Answer:
C = - 1.625 i + 6.06 j
Explanation:
Positive angles are measured counterclockwise.
Positive angles are measured counterclockwise. To determine the component on the x axis we use the cosine of the angle while to determine the component on the y axis we use the sine of the angle.
[tex]C_{x}=6.28*cos(105)=-1.625\\C_{y}=6.28*sin(105)=6.06\\[/tex]
C = - 1.625 i + 6.06 j
2. If the initial speed of the baseball in question 1 is v. = 0.0 m/s, what will its speed be when it leaves the pitcher's
hand?
Answer:
Object A has 3 times the mass of object B.
Explanation:
Have a nice rest of your day :)
A car drives 500m in 2 minutes.What is the cars speed? A.2m/s B.4m/s C.5 m/s
Answer:
B
Explanation:
1 minute = 60 seconds
2 minutes = 2 * 60 = 120 seconds.
d = r * t
t = 120 seconds
d = 500 meters
r = d/t
r = 500 / 120 = 4.167 m/s
The closest answer is B
th weight of an object is
Answer:
the weight of an object is the force acting on the object due to gravity. the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force.
Explanation:
) prove that the acceleration due to gravi
is independent to the mass of the falling body
Explanation:
Let the mass of the body is m. The gravitational force acting on the object is given by :
[tex]F=\dfrac{GMm}{r^2}[/tex] ....(1)
G is universal gravitational constant
M is mass of Earth
r is the distance between the body
The acceleration of falling objects due to the gravitational force of Earth is equal to the acceleration due to gravity (g).
F = mg ...(2)
g is acceleration due to gravity
From equation (1) and (2) :
[tex]\dfrac{GMm}{r^2}=mg\\\\g=\dfrac{GM}{r^2}[/tex]
Here, M is mass of Earth and r is the distance. Hence, the acceleration due to gravi ty is independent to the mass of the falling body
An object with a mass of 10 kg is rolled down a frictionless ramp from a height of 3 meters. If a factory worker at the bottom of the ramp slows the object until it comes to a stop, how much work must the factory worker have done
Answer:
The amount of work the factory worker must to stop the rolling ramp is 294 joules
Explanation:
The object rolling down the frictionless ramp has the following parameters;
The mass of the object = 10 kg
The height from which the object is rolled = 3 meters
The work done by the factory worker to stop the rolling ramp = The initial potential energy, P.E., of the ramp
Where;
The potential energy P.E. = m × g × h
m = The mass of the ramp = 10 kg
g = The acceleration due to gravity = 9.8 m/s²
h = The height from which the object rolls down = 3 m
Therefore, we have;
P.E. = 10 kg × 9.8 m/s² × 3 m = 294 Joules
The work done by the factory worker to stop the rolling ramp = P.E. = 294 joules
Helpppp!! I will make you a brainlist Calculate the force exerted on
this test dummy with a mass of 75 kg hits an airbag accelerating at 12m/s2??
Answer:
900 NExplanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question is we have
force = 75 × 12
We have the final answer as
900 NHope this helps you
How much kinetic energy does leaves moving in the street have?
Answer:
as much as the wind is blowing has
9. A student notices that wearing darker colors in sunlight makes him feel warmer, so he decides to conduct an experiment. He takes five pieces of different
colored cloth and wraps
each one around a water bottle. He then places all five bottles in direct sunlight and measures the temperature of the water in each bottle an hour later
What is the dependent variable in this experiment?
O the time he leaves it in the sunlight
O the amount of water in each bottle
O the color of the cloth
O the temperature of the water
Answer: 4
Explanation:
The dependent variable is the temperature of the water.
Cellular respiration occurs in the body 24 hours per day. During exercise, the rate of cellular respiration increases. Why does increased cellular respiration cause people to breathe faster?
More oxygen is needed to produce energy, and more carbon dioxide waste must be removed from the body.
More nutrients are needed to produce more energy, and more oxygen must be removed from the body.
More heat is generated by the body, and breathing cools the body quickly.
More water is lost from the body, and breathing hydrates the body.
Answer: I think is C
Explanation:
Answer: more oxygen is needed to produce energy
Question
3.2
Calculate the value of critical angle for light passing from glass to air (given that refractive index of
glass - 1.5)
Answer:
42°
Explanation:
From the question given above, the following data were obtained:
Refractive index (n) = 1.5
Critical angle (C) =?
The refractive index and the critical angle are related according to the following reaction:
n = 1 / Sine C
Thus, with the above formula, we can obtain the critical angle as follow:
Refractive index (n) = 1.5
Critical angle (C) =?
n = 1 / Sine C
1.5 = 1 / Sine C
Cross multiply
1.5 × Sine C = 1
Divide both side by 1.5
Sine C = 1 / 1.5
Sine C = 0.6667
Take the inverse of sine
C = Sine¯¹ (0.6667)
C = 41.8 ≈ 42°
Thus, the critical angle is approximately
42°.
A battery is the power source for what type of current
Answer: DC Current
Explanation:
Battery is a source of constant potential difference and it will create a constant voltage across any conductor
due to this constant voltage difference the current in this conductor will remain constant
So here since the voltage across the conductor is constant so we can say that current in the conductor will remain constant and hence this is known as DC current.
While for variable current in direction and magnitude is to be obtained only when the conductor is connected with AC voltage source as we know that AC voltage is variable with magnitude and direction both
A battery is the power source for DC type of current. A battery is a source of constant potential difference that produces a constant current unlike in AC source where the voltage and hence the current changes its polarity continuously.Hence, the current produced by battery is direct current and not Alternating current.
Hope this helps........ Stay safe and have a Merry Christmas!!!!!! :D
Question 5 of 15
Hertz (Hz) is the unit used to measure a wave's
A. frequency
B. period
C. amplitude
D. wavelength
SUBMIT
I believe that it’s frequently?
Answer:
Hertz is the S.I. unit of frequency and is used to measure a wave's frequency . So, option A frequency is the correct answer.
Calculate the kinetic energy of a 50 kg cart moving at a speed of 18.6 m/s.
Answer:
8649 J
Explanation:
KE = 1/2mv^2
1/2(50)(18.6)^2
1/2(50)(345.96) = 8649 J
6. A student notices that when a weight is hung on a spring, the spring stretches. She decides conduct an experiment to determine the relationship between the amount of weight
placed on a spring and the distance the spring stretches. She has five different weights: 25 9,50 9.75 9, 1009, and 125 g. She selects a weight, hangs it on the spring, and
measures how far the spring stretches
What is the dependent variable in this experiment?
O weight hung from the spring
O temperature of the spring
length of unstretched spring
distance the spring stretches
Answer:
D
Explanation:
She says that the object of the experiment is to see how far the string stretches given a mass attached to the string.
The only thing that is at issue is either the mass or the amount the string stretches.
Nothing else matters.
The dependent variable therefore is the amount the string stretches. So the last choice is the answer.
Question 4 of 10
The pendulum below swings in periodic motion between point A and point B.
А
B
C
D
Answer: C
Explanation:
The pendulum will have the most energy at the bottom of its swing
c. At point C the pendulum have the most kinetic energy.
What is Kinetic energy?Kinetic energy is a form of energy that an object or a particle has by reason of its motion.
If work, which transfers energy, is done on an object by applying a net force, the object speeds up and thereby gains kinetic energy.
Kinetic energy is defined as:
⇒E = 1/2mv²
Here, the mass of the pendulum bob won't change, the only way for kinetic energy to change is for the speed of the pendulum to change. Kinetic energy is highest when the velocity is the highest.
This occurs at the bottom of the pendulum. An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Therefore,
At point C the pendulum have the most kinetic energy.
Learn more about Kinetic energy here:
https://brainly.com/question/999862
#SPJ5
A 250-kg moose stands in the middle of the railroad tracks in Sweden, frozen by the lights of an oncoming 10,000kg train traveling at 20m/s. Even though the engineer attempted in vain to slow the train down in time to avoid hitting the moose, the moose rides down the remaining track sitting on the train’s cowcatcher. What is the final velocity of the train and moose after the collision?
(Momentum & Impulse)
Answer:
The final velocity of the train and the moose after collision is approximately 19.51 m/s
Explanation:
The given mass of the moose, m₁ = 250 kg
The velocity of the moose, v₁ = 0
The mass of the oncoming train, m₂ = 10,000 kg
The velocity of the train, v₂ = 20 m/s
The velocity of the moose and the train after collision = v₃
By the principle of conservation of linear momentum, the total initial momentum before the collision = The total final momentum after collision
m₁·v₁ + m₂·v₂ = (m₁ + m₂)·v₃
Therefore, by substitution, we have;
250×0 + 10,000× 20 = (10,000 + 250) × v₃
200,000 = 10,250 × v₃
v₃ = 200,000/10,250 ≈ 19.51 m/s
The final velocity of the train and the moose after collision = v₃ ≈ 19.51 m/s
How might the temperatures on Mercury be different if it had the same mass as Earth?
Answer:
well, mercury is the closest planet to the sun, making it MUCH hotter than earth. that being said, just because mercury is closest to the sun, it doesnt mean its the hottest planet.
Since Mercury is the planet that is nearest to the sun, it is much hotter than the earth. However, because Mercury is nearest to the sun doesn't automatically make it the hottest planet.
What is a Planet?A huge, spherical celestial object, it is neither a star it nor remnant is called a planet. The nebular concept, which holds how an interplanetary cloud collapse out of a nebula to produce a young white dwarf orbited by a planetary system, is the best theory currently available for explaining planet formation.
The slow buildup of matter propelled by gravity—a practice called as accumulation, to the formation of planets in this disk. The rocky planets Mercury, Venus, Earth, and Mars, as well as the giant planets Jupiter, Saturn, Uranus, and Neptune, make up the Solar System's minimum number of eight planets. Each of these planets revolves around an axis that really is inclined with regard to its orbit pole.
To know more about Planet:
https://brainly.com/question/14581221
#SPJ2
A satellite is on orbit 35600 km above the surface of the earth.its angular velocity is 7.25×10–5 rad/sec.What is the vrlocity of the satellite?(The radius of the earth is 6400 km
Answer: 3.045 km/s
Explanation:
When an object is doing a circular motion, the velocity of the object is written as;
v = r*w
where;
r = radius of the circle
w = angular velocity.
In this case, we know that:
w = 7.25*10^(-5) s^-1
And the radius will be equal to the radius of the Earth, plus the height of the satellite, this is:
R = radius of the Earth + 35600 km = 6400km + 35600 km = 42000 km
Then the velocity of the satellite will be:
v = 42000 km*7.25*10^(-5) s^-1 = 3.045 km/s
The velocity of a satellite with an orbit 35600 km above the surface of the earth and an angular velocity of 7.25×10–5 rad/sec = 3045 m/s
Velocity: This is the rate of change of displacement.
To solve this problem we need to use the formula for calculating the velocity of an object in circular motion
The Velocity of the satellite is given as
V = ωr................ Equation 1
where V = velocity of the satellite, ω = angular velocity of the satellite, r = radius of the circle.
Note: r = height of the satellite above the surface of the earth+Radius of the earth
From the question,
Given: ω = 7.25×10⁻⁵ rad/sec, r = 35600+6400 = 42000 km = 4.2×10⁷ m
Substitute these values into equation 1
V = (7.25×10⁻⁵)(4.2×10⁷ )
V = 30.45×10²
V = 3045 m/s
Hence, the velocity of the satellite is 3045 m/s
Learn more about velocity here: https://brainly.com/question/6237128
What is the frequency of a light wave if its wavelength is 4.70 x 10-7 meters?
A. 1.57 x 10-15 Hz
B. 1.57 x 10-8 Hz
O
C. 6.32 x 107 HZ
O
D. 6.38 x 1014 Hz
Answer:
6.38 * 10^14 Hz
Explanation:
Calculate the buoyant force on a 2.00-L helium balloon. (b) Given the mass of the rubber in the balloon is 1.50 g, what is the net vertical force on the balloon if it is let go
Answer:
Following are the solution to the given points:
Explanation:
In this question, some of the values are missing, that's why its solution can be defined as follows:
In point a:
Density of air [tex]\rho_{air} =1.29 \frac{kg}{m^3}\\\\[/tex]
Density of helium [tex]\rho_{helium} =0.178 \frac{kg}{m^3} \\\\[/tex]
The volume of the helium balloon [tex]V= 2L[/tex]
[tex]\to V= 2 \times 10^{-3}[/tex]
Formula:
[tex]F_B = e_a V g\\\\[/tex]
[tex]= 1.29 \times 2 \times 10^{-3} \times 9.81\\\\ = 0.0253098 \ N[/tex]
where g is the acceleration due to gravity
In point b:
[tex]m_g= 1.5 \ g[/tex]
Formula:
[tex]F_{net}=F_B - (m_r + \rho_h \ v )g[/tex]
[tex]= 0.0253098 - (1.5 \times 10^{-3} + 0.178 \times 2 \times 10^{-3} \times 9.81)\\\\= 7.10244 \times 10^{-3} \ N[/tex]
Which is the metric standard for measuring energy?
Which unit is used for specific heat capacity?
If you wanted to compare the abilities of olive oil and peanut oil to gain or lose thermal energy, which unit would you use?
Answer:
1. Joule
2. Specific heat capacity is defined as the amount of heat required to raise the temperature of 1 kilogram of a substance by 1 kelvin (SI unit of specific heat capacity J kg−1 K−1).
3. heat capacity units
Heat is a thermal energy, so by using heat capacity units you can compare the ability of olive oil and peanut oil to gain or lose thermal energy by varying its temperature.
Answer:
Which is the metric standard for measuring energy?
✔ joules
Which unit is used for specific heat capacity?
✔ J/g°C
If you wanted to compare the abilities of olive oil and peanut oil to gain or lose thermal energy, which unit would you use?
✔ J/g°C
Explanation:
did it on edge 2023
. What is the velocity of a free-
falling object after 5 seconds?
(Use 10 m/s2 for gravity.)
Answer:
vf = 50 m/s
Explanation:
The equation for this kinematic problem is:
vf = vi + at
We are given:
a = 10m/s^2
vi = 0m/s
t = 5 sec
vf = ?
Solve for final velocity:
vf = 0 + 10(5)
vf = 50 m/s
Queremos un cilindro de simple efecto que utilice en su funcionamiento un volumen de aire a presión atmosférica de 13,122 litros, cuya presión de trabajo sea de 8,5Kgf/ cm2 y cuya longitud sea de 20 cm. -hallar el diámetro de este cilindro. - calcular las fuerzas de este cilindro.
Answer:
1) El diámetro es de aproximadamente 913,987 cm.
2) La fuerza del cilindro es 5576850 kgf
Explanation:
1) Los parámetros dados son;
El volumen del aire = 13,122 litros = 13122000 cm³
La presión de trabajo = 8.5 kgf / cm²
La longitud del cilindro = 20 cm.
Por lo tanto, tenemos;
El área de la base del cilindro = π · r² = 13122000 cm³ / (20 cm) = 656100 cm²
r = √ (656100 / π) ≈ 456,994 cm
El diámetro = 2 × r ≈ 2 × 456.994 ≈ 913.987 cm
El diámetro ≈ 913,987 cm
2) La fuerza del cilindro = El área de la base del cilindro × La presión de trabajo
∴ La fuerza del cilindro = 656100 cm² × 8.5 kgf / cm² = 5576850 kgf
La fuerza del cilindro = 5576850 kgf
Asha walks 15 m west, then 20 m north, then 15 m east. Calculate the distance
covered by Asha.(a) (Numbering problem)_
Distance walked to the west= 15m
" " " " north= 20m
" " " " east = 15m
Total Distance= (15+ 20+ 15) m
= 50m
Asha covered 50m distance in total.
When is the object traveling at a constant velocity?
A
B
C
D
It is moving at a constant velocity the entire time
d
I think the most common way of doing it was for the first
A student used apparatus as shown above. The beaker held 750 g of a liquid. The current from the power supply was 1.8 A and the potential difference of the supply was 230 V. The temperature rose from 12 °C to 40 °C over a period of 2 minutes.
Calculate the specific heat capacity of the liquid.
Answer:
[tex]2365.71\ \text{J/kg}^{\circ}\text{C}[/tex]
Explanation:
V = Voltage = 230 V
I = Current = 1.8 A
[tex]\Delta T[/tex] = Temperature change = [tex](40-12)^{\circ}\text{C}[/tex]
t = Time taken = 2 minutes
m = Mass of liquid = 750 g
c = Specific heat capacity of the liquid
Energy required to heat the water is equal to the heat released due to current passing
[tex]mc\Delta T=VIt\\\Rightarrow c=\dfrac{VIt}{m\Delta T}\\\Rightarrow c=\dfrac{230\times 1.8\times 2\times 60}{0.75\times (40-12)}\\\Rightarrow c=2365.71\ \text{J/kg}^{\circ}\text{C}[/tex]
The specific heat capacity of the liquid is [tex]2365.71\ \text{J/kg}^{\circ}\text{C}[/tex]
the center of mass of a donut is located ?
a. in the hole
b. in material making up the donut
c. near the center of gravity
d. over a point of support
Answer:
A
Explanation:
where the hole is because it's a rigid object with uniform density.
As you enter the lab, you find two bottles labeled "concentrated ammonium phosphate." In one paragraph, using your own words, describe the steps you could take to change one of the bottles into a diluted solution, and one of the bottles into a saturated solution.
Answer:
Butane is a four member carbon chain.
The properties of butane are as follows.
Butane is less denser than water.
In the presence of air, it readily burns to form water vapour and carbon dioxide. The reaction is as follows.
It has a boiling point of .
Butane has faint petroleum like odor.
Butane does not react with water.
Butane has weak dispersion force and water has strong hydrogen bonding. The weak dispersion force is unable to break the hydrogen bonding hence, butane does not dissolve in water.
Thus, we can conclude that the chemical properties butane burns readily in air and does not react with water are true out of the given list of options.
Explanation:
A car weighing 19600N is moving with a speed of 30 m/sec on a level road. If it is brought to rest in a distance of 100 m. Find the average distance friction force acting on it
Answer:
F = -8820 N
Explanation:
Given that,
The weight of a car, W = 19600 N
Initial speed of the car, u = 30 m/s
It is brought to rest, final velocity, v = 0
Distance, d = 100 m
We need to find the average friction force acting on it.
Firstly we find the acceleration of the car using third equation of motion. Let it is a.
[tex]v^2-u^2=2as\\\\a=\dfrac{v^2-u^2}{2d}\\\\a=\dfrac{(0)^2-(30)^2}{2\times 100}\\\\=-4.5\ m/s^2[/tex]
Average frictional force,
F = ma
m is mass, [tex]m=\dfrac{W}{g}=\dfrac{19600\ N}{10\ m/s^2}=1960\ kg[/tex]
F = 1960 kg × -4.5 m/s²
= -8820 N
So, the average friction force acting on it is 8820 N.
It takes a crane 59s to lift a flagstone using 342 W of power. How much work is done on the flagstone?
Answer: The work done on the flagstone is 20178 J
Explanation:
Power is the rate at which work is done . It is equal to the amount of work done divided by the time it takes to do the work.
[tex]Work=Power\times time[/tex]
Given : work = ?
Power = 342 W = 342J/s
Time = 59 s
[tex]Work=342J/s\times 59s=20178J[/tex]
Thus the work done on the flagstone is 20178 J