Answer:
2
Step-by-step explanation:
first, add terms
8 + 5 + 12 + 4 + 5 + 8 + 7 = 49
seven terms, therefore we divide by 7
49/7 = 7
find distance
8-7= 1
7-5= 2
12-7=5
7-4=3
7-5=2
8-7=1
7-7=0
added together you get 14,
14/7 = 2
your answer is 2
hope this helps:)
z + 15 = 21
z =
help mee please and thank you
In the given right triangle, write all trigonometric ratios ?
Answer:
see below
Step-by-step explanation:
You will need the hypotenuse 12 ^2 + 9^2 = h^2 h = 15
In a right triangle:
S O H C A H T O A
sin s = S A H = Opposite / Hypotenuse = 12/15
cos r = C A H = Adjacent / Hypotenuse = 12/ 15
Tan s = T O A = 12 / 9
cos (theta) = cos s = 9 / 15
Tan r = 9/12
arc cos(theta) = theta = arccos(9/15) = 53.13 degrees
A small ranch is 0.4 of an acre. There is 0.2 of the piece of land that is used for vegetable crops. What part of the land is used for
the vegetable crops?
A. 0.12 of an acre
B. 0.08 of an acre
C. 0.18 of an acre
D. 0.06 of an acre
I WILL MARK YOU AS BRAINLESS IF YOU PLEASE HELP ME!!
Answer:
Correct answer is B. 0.08
Step-by-step explanation:
Someone please help me on this question and no links they don’t work!!
Answer:
78
Step-by-step explanation:
hint
Which number line shows the solutions to x > 5?
OA. 8642 8 2 4 6 8
OB. 864-2 0 2 4 6 8
8-64-202468
4-202468
D. Pls help
Answer:
b.
Step-by-step explanation:
The inequality says that x is bigger than 5. The number line shows the arrow starting from 5 and going bigger. Therefore, that number line is correct.
Write the equation of the circle graphed below
Answer:
were is the circle to be to be equated
If function f : R --> R where f(X)=X³ - kX² + 12X - 7 is a one to one function, then k belongs to....
Since f(x) is a cubic polynomial, it has at most 3 distinct roots. If f(x) has 3 real roots, then f(x) = 0 for more than one instance of x.
But if f(x) is one-to-one, then there must be only one real root and the other two are non-real. Let a + bi and a - bi be these non-real roots and c the single real root; then we can factorize f(x) as
[tex]f(x) = x^3 - kx^2 + 12x + 7 = (x - (a + bi)) (x - (a - bi)) (x - c)[/tex]
Expand the right side to get
[tex]f(x) = x^3 - kx^2 + 12x + 7 = (x^2 - 2ax + a^2+b^2) (x - c)[/tex]
[tex]f(x) = x^3 - kx^2 + 12x + 7 = x^3 - (2a + c) x^2 + (a^2 + 2ac + b^2) x - (a^2c + b^2c)[/tex]
from which it follows that
[tex]\begin{cases}k = 2a + c \\ 12 = a^2+2ac+b^2 \\ 7 = -a^2c-b^2c\end{cases}[/tex]
Since f(x) has only one root, its graph will have no turning points/extrema. If f(x) has a critical point, it must be a saddle point. Differentiating f(x) yields
[tex]f'(x) = 3x^2 - 2kx + 12[/tex]
Solve for the critical point:
[tex]f'(x) = 3x^2 - 2kx + 12 = 0[/tex]
[tex]x^2 - \dfrac{2k}3 x = -4[/tex]
[tex]x^2 - \dfrac{2k}3 x + \dfrac{k^2}9 = \dfrac{k^2}9-4[/tex]
[tex]\left(x - \dfrac k3\right)^2 = \dfrac{k^2}9-4[/tex]
[tex]x = \dfrac k3 \pm \sqrt{\dfrac{k^2}9-4}[/tex]
There is at most one real critical point, so either the square root term vanishes or it produces a non-real number. This happens for
[tex]\dfrac{k^2}9 - 4 \le 0 \implies k^2 \le 36 \implies -6 \le k \le 6[/tex]
So, if f(x) is one-to-one, then
[tex]k \in \left\{\kappa \in \Bbb R \mid -6 \le \kappa \le 6\right\}[/tex]
The probability of guessing on four true and false questions and getting all four questions correct
Answer:
50-50
Step-by-step explanation:
If yoiu have 4 and divide it b
The table below shows the number of marbles of different colors in a bag:
Marble Experiment
Color of
Marbles Number of
Marbles
Red
5
White
8
Black
2
Deja draws a marble from the bag randomly without looking. She then draws another marble from the bag without replacing the first one. Which expression shows the probability of drawing red marbles in both the trials?
5 over 15 multiplied by 4 over 14
5 over 15 multiplied by 4 over 15
5 over 15 added to 4 over 14
5 over 15 added to 4 over 15
Answer:
[tex]\huge\boxed{\sf \frac{5}{15} + \frac{4}{14} }[/tex]
Step-by-step explanation:
Formula for probability: [tex]\boxed{\displaystyle Probability = \frac{number\ of\ possible\ outcomes}{total\ number\ of \ outcomes} }[/tex]Solution:Total number of marbles = 5 + 8 + 2 = 15
Number of red marbles = 5
Probability to draw a red marble at the first trial = 5/15
Number of marbles left = 15 - 1 = 14
Number of Red marbles left = 5 - 1 = 4
Probability to draw a red marble at the second trial = 4/14
Total probability:[tex]\displaystyle =Probability \ of \ drawing \ a \ red \ marble \ at \ the \ (second \ attempt +first \ attempt)\\\\= \frac{5}{15} + \frac{4}{14} \\\\\rule[225]{225}{2}[/tex]
Find the missing side
Answer:
[tex]\huge\boxed{\sf x = 8.2}[/tex]
Step-by-step explanation:
Since it is a right-angled triangle, we will apply Pythagoras Theorem.
Given are:
Base = 16
Perpendicular = x
Hypotenuse = 18
Pythagoras Theorem:
[tex]\sf (Hypotenuse)^2=(Base)^2+(Perpendicular)^2[/tex]
(18)² = (16)² + (x)²
324 = 256 + x²
Subtract 256 to both sides
324 - 256 = x²
68 = x²
Take sqrt on both sides
8.2 = x
x = 8.2
[tex]\rule[225]{225}{2}[/tex]
Step-by-step explanation:
We have,
Perpendicular = 16Hypotenuse = 18Base = xWe know that,
[tex] \large\boxed{\sf (Hypotenuse)^2=(Perpendicular)^2+(Base)^2}[/tex]
[tex]\longmapsto \sf \: (18)^2=(16)^2+x^2[/tex]
[tex]\longmapsto \sf \: (18)^2-(16)^2=x^2[/tex]
[tex]\longmapsto \sf \: x^2=324-256[/tex]
[tex]\longmapsto \sf \: x^2=68[/tex]
[tex]\longmapsto \sf \: x = \sqrt{68}[/tex]
[tex]\longmapsto \sf \: x ≈8.25 [/tex]
How many edges does the following shape have?
Answer:
6
Step-by-step explanation:
Function ggg can be thought of as a scaled version of f(x)=x^2f(x)=x
2
f, left parenthesis, x, right parenthesis, equals, x, squared.
A parabola labeled f represents the equation y equals x squared. A parabola labeled g passes through the point negative 1, 4, through the origin, and through the point 1, 4.
Write the equation for g(x)g(x)g, left parenthesis, x, right parenthesis.
Using translation concepts, it is found that the equation for function g(x) is given by:
g(x) = 4x².
What is a translation?A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction in it's definition.
In this problem, the parent function is given by:
f(x) = x².
This function passes through point (1,1). Function g(x) passes through point (1,4), that is, it is horizontally compressed by a factor of 4, hence g(x) is given by:
g(x) = 4x².
More can be learned about translation concepts at https://brainly.com/question/4521517
#SPJ1
2. The next Saturday, the two friends leave at the same time a ain, and Kiran jogs twice
as fast as Clare walks. Where on the rail trail do Kiran and Clare meet?
Answer:
the end by the finish line
Write each of the following expressions as a^n or a^n b^m,
Step-by-step explanation:
[tex]2 {}^{2} \times 2 {}^{3} \times 2 {}^{1} \times 3 {}^{ - 1} {}^{ (- 2)} [/tex]
[tex]2 {}^{6} 3 {}^{2} [/tex]
Given that A = {1, 2, 3, 4, 5, 6] maps respectively to B = {3, 4, 5, 6, 7, 8). Find an injective function f(x) such that f: A → B. Hint: Can you depict any relationship between sets A and B?
Answer: f(x) = x + 2
Step-by-step explanation:
A = {1, 2, 3, 4, 5, 6]
B = {3, 4, 5, 6, 7, 8)
for each A, B is 2 more
f(1) = 1 + 2 = 3
f(2) = 2 + 2 = 4
f(3) = 3 + 2 = 5
and so on...
⇒ f(x) = x + 2
please help due in 10 mins
Answer:
the answers is -4 for this exerxises
Netflix is considering a new romcom (romantic comedy) series. Before making a final decision, the producers design an experiment to estimate the proportion of viewers who would watch the series. A random sample of 1,000 viewers was selected and asked to watch the first two episodes. After viewing the episodes, 625 viewers indicated they would watch the new series. (Use t Distribution Table & z Distribution Table.) (Round your answers to 3 decimal places.)
Required:
a. Estimate the value of the population proportion of people who would watch the new series.
b. Develop a 99% confidence interval for the population proportion of people who would watch the new series.
A) the value of the population proportion of people who would watch the new series is 5 out of 8 viewers, and B) a 99% confidence interval for the population proportion of people who would watch the new series indicates that between 61.87% and 63.13% of viewers will watch the new series.
ProportionsGiven that Netflix is considering a new romcom (romantic comedy) series, and a random sample of 1,000 viewers was selected and 625 viewers indicated they would watch the new series, for A) estimate the value of the population proportion of people who would watch the new series, and B) develop a 99% confidence interval for the population proportion of people who would watch the new series, the following calculations must be made:
A)
625 = 1
1000 = X
1000 / 625 = X
1.6 = X
10 out of 16, or 5 out of 8.
B)
62.5 x 0.99 = 61.875
62.5 x 1.01 = 63.125
Therefore, A) the value of the population proportion of people who would watch the new series is 5 out of 8 viewers, and B) a 99% confidence interval for the population proportion of people who would watch the new series indicates that between 61.87% and 63.13% of viewers will watch the new series.
Learn more about proportions in https://brainly.com/question/2548537
#SPJ1
3. If 3, x, y, 18, are in arithmetic progression, (A, P) find the value of x and y
b) the sum of the second and third terms of a geometric progression is six times the fourth term, find the two possible values of common ratio
i) If the seconds term is 8 and the common ration is positive, find the first six terms. 10mrks
Answer:
Below in bold
Step-by-step explanation:
The sequence is:
3, x, y, 18
If this is an A P then
x - 3 = y - x
2x - y = 3 (A) and
y - x = 18 - y
2y - x = 18 (B)
Multiply (A) by 2:
4x - 2y = 6 (C)
Adding B and C:
3x = 24
x = 8.
and
2y - 8 = 18
2y = 26
y = 13.
So x = 8 and y = 13.
b) ar + ar^2 = 6ar^3 where a = first term and r = common ratio
Divide by a:
r + r^2 = 6r^3
6r^3 - r^2 - r = 0
r(6r^2 - r - 1) = 0
r(3r + 1)(2r - 1) = 0
So the 2 possible values of r
= -1/3 and 1/2.
i) The common ratio is positive so it must be 1/2.
Second term ar = 8
1/2 a = 8
a = 16.
So the first 6 terms are:
16, 8, 4, 2, 1, 1/2.
The financial planner for a beauty products manufacturer develops the system of equations below to determine how many combs must be sold to generate a profit. the linear equation models the income, in dollars, from selling x plastic combs; the quadratic equation models the cost, in dollars, to produce x plastic combs. according to the model, for what price is each comb being sold? startlayout enlarged left-brace 1st row y = startfraction x over 2 endfraction 2nd row y = negative 0.03 (x minus 95) squared 550 $0.03 $0.50 $0.95 $2.00
The price of each comb is $0.5, if the linear equation y = x/2 models the income, in dollars, from selling x plastic combs
What is an equation?An equation is an expression that shows the relationship between two or more number and variables.
Profit = income - cost
Given that the linear equation y = x/2 models the income, in dollars, from selling x plastic combs. Hencee:
Price of each comb = (x/2) / x = 0.5
The price of each comb is $0.5, if the linear equation y = x/2 models the income, in dollars, from selling x plastic combs
Find out more on equation at: https://brainly.com/question/2972832
#SPJ4
Answer:
$0.50
Step-by-step explanation:
The answer above is correct.
A children’s news and talk show is broadcasted for 2 hours each weekday. On Saturdays and Sundays, the show is an hour longer than during the week. How many hours is this show broadcasted each week?
ANSWER QUICK SUPER EASY 99 PTS I JUST DONT REMEMBER
Find the value of tan θ, if cos θ =
Answer:
B
Step-by-step explanation:
A formation is:
A. Closing in on players so they do not have any room to maneuver
B. Mirroring the format and positioning of the other team
C. Marking and defending a specific area
D. An organized patter of player positions.
I need help with (ii) both (a) and (b) thanks
Answer:
(i) 126 ways
(ii)
(a) 1/126
(b) 5/14
Step-by-step explanation:
(i) Possible selections
⁹C₄ = 9! / 5! 4!9 x 8 x 7 x 6 x 5! / 5! x 4 x 3 x 2 x 172 x 7 x 6 / 247 x 6 x 342 x 3126 ways(ii) (a) all girls
⁴C₄ 4! / 1! 4!1 wayP = 1/126(ii) (b) more boys than girls
3 boys, 1 girl⁵C₃ x ⁴C₁(5! / 2! 3!) x (4! / 3! 1!)(5 x 4 x 3!/ 2 x 3!) x (4 x 3! / 3!)10 x 440 ways2. 4 boys, no girls
⁵C₄5! / 1! 4!5 x 4! / 4!5 ways⇒ 40 + 5 = 45 ways
⇒ P = 45/126 = 15/42 = 5/14
Given the function f(x) = (1/4)^x , how will g(x) = (1/4) ^x-3 + 5 be translated
See
x is decreased by 3 .
and y is increased by 5
So translation is
f(x)=(1/4)^xHence
f(x)=(1/4)^x-3+5So
x will go 3 units right
y will go 5units up
Graph attached
Answer:
Translations
For [tex]a > 0[/tex]
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
Parent function:
[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]
Translated 3 units to the right:
[tex]f(x-3)=\left(\dfrac{1}{4}\right)^{x-3}[/tex]
Translated 5 units up:
[tex]f(x-3)+5=\left(\dfrac{1}{4}\right)^{x-3}+5[/tex]
[tex]\implies g(x)=f(x-3)+5[/tex]
Therefore:
[tex]\textsf{g(x) is a translation of f(x) by }\left(\begin{array}{c}3\\5\\\end{array}\right)[/tex]
Help Me, I only have 2 minutes
Answer:
[tex]6 \frac{2}{13} [/tex]
Write a sine function that has an amplitude of 5, a midline of 4 and a period of
4
Answer:
See below
Step-by-step explanation:
Start with sin x
amplitude of 5
5 sin x
midline 4
5 sin (x) + 4
period of 4
2 pi / 4 = pi/2
5 sin ( x pi/2 ) + 4
PLEASE HELP ME
Which graph best represents the solution to the system of equations shown below?
y = -2x + 14
y = 2x + 2
A coordinate grid is shown from negative 10 to positive 10 on the x axis and also on the y axis. Two lines are shown intersecting on the ordered pair 3, 8.
A coordinate grid is shown from negative 10 to positive 10 on the x axis and also on the y axis. Two lines are shown intersecting on ordered pair 8, 3.
A coordinate grid is shown from negative 10 to positive 10 on the x axis and also on the y axis. Two lines are shown intersecting on ordered pair negative 8, negative 3.
A coordinate grid is shown from negative 10 to positive 10 on the x axis and also on the y axis. Two lines are shown intersecting on ordered pair negative 3, 8.
Answer:
A coordinate grid is shown from negative 10 to positive 10 on the x axis and also on the y axis. Two lines are shown intersecting on the ordered pair 3, 8.
Step-by-step explanation:
Finding the solution of these 2 equations
y = -2x + 14y = 2x + 2Equating them :
-2x + 14 = 2x + 22x + 2x = 14 - 24x = 12x = 3Substitute in a equation to find y :
y = 2(3) + 2y = 6 + 2y = 8The solution is (3, 8).
The 1st explanation is the correct one.
convert 29/6 and 16/7 to fraction with denominator 42
answer is given below
29/6 = 203/42
16/7 = 96/42
to make the denominator 42 we use common tables for this just multiplying .
Answer:
the fractions are 203/42 and 96/42
Step-by-step explanation:
[tex]for \: \frac{29}{6} \\ \: multply \: the \: numerator \: and \: denominator \: by \: 7 \\ \frac{29}{6} \times \frac{7}{7} = \frac{203}{42} \\ for \: \frac{16}{7} also \: multiply \: the \: numerator \\ and \: denominatorby \: 6 \\ = \frac{16}{7} \times \frac{6}{6} = \frac{96}{42} [/tex]
Which number is a solution of the inequality x <-4? Use the number line to help answer the question. Number line starts like and ends like “ -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1. “
(x - 9)2 + (y - 4)2 = 400
Center:
Radius:
Answer:
Center: (9, 4)
Radius: 20
Explanation:
(x - 9)² + (y - 4)² = 400
The Circle Formula:
(x - h)² + (y - k)² = r²
where (h, k) is center points, r is radius
Rewrite the equation:
(x - 9)² + (y - 4)² = 20²
Identify following:
h = 9, k = 4, radius = 20