each year for 4 years:
Using the present value of an annuity formula with a 5% interest rate, the value at t0 of this annuity is approximately $36,376.An annuity that pays $5,000 at the end of each half-year for 8 periods:
Since this is a semi-annual annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 2.5% interest rate, the value at t0 of this annuity is approximately $36,252.An annuity that pays $1,000 at the end of each quarter for 16 periods:
Since this is a quarterly annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 1.25% interest rate, the value at t0 of this annuity is approximately $36,172.An annuity that pays $500 at the end of each month for 48 periods:
Since this is a monthly annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 0.4167% interest rate, the value at t0 of this annuity is approximately $36,130.

In summary, at t0, the value of each 4-year annuity is approximately $36,376 for an annuity that pays $10,000 at the end of each year, $36,252 for an annuity that pays $5,000 at the end of each half-year, $36,172 for an annuity that pays $1,000 at the end of each quarter, and $36,130 for an annuity that pays $500 at the end of each month, assuming a 5% interest rate. For each annuity, the present value of an annuity formula was used to compute the value at t0, and the interest rate was changed based on the frequency of payments.

To learn more about annuities, visit:

https://brainly.com/question/27883745

#SPJ11

Consider using a z test to test
H0: p = 0.4.
Determine the P-value in each of the following situations. (Round your answers to four decimal places.)
a) Ha : p > 0.4, z= 1.49

Answers

The P-value for a one-tailed z-test with Ha: p > 0.4 and z = 1.49 is 0.0675, indicating insufficient evidence to reject the null hypothesis at the 0.05 level of significance.

How to find P-value for any situation?

To find the P-value for a z-test with Ha: p > 0.4 and z = 1.49, we first calculate the corresponding area under the standard normal distribution curve.

Using a standard normal table or a calculator, we find that the area to the right of z = 1.49 is 0.0675.

Since the alternative hypothesis is one-tailed, the P-value is equal to the area in the tail to the right of z = 1.49.

Therefore, the P-value for this test is 0.0675 or 6.75% (rounded to four decimal places).

This means that if the null hypothesis is true, there is a 6.75% chance of observing a sample proportion as extreme as or more extreme than the one we obtained.

Since the P-value (6.75%) is greater than the significance level (α), we fail to reject the null hypothesis at the α = 0.05 level of significance. We do not have sufficient

Learn more about P-value

brainly.com/question/30461126

#SPJ11

Which of the following illustrates the product rule for logarithmic equations?
log₂ (4x)= log₂4+log₂x
O log₂ (4x)= log₂4.log2x
log₂ (4x)= log₂4-log₂x
O log₂ (4x)= log₂4+ log₂x

Answers

Answer:

log₂ (4x)= log₂4 + log₂x

Step-by-step explanation:

log₂ (4x)= log₂4 + log₂x illustrates the product rule for logarithmic equations.

The product rule states that logb (mn) = logb m + logb n. In this case, b is 2, m is 4, and n is x. So,

log₂ (4x) = log₂ 4 + log₂ x.

Option A is correct, the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

The logarithm is the inverse function to exponentiation.

The product rule for logarithmic equations states that the logarithm of a product of two numbers is equal to the sum of the logarithms of the individual numbers.

logab=loga + logb

log₂ (4x) = log₂ 4 + log₂ x

Therefore, the correct illustration of the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ5

Consider the function f(x)=x^2+3. is the average rate of change increasing or decreasing from x=0 to x=4?Explain

Answers

The average rate of change is increasing over this interval.

Calculating the average rate of change

To find the average rate of change of the function f(x) = x^2 + 3 from x = 0 to x = 4, we can use the formula:

average rate of change = [f(4) - f(0)] / [4 - 0]

Substituting the values of x = 0 and x = 4 into the function f(x), we get:

f(0) = 0^2 + 3 = 3

f(4) = 4^2 + 3 = 19

So, the average rate of change of the function from x = 0 to x = 4 is:

average rate of change = [f(4) - f(0)] / [4 - 0] = (19 - 3) / 4 = 4

This means that the function increases at an average rate of 4 units per unit change in x from x = 0 to x = 4.

Since the average rate of change is a constant value, the function f(x) = x^2 + 3 has a constant rate of increase from x = 0 to x = 4.

Read more about average rate of change at

https://brainly.com/question/17131025

#SPJ1

a. what is the probability a randomly selected person will have an iq score of less than 80? (round your answer to 4 decimal places.)

Answers

The probability that a randomly selected person will have an IQ score of less than 80 is approximately 0.0918, or 9.18%

To find the probability that a randomly selected person will have an IQ score of less than 80, we need to consider the properties of the normal distribution, as IQ scores typically follow a normal distribution with a mean (μ) of 100 and a standard deviation (σ) of 15.

1. Calculate the z-score: The z-score represents the number of standard deviations a data point is from the mean. Use the formula:

z = (X - μ) / σ

where X is the IQ score, μ is the mean, and σ is the standard deviation.

z = (80 - 100) / 15
z = -20 / 15
z = -1.3333

2. Look up the z-score in a standard normal distribution table or use a calculator to find the corresponding probability. In this case, the probability is 0.0918.

Therefore, the probability that a randomly selected person will have an IQ score of less than 80 is approximately 0.0918, or 9.18% when rounded to four decimal places.

To know more about Probability refer here:

https://brainly.com/question/30034780

#SPJ11

Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. A = 11.2°, C = 131.6°, a = 84.9 a. B = 37.29, b=326.9.c = 264.3b. B - 37.2º, b = 27.3.c = 222 c. B = 37.2°, b = 264.3, c = 326.9 d. B-36.8°, b = 261.8, c= 326.9

Answers

The correct answer is option c. i.e. B = 37.2°, b = 264.3, c = 326.9.

To solve the triangle, we can use the given information:
1. A = 11.2°
2. C = 131.6°
3. a = 84.9

Step 1: Find angle B.
Since the sum of angles in a triangle is 180°, we can calculate angle B as follows:
B = 180° - (A + C) = 180° - (11.2° + 131.6°) = 180° - 142.8° = 37.2°

Step 2: Find side b.
We can use the Law of Sines to find side b.
a / sin(A) = b / sin(B)

84.9 / sin(11.2°) = b / sin(37.2°)

Now, solve for b:
b = (84.9 * sin(37.2°)) / sin(11.2°) ≈ 264.3

Step 3: Find side c.
Again, we can use the Law of Sines to find side c.
a / sin(A) = c / sin(C)
84.9 / sin(11.2°) = c / sin(131.6°)

Now, solve for c:
c = (84.9 * sin(131.6°)) / sin(11.2°) ≈ 326.9

So, the final answer is:
B = 37.2°, b = 264.3, c = 326.9, which corresponds to option c.

Know more about "law of sine" click here:

https://brainly.com/question/17289163

#SPJ11

Two joggers run 6 miles south and then 5 miles east. What is the shortestdistance they must travel to return to their starting point?

Answers

Answer:

7.81 miles

Step-by-step explanation:

pythagorean theorem, 6 units downwards, and 5 east, so we have to calculate the hypotenuse, or sqrt( 6^2 + 5^2) which is sqrt61 or 7.81 miles

A $52 item Ms marked up 10% and then marked down 10%. What is the final price?


Help pls

Answers

the final price will stay as $52

Use a table with values x = {−2, −1, 0, 1, 2} to graph the quadratic function y = −2x^

2.

Answers

To graph the quadratic function y=-2x^2 using the given values of x, one can create a table with two columns: one for x and the other for y. Starting with x=-2, we can substitute this value into the equation to find the corresponding value of y, which is y=-8. Similarly, by substituting -1, 0, 1, and 2 into the equation, we can find corresponding values of y as 2, 0, -2, and -8, respectively. By plotting these points on a graph and connecting them, we get a downward facing parabola with its vertex at (0,0).

Is (-10,10) a solution for the inequality y≤x+7

Answers

Answer: no

Step-by-step explanation: if we'd substitute the numbers, it'd look like this 10≤-10+7  which isn't true  as "≤" this symbol means more than or equals to but -10 plus 7 is equal to 3 so it doesn't fit the inequality

3. The perimeter of a circular sector with an angle 1.8
rad is 64cm. Determine the radius of the Circle. Round to
the nearst hundredth.

Answers

The radius of the circle is 17.78 cm.

The formula for calculating the perimeter of a circular sector with angle θ is given by

P = 2rθ

r = P / (2θ)

Substituting in the given values, we have:

r = 64 / (2 x 1.8)

r = 17.78

Therefore, the radius of the circle is 17.78 cm.

To learn more about the circumference visit:

https://brainly.com/question/4268218.

#SPJ1

identify the line of discontinuity:f(x,y)=ln|x y|

Answers

The line of discontinuity is x = 0 or y = 0.

We have,

To identify the line of discontinuity in the function f(x, y) = ln|x y|, we need to determine the values of x and y for which the function becomes undefined or exhibits a discontinuity.

In this case, the natural logarithm function, ln, is undefined for non-positive values.

Therefore, we need to find the values of x and y that make the expression |x y| non-positive.

The absolute value of a real number is non-positive when the number itself is zero or negative.

So, we set the expression inside the absolute value, x y, to be zero or negative:

x y ≤ 0

This inequality indicates that either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0, for the expression to be non-positive.

Hence, the line of discontinuity occurs along the line where either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0.

The equation of this line can be written as:

x ≤ 0, y ≥ 0 or x ≥ 0, y ≤ 0

This line divides the plane into two regions:

one where x ≤ 0 and y ≥ 0, and the other where x ≥ 0 and y ≤ 0.

Along this line, the function f(x, y) = ln|x y| becomes undefined or discontinuous.

Note that when x = 0 or y = 0, the function f(x, y) = ln|x y| is also undefined, but these points do not form a continuous line.

Thus,

The line of discontinuity is x = 0 or y = 0.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ12

describe in words when it would be advantageous to use polar coordinates to compute a double integral.

Answers

When each point on a plane of a two-dimensional coordinate system is decided by a distance from a reference point and an angle is taken from a reference direction, it is known as the polar coordinate system.

Polar coordinates are advantageous when the region being integrated over has a circular or symmetric shape. This is because polar coordinates use angles and radii to describe points in a two-dimensional plane, which aligns well with circular and symmetric shapes. Additionally, polar coordinates can simplify the integrand, as some functions are more easily expressed in terms of angles and radii rather than Cartesian coordinates.

learn more about "Polar coordinate":-https://brainly.com/question/29012031

#SPJ11

what expression is equivalent to 3(10-25x)?

a. 13 - 22x
b. 30 - 75x
c. 10 - 25x/3
d. 10 - 75x

Answers

B) 30 - 75x

This is because of the distributive property.

In the expression 3(10-25x) you have to multiply 3 by the numbers inside.

3 x 10 = 30

3 x 25x = 75x

Then, we keep the subtraction sign. The final answer is 30 - 75x.

B. because using the distributive property, 3 x 10 = 30 and 3 x -25x = -75x, making the simplified expression 30 - 75x.

Many situations in business require the use of an "average" function. One example might be the determination of a function that models the average cost of producing an item. In this activity, you will build and use an "average" function. When the iPhone was brand new, one could buy a 8-gigabyte model for roughly $600. There was an additional $70-per month service fee to actually use the iPhone as intended. We will assume for this activity that the monthly service fee does not change. A. Determine the total cost of owning an iPhone after: i. 2 months ii. 4 months iii. 6 months iv. 8 months

Answers

The average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Assuming a constant monthly service fee of $70, the total cost (C) of owning an iPhone for n months can be calculated as:

C = 600 + 70n

where n is the number of months of ownership.

Using this formula, we can calculate the total cost of owning an iPhone after:

i. 2 months:

C = 600 + 70(2) = 740

ii. 4 months:

C = 600 + 70(4) = 880

iii. 6 months:

C = 600 + 70(6) = 1020

iv. 8 months:

C = 600 + 70(8) = 1160

To find the average cost per month, we can divide the total cost by the number of months:

i. Average cost per month after 2 months: 740 / 2 = 370

ii. Average cost per month after 4 months: 880 / 4 = 220

iii. Average cost per month after 6 months: 1020 / 6 = 170

iv. Average cost per month after 8 months: 1160 / 8 = 145

Therefore, the average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Learn more about “ average cost “ visit here;

https://brainly.com/question/31116213

#SPJ4

Please Help! ∆ ABC is an isosceles right triangle. 1. A = ___ . 2. B = ____ . 3. If AC = 3, then BC = __ and AB =__. 4. If AC = 4, then BC = __ and AB = ___. 5. If BC = 9, then AB = ____. 6. If AB = 7V2, then BC =___ .
7. If AB = 2√2, then AC = _____.​

Answers

The missing sides and angles of the triangle are

1. . A = 45 degrees.

2. B = 45 degrees.

3. BC = 3 and AB = 3 sqrt (2).

4. BC = 4 and AB = 4 sqrt (2).

5. BC = 9, then AB = 9 sqrt (2).

6. AB = 7V2, then BC = 7 .

7. If AB = 2√2, then AC = 2.​

What is isosceles right triangle?

An Isosceles Right Triangle is an angular design in the shape of a right triangle comprising two equal sides - forming congruent legs, and additionally, the third side (also known as the hypotenuse = c) being longer in length.

In this particular angle, the two legs are congruent to each other as well as proportional to the square root of two times one leg's length.

Mathematically, using Pythagoras' theorem

c^2 = a^2 + a^2

c^2 = 2a^2

Eventually, by taking the square root of both expressions, we obtain:

c = sqrt (2a^2)

c = a * sqrt (2)

Learn more about isosceles right triangle at

https://brainly.com/question/29793403

#SPJ1

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10-10, 10 b 5 d. 11

Answers

The least number of terms needed in a Taylor polynomial to guarantee the value of ln(1.08) has an accuracy of 10⁻¹⁰ is 30. Option a is correct.

The Taylor series expansion of ln(1+x) is given by:

ln(1+x) = x - x²/2 + x³/3 - x⁴/4 + ...

For ln(1.08), we have x = 0.08. Therefore, the nth term of the series is given by:

(-1)ⁿ⁺¹ * (0.08)ⁿ / n

To guarantee the accuracy of ln(1.08) to 10⁻¹⁰, we need to ensure that the absolute value of the remainder term (i.e., the difference between the actual value and the value obtained using the Taylor polynomial approximation) is less than 10⁻¹⁰.

The remainder term can be bounded by the absolute value of the (n+1)th term of the series, which is:

(0.08)ⁿ⁺¹ / (n+1)

Therefore, we need to find the smallest value of n such that:

(0.08)ⁿ⁺¹ / (n+1) < 10⁻¹⁰

Solving this inequality numerically, we get n > 29.82. Therefore, we need at least 30 terms in the Taylor polynomial to guarantee the accuracy of ln(1.08) to 10⁻¹⁰. Hence Option a is correct.

To learn more about Taylor polynomial, here

https://brainly.com/question/31419648

#SPJ4

The complete question is:

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10⁻¹⁰.

a. 30b. 5c. 20d. 11

How many real solutions are there to the equation x^2 = 1/(x+3)?

Answers

For the given equation there are 3 real solutions they are -4/3, -3, 1 , under the condition that the given equation is  x² = 1/(x+3)

The equation x²= 1/(x+3) can be restructured as
x³ + 3x² - 1 = 0.
This is a cubic equation and could be evaluated applying the cubic formula. Then, we can also apply the rational root theorem to search the rational roots of the equation.
The rational root theorem projects that if a polynomial equation has integer coefficients, then any rational root of the equation should be of the form p/q
Here,
p = factor of the constant term and q is a factor of the leading coefficient.
For the given case,
the constant term is -1 and the leading coefficient is 1.
Hence, any rational root of the equation should be of the form p/q
Here, p is a factor of -1 and q is a factor of 1.
The possible rational roots are ±1 and ±1/3.
Applying the principle of testing these values, we evaluate that
x = -1/3 is a root of the equation.
Then, we can factorize
x³ + 3x² - 1 as (x + 1/3)(x² + 2x - 3).
The quadratic factor can be simplified further as
(x + 3)(x - 1),
Then, the solutions to the original equation are
x = -4/3, x = -3, and x = 1.
To learn more about cubic equation
https://brainly.com/question/1266417
#SPJ1

please help! finding the matrix

Answers

Answer:

Step-by-step explanation:

  A = [tex]\left[\begin{array}{cc}4&-4\\3&-2\end{array}\right][/tex]

3B = [tex]\left[\begin{array}{cc}12&12\\0&3\end{array}\right][/tex]

4 + 12 = 16 ; 12 + ( - 4) = 8

3 + 0 = 3  ; - 2 + 3 = 1

A + 3B = [tex]\left[\begin{array}{cc}16&8\\3&1\end{array}\right][/tex]

[tex](A+3B)^{-1}[/tex] = [tex]\left[\begin{array}{cc}-\frac{1}{8} &1\\\frac{3}{8} &-2\end{array}\right][/tex]

X = C ÷ ( A + 3B ) = C × [tex](A+3B)^{-1}[/tex]

X = [tex]\left[\begin{array}{cc}-1&0\\5&2\end{array}\right][/tex] × [tex]\left[\begin{array}{cc}-\frac{1}{8} &1\\\frac{3}{8} &-2\end{array}\right][/tex] = [tex]\left[\begin{array}{cc}\frac{1}{8} &-1\\\frac{1}{8} &1\end{array}\right][/tex]  

Find the equation of the tangent plane to the given surface at the indicated point. x2 + y2-z2 + 9 = 0: (6,2,7) Choose the correct equation for the tangent plane. O A. 36(x-6)+ 4(y-2)-49(z-7) 0 ○ B. 12(x-6)+4(y-2)-142-7)=-9 O c. 36(x-6)+4(y-2)-49(z-7)=-9 ○ D. 12(-6) +4(y-2)-142-7)=0 0 E. None of these equations are the correct equation for the tangent plane

Answers

Equation of the tangent plane is: 12(x-6) + 4(y-2) - 14(z-7) = 0

Correct answer is option C.

How to find the equation of the tangent plane?

We need to first find the partial derivatives of the given surface with respect to x, y, and z.

∂f/∂x = 2x

∂f/∂y = 2y

∂f/∂z = -2z

Then, we can evaluate them at the given point (6, 2, 7):

∂f/∂x = 2(6) = 12

∂f/∂y = 2(2) = 4

∂f/∂z = -2(7) = -14

Equation of the tangent plane is;

12(x-6) + 4(y-2) - 14(z-7) + D = 0

where D is the constant we need to find by plugging in the point (6, 2, 7):

12(6-6) + 4(2-2) - 14(7-7) + D = 0

D = 0

Equation of the tangent plane is:

12(x-6) + 4(y-2) - 14(z-7) = 0

So the correct answer is option C.

Learn more about tangent plane.

brainly.com/question/30260323

#SPJ11

State the trigonometric substitution you would use to find the indefinite integral. Do not integrate. x^2(x^2 - 64)^3/2 dxx(θ)=

Answers

The trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Explanation:

To find the trigonometric substitution for the given integral, follow these steps:

Step 1: we first notice that the expression inside the square root can be written as a difference of squares:

x^2 - 64 = (x^2 - 8^2)

Step 2: substitute x = 8sec(θ), which leads to the following substitutions:

x^2 = 64sec^2(θ)
x^2 - 64 = 64 tan^2(θ)

And
dx = 8sec(θ)tan(θ) dθ

Step 3: With these substitutions, the given integral can be rewritten as:

∫ x^2(x^2 - 64)^3/2 dx = ∫ (64sec^2(θ))(64tan^2(θ))^3/2 (8sec(θ)tan(θ)) dθ

Step 4: Simplifying this expression, we get:

∫ 2^18sec^3(θ)tan^4(θ) dθ

Therefore, the trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Know more about the indefinite integral click here:

https://brainly.com/question/31326046

#SPJ11

[tex]f(x) = 2x^{3} - 5x^{2} - 14x + 8[/tex] synthetic division

possible zeros:
Zeros:
Linear Factors:

Answers

The value of the function is dy/dx = f(x) = 6x²-10x-14

What is differentiation?

Differentiation is an element of personalized learning which involves changing the instructional approach to meet the diverse needs of students. It can involve designing and delivering instruction using an assortment of teaching styles and giving students options for taking in information and making sense of ideas.

the given function f(x) 2x³ -5x² -14x + 8

F(x) =dy/dx = 2*3(x)³⁻¹ -5*2(x²⁻¹) -14(x¹⁻¹)

Therefore the derivative of the function is f(x) = 6x²-10x-14

Learn more about derivative of a function  on https://brainly.com/question/25752367

#SPJ1

Find the Taylor Series for f centered at 4 if
f (n)(4) =((-1)nn!)/(3n(n+1))
What is the radius of convergence of the Taylor series?

Answers

We have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

What is function?

Function is a block of code that performs a specific task. It can accept input parameters and return a value or a set of values. Functions are used to break down a complex problem into simple, manageable tasks. They also help improve code readability and re-usability. By using functions, you can write code more efficiently and easily maintain your program.

The Taylor series of a given function is a polynomial approximation of that function, derived using derivatives. In this case, we are asked to compute the Taylor polynomial for the function f (x) = cos (4x).

The Taylor polynomials of f are as follows:

p0(x) = 1

p1(x) = 1 - 8x2

p2(x) = 1 - 8x2 + 32x4

p3(x) = 1 - 8x2 + 32x4 - 128x6

p4(x) = 1 - 8x2 + 32x4 - 128x6 + 512x8

For any approximations, we can use around 6 decimals. For instance, if x = 0.5, then p4(0.5) = 0.988377, which is an approximation of the actual value of f (0.5), which is 0.98879958.

In conclusion, we have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

To know more about function click-
http://brainly.com/question/25841119
#SPJ1

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.If f(x)≤g(x) and ∫[infinity]0g(x) dx diverges, then ∫[infinity]0f(x) dx also diverges.

Answers

The statement "If f(x)≤g(x) and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

also diverges" is true.

If f(x)≤g(x) for all x and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then we can conclude that

[tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] also diverges.

To see why, consider the integral [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]. Since f(x) ≤ g(x) for all x,

we have:

[tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] ≤ [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

If [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then the integral on the right-hand side is

infinite. Since [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] is less than or equal to an infinite integral, it

must also be infinite. Therefore, [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] also diverges.

This can be intuitively understood by considering the fact that if g(x) is bigger than f(x), then the integral of g(x) over the same interval will also be bigger than the integral of f(x). Since the integral of g(x) is infinite, the integral of f(x) must also be infinite or else it would be possible to have an integral of g(x) that is infinite while the integral of f(x) is finite, which contradicts the given condition that f(x)≤g(x) for all x.

Therefore, the statement is true.

Learn more about integral at: https://brainly.com/question/30094386

#SPJ11

help finding coordinates

Answers

The coordinates of N by the 270 degree rotation clockwise rule is (-7, 3)

Finding the coordinates of N

From the question, we have the following parameters that can be used in our computation:

N = (-3, 7)

The transfomation rule is given as

270 degree rotation rule clockwise

Mathematically, this is represented as

(x, y) = (-y, x)

Substitute the known values in the above equation, so, we have the following representation

N' = (-7, 3)

Hence, the coordinates of N after the rotation is (-7, 3)

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = ln(3n2 + 4) − ln(n2 + 4) lim n→[infinity] an = ?

Answers

The sequence converges to: lim n→[infinity] an = ln(3) = 1.0986. So the sequence converges to 1.0986.

To determine whether the sequence converges or diverges and find the limit, we'll use the properties of logarithms and the concept of limits at infinity.

Given sequence: a_n = ln(3n² + 4) - ln(n² + 4)

Using the logarithm property, ln(a) - ln(b) = ln(a/b), we can rewrite the sequence as:

a_n = ln[(3n² + 4)/(n² + 4)]

Now, we'll find the limit as n approaches infinity:

lim (n→∞) a_n = lim (n→∞) ln[(3n² + 4)/(n² + 4)]

To evaluate this limit, we can divide both the numerator and the denominator by the highest power of n, which is n^2 in this case:

lim (n→∞) ln[(3 + 4/n²)/(1 + 4/n²)]

As n approaches infinity, the terms with n² in the denominator will approach 0:

lim (n→∞) ln[(3 + 0)/(1 + 0)] = ln(3)

So, the sequence converges, and the limit is ln(3).

Learn more about convergence here: brainly.com/question/15415793

#SPJ11

1. The One Way Repeated Measures ANOVA is used when you have a quantitative DV and an IV with three or more levels that is within subjects in nature.
A. True
B. False

Answers

ANOVA is used when you have quantitative DV and IV with 3 or more levels, which means the correct answer is option A. True.


The One Way Repeated Measures ANOVA is a statistical test used to analyze the effects of an independent variable (IV) that has three or more levels on a dependent variable (DV) that is measured repeatedly on the same subjects over time. This test is appropriate when the IV is within-subjects in nature, meaning that each participant is exposed to all levels of the IV. Therefore, the statement is true as it accurately describes the use of this statistical test in relation to the IV and DV.
A. True

The One-Way Repeated Measures ANOVA is indeed used when you have a quantitative Dependent Variable (DV) and an Independent Variable (IV) with three or more levels that is within subjects in nature. In this case, the same subjects are exposed to different conditions or levels of the IV, allowing for the analysis of differences in the DV across those conditions.

Learn more about ANOVA here:

https://brainly.com/question/23638404

#SPJ11

If f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately: A. 2 B. 2.5 C. - 2.5 D. 1.25 E. -2

Answers

If the function f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately 23.75

The first-order Taylor's approximation formula, also known as the linear approximation formula, is a mathematical formula that provides an approximate value of a differentiable function f(x) near a point a. The formula is given as

f(x) ≈ f(a) + f'(a)(x - a)

where f'(a) is the derivative of f(x) at the point a. This formula is based on the tangent line to the graph of f(x) at the point (a, f(a)). The approximation becomes more accurate as x gets closer to a.

We can use the first-order Taylor's approximation formula to estimate the value of f(2.5) based on the information given

f(x) ≈ f(a) + f'(a)(x - a)

where a = 2 and x = 2.5. Plugging in the values, we get

f(2.5) ≈ f(2) + f'(2)(2.5 - 2)

f(2.5) ≈ 25 + (-2.5)(0.5)

f(2.5) ≈ 23.75

Learn more about first-order Taylor's approximation formula here

brainly.com/question/14787721

#SPJ4

consider the following geometric series. [infinity] (−3)n − 1 7n n = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Other Questions
After you have read Chapter 6, Sec. 6-6, "Privacy and the Due Process Clause" on pgs. 159 - 167 of your text, paying close attention to Griswold v. Connecticut and Lawrence v. Texas, please answer the following questions:1. In your own words, explain due process. (3 points)2. Where does the right to Due Process originate? (1 point)3. How does due process apply at the state level? (2 points)4. Griswold v. Connecticut Analysisa. What was the issue in this case? (2 points)b. How did due process play a role in this case? (3 points)c. What did the court decide and why? (5 points)5. Lawrence v. Texas Analysisa. What was the issue in this case? (2 points)b. How did due process play a role in this case (3 points)c. What did the court decide and why? (5 points) 1. Describe life during this ancient time. A convenient method to implement friendly code uses bit-specific addressing. Using this, individual pins of a port can be accessed independently.This feature is available on the Texas Instruments TM4C line of microcontrollers. This bit-specific addressing works on the parallel port data registers.Given the base address for Port A is 0x4000.4000, the bit-specific address of all pins in Port A are shown below.#define PA7 (*((volatile unsigned long *)0x40004200))#define PA6 (*((volatile unsigned long *)0x40004100))#define PA5 (*((volatile unsigned long *)0x40004080))#define PA4 (*((volatile unsigned long *)0x40004040))#define PA3 (*((volatile unsigned long *)0x40004020))#define PA2 (*((volatile unsigned long *)0x40004010))#define PA1 (*((volatile unsigned long *)0x40004008))#define PA0 (*((volatile unsigned long *)0x40004004))Use this PA71 you defined in the previous question, to make both bits 7 and 1 of Port A high. Chris is covering a window with a decorative adhesive film to filter light. The film cost $2.35 per square root. How much will the film cost? A tabular presentation that shows the outcome for each decision alternative under the various states of nature is called: A) a payback period matrix. B) a payoff table. C) a decision tree. D) a decision matrix. a 100 g ball rolls off a table and hits 2.0 m from the base of the table. a 200 g ball rolls off the same table with the same speed. it lands at distance Please implement the following procedure in MIPS 32:############################################################# # Given an integer, convert it into a string## Pre: $a0 contains the integer that will be converted# Post: $v0 contains the address of the newly-created string#############################################################PROC_CONVERT_INT_TO_STRING:# add your solution here# loop div by 10, get remainder# EX: 42 / 10 -> rem = 2# 4 / 10 -> rem = 4# result: 24, reverse string for 42...# returnjr $raI'm given some helper procedures to help implement the above:############################################################# # This procedure will determine the number of digits in the# provided integer input via iterative division by 10.## Pre: $a0 contains the integer to evaluate# Post: $v0 contains the number of digits in that integer#############################################################PROC_FIND_NUM_DIGITS:# prologue# function bodyli $t0, 10 # load a 10 into $t0 for the divisionli $t5, 0 # $t5 will hold the counter for number of digitsmove $t6, $a0 # $t6 will hold the result of the iterative divisionNUM_DIGITS_LOOP:divu $t6, $t0 # divide the number by 10addi $t5, $t5, 1mflo $t6 # move quotient back into $t6beq $t6, $zero, FOUND_NUM_DIGITS # if the quotient was 0, $t5 stores the number of digitsj NUM_DIGITS_LOOPFOUND_NUM_DIGITS:move $v0, $t5 # copy the number of digits $t5 into $v0 to return# epilogue# return jr $ra ############################################################# # This procedure will reverse the characters in a string in-# place when given the addresses of the first and last# characters in the string.## Pre: $a0 contains the address of the first character# $a1 contains the address of the last character# Post: $a0 contains the first character of the reversed# string#############################################################PROC_REVERSE_STRING:# prologue# function body move $t0, $a0 # move the pointer to the first char into $t0move $t2, $a1 # move the pointer to the last char into $t2# Loop until the pointers cross LOOP_REVERSE: lb $t9, 0($t2) # backing up the $t2 position char into $t9lb $t8, 0($t0) # load the $t0 position char into $t8sb $t8, 0($t2) # write the begin char into $t2 positionsb $t9, 0($t0) # write the end char into $t0 position# increment and decrement the pointersaddi $t0, $t0, 1subi $t2, $t2, 1ble $t2, $t0, END_OF_REVERSE_LOOPj LOOP_REVERSEEND_OF_REVERSE_LOOP:# epilogue# return jr $ra A rare form of malignant tumor occurs in 11 children in a million, so its probability is 0.000011. Four cases of thistumor occurred in a certain town, which had 17,199 children.a. Assuming that this tumor occurs as usual, find the mean number of cases in groups of17,199 children.b. Using the unrounded mean from part (a), find the probability that the number of tumor cases in a group of17.199 children is 0 or 1.c. What is the probability of more than one case?d. Does the cluster of four cases appear to be attributable to random chance? Why or why not? you discover that the plate you selected had only been inoculated with 0.1mL of the dilution instead of 1mL. Using the count data and observational data you acquired re-calculate the number of CFUs in the origional sample. an object of mass 9.00 kg attached to an ideal massless spring is pulled with a steady horizontal force across a frictionless level surface. if the spring constant is 95.0 n/m and the spring is stretched by 22.0 cm , what is the magnitude of the acceleration of the object? A direct access hash table has items 51, 53, 54, and 56. The table must have a minimum of a.4b.5 c.56 d.57 Find the tangential and normal components of the acceleration vector. r(t) = ti + t^2 j + 3tK a_T = a_N = Question 1-5Every year from June to November Florida is at risk for tropical storms and hurricanes. Which step should individuals take to be prepared for these storms?A) During the storm move to an exterior area.B) Check emergency equipment during the storm.C) Stock up on food items that are reliant on refrigeration.D) Before hurricane season determine safe evacuation route. All business decisions involve aspects of risk and return. Rank order the following investment activities from 1 through 4, where "1" is most risky and "4" is least risky. a. U.S. government Treasury Bond b. Stock of a highly successful company Medium-risk corporate bond d. High-risk corporate bond C. parole rapporte cest quoi help please I need someone to tutor me with this lol which type of associations is an unobserved variable that correlates with both the exposure and outcome variable? Find the Laplace transform of a +bt+c for some constants a, b, and c Exercise 6.1.7: Find the Laplace transform of A cos(t+Bsin(t Answer the following questions. If an electron and a hydrogen ion are removed from a structure during a chemical reaction, the structure is said to have been: