Active power consumed by the load P = 100 MW P.F of the load cos φ = 0.8 (lagging)
P.F of the load after connecting capacitors cos φ2 = 0.96 (leading)
The formula to calculate the reactive power is
Q = P(tan φ1 - tan φ2) Where, Q = Reactive power required by capacitors P = Active power consumed by the load
cos φ1 = Power factor of the load before adding capacitors
cos φ2 = Power factor of the load after adding capacitors
tan φ1 = √(1 - cos²φ1)/cos φ1
tan φ1 = √(1 - 0.8²)/0.8 = 0.6
tan φ2 = √(1 - cos²φ2)/cos φ2
tan φ2 = √(1 - 0.96²)/0.96 = 0.4
Therefore, Q = 100 × (0.6 - 0.4) = 20 MW
Thus, the reactive power supplied by the three capacitors is 20 MW.
Read up more about capacitors: https://brainly.com/question/21851402
#SPJ11
A 43.0-kg boy, riding a 2.30-kg skateboard at a velocity of 5.80 m/s across a level sidewalk, jumps forward to leap over a wall. Just after leaving contact with the board, the boy's velocity relative to the sidewalk is 6.00 m/s, 8.20° above the horizontal. Ignore any friction between the skateboard and the sidewalk. What is the skateboard's velocity relative to the sidewalk at this instant? Be sure to include the correct algebraic sign with your answer.
The skateboard's velocity relative, is approximately 2.12 m/s at an angle of 8.20° above the horizontal. This can be determined using the principle of conservation of momentum.
According to the principle of conservation of momentum, the total momentum before and after an event remains constant if no external forces are acting on the system. In this case, the system consists of the boy and the skateboard.
Before the boy jumps, the total momentum is given by the product of the mass and velocity of the boy and the skateboard combined. Using the equation for momentum (p = m * v), we can calculate the initial momentum:
Initial momentum = (mass of boy + mass of skateboard) * velocity of boy and skateboard= (43.0 kg + 2.30 kg) * 5.80 m/s Just after leaving contact with the skateboard, the boy's velocity relative to the sidewalk is given.
We can use this information to find the final momentum of the system Final momentum = (mass of boy) * (velocity of boy relative to sidewalk) Since the momentum is conserved, the initial momentum and the final momentum must be equal. Therefore: Initial momentum = Final momentum
(43.0 kg + 2.30 kg) * 5.80 m/s = (43.0 kg) * (velocity of boy relative to sidewalk) From this equation, we can solve for the velocity of the boy relative to the sidewalk:
velocity of boy relative to sidewalk = [(43.0 kg + 2.30 kg) * 5.80 m/s] / (43.0 kg), the skateboard's velocity relative to the sidewalk is also approximately 2.12 m/s at an angle of 8.20° above the horizontal.
To learn more about velocity, Click here: brainly.com/question/24259848
#SPJ11
design second order low pass filter with the following
specifications:
Fp=500hz
Fc=600hz
Ap= 1
A=60
Transfer function to Z transform
The resulting Z-transform transfer function is:
[tex]H(z) = (b0 * z^{2} + b1 * z + b_2) / (a0 * z^{2} + a1 * z + a_2)[/tex]
The transfer function of a second-order low-pass Butterworth filter can be represented as follows:
H(s) = K / ([tex]s^{2}[/tex] + s * ωc / Q + ω[tex]c^{2}[/tex])
To convert this transfer function to its equivalent Z-transform, we can use the bilinear transformation method. The bilinear transformation maps the s-plane to the z-plane using the following substitution:
s = (2 * Fs * (z - 1)) / (z + 1)
By substituting the above expression for s into the transfer function, we can obtain the Z-transform representation of the filter.
Let's assume the sampling frequency Fs is known, we can proceed with the design:
Determine the analog prototype filter cutoff frequency ωc:
ωc = 2π * Fc
Calculate the value of Q using the following relation:
Q = ωc / (Fc - Fp)
Compute the warped digital cutoff frequency Ωc using the bilinear transformation:
Ωc = 2 * Fs * tan(ωc / (2 * Fs))
Calculate the numerator coefficients of the Z-transform transfer function:
[tex]b_0[/tex] = (Ω[tex]c^{2}[/tex]) / (1 + Ωc / Q + Ω[tex]c^{2}[/tex])
[tex]b_1[/tex]= 2 * (Ω[tex]c^{2}[/tex]) / (1 + Ωc / Q + Ω[tex]c^{2}[/tex])
[tex]b_2[/tex]= (Ω[tex]c^{2}[/tex]) / (1 + Ωc / Q + Ω[tex]c^{2}[/tex])
Calculate the denominator coefficients of the Z-transform transfer function:
[tex]a_0[/tex] = 1
[tex]a_1[/tex] = 2 * (Ω[tex]c^{2}[/tex] - 1) / (1 + Ωc / Q + Ω[tex]c^{2}[/tex])
[tex]a_2[/tex]= (1 - Ωc / Q + Ω[tex]c^{2}[/tex]) / (1 + Ωc / Q + Ω[tex]c^{2}[/tex])
The Z-transform transfer function is:
[tex]H(z) = (b0 * z^{2} + b1 * z + b_2) / (a0 * z^{2} + a1 * z + a_2)[/tex]
To know more about Z-transform transfer function, here
brainly.com/question/32246466
#SPJ4
(T=2,A=2,C=2) Two go-carts, A and B, race each other around a 1.0 km track. Go-cart A travels at a constant speed of 20 m/s. Go- cart B accelerates uniformly from rest at a rate of 0.333 m/s 2
. Which go-cart wins the race and by how much time?
Go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds.
Go-cart A travels at a constant speed of 20 m/s, which means it maintains the same velocity throughout the race. Since the track is 1.0 km long, go-cart A takes 1.0 km / 20 m/s = 50 seconds to complete the race.
Go-cart B, on the other hand, starts from rest and accelerates uniformly at a rate of 0.333 m/s². To determine how long it takes for go-cart B to reach its final velocity, we can use the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since go-cart B starts from rest, its initial velocity u is 0 m/s. We can rearrange the formula to solve for time: t = (v - u) / a.
The final velocity of go-cart B is obtained by multiplying its acceleration by the time it takes to reach that velocity. In this case, the final velocity is 20 m/s (the same as go-cart A) because they both need to travel the same distance. Thus, 20 m/s = 0 m/s + 0.333 m/s² * t. Solving for t, we get t = 20 m/s / 0.333 m/s² ≈ 60.06 seconds.
Therefore, go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds. Hence, go-cart A wins the race against go-cart B by approximately 11.22 seconds.
Learn more about final velocity here:
https://brainly.com/question/28608160
#SPJ11
The magnetic field is 1.50 uT at a distance 42.6 cm away from a long, straight wire. At what distance is it 0.150 uT? 4.26×10 2
cm Previous Tries the middle of the straight cord, in the plane of the two wires. Tries 2/10 Previous Tries
The distance from the wire is 426 cm is the answer.
Given data: The magnetic field, [tex]B = 1.50 uT[/tex]
The distance from the long, straight wire, [tex]r1 = 42.6 cm.[/tex]
The magnetic field,[tex]B' = 0.150 uT[/tex]
To find: the distance from the wire, r2
Solution: We can use the Biot-Savart law to find the magnetic field at a distance r from an infinitely long straight wire carrying current I: [tex]B = μ0I / 2πr[/tex] where [tex]μ0 = 4π[/tex]× [tex]10^-7[/tex] Tm/A is the permeability of free space.
Now we can write this as: [tex]r = μ0I / 2πB[/tex] .....(1)
At [tex]r1, B = 1.50 uT[/tex] and at[tex]r2, B' = 0.150 uT[/tex]
Therefore, from equation (1):[tex]r2 = μ0I / 2πB'[/tex].....(2)
Let us assume the current in the wire is I. Since I is constant, we can write [tex]r2/r1 = B / B'.[/tex]....(3)
Substituting the values:[tex]r2 / 42.6 = 1.50 / 0.150[/tex]
Solving for [tex]r2:r2 = (42.6 × 1.50) / 0.150 = 426 cm[/tex]
Therefore, the magnetic field is 0.150 uT at a distance of 426 cm from the wire.
Thus, the distance from the wire is 426 cm.
know more about magnetic field
https://brainly.com/question/14848188
#SPJ11
An object 25cm away from a lens produces a focused image on a film 15cm away.What is the focal length of the converging lens?
formula for calculating the focal length of a converging lens is:
1/f = 1/v - 1/u
where f is the focal length of the lens, v is the distance between the lens and the image plane (film), and u is the distance between the lens and the object.
In this case, the object is 25 cm away
A 110g mass on a spring oscillates on a frictionless horizontal surface with a period of 0.60s and an amplitude of 18.0cm. Determine the:
a) Spring constant
b) Maximum spring potential energy of the system
c) Maximum speed of the mass
a)The spring constant of the system is 12.16 N/m. b).The maximum potential energy stored in the spring is 0.198 J. c)The maximum speed of the mass is 1.89 m/s.
a) Spring Constant k is given by the formula;k= 4π²m/T²where;T is the time periodm is the massk is the spring constantSubstitute the given values;m = 110g = 0.110kgT = 0.60 sTherefore;k = (4 x 3.14² x 0.110)/(0.60)² = 12.16 N/mTherefore, the spring constant of the system is 12.16 N/m.
b) Maximum spring potential energy of the systemThe maximum potential energy stored in the spring during its oscillations is given by the formula;U = (1/2) kx²where; x is the amplitude of the oscillationSubstitute the given values;k = 12.16 N/mx = 18.0 cm = 0.18 mTherefore;U = (1/2) x k x² = 0.5 x 12.16 x (0.18)² = 0.198 JTherefore, the maximum potential energy stored in the spring is 0.198 J.
c) Maximum speed of the massThe maximum speed of the mass can be obtained using the formula;vmax= Aωwhere;A is the amplitude ω is the angular velocity.Substitute the given values;A = 18.0 cm = 0.18 mω = 2π/T = 2 x 3.14/0.60Therefore;vmax = Aω = 0.18 x 2 x 3.14/0.60vmax = 1.89 m/sTherefore, the maximum speed of the mass is 1.89 m/s.
Learn more about amplitude here,
https://brainly.com/question/3613222
#SPJ11
Calculate the amplitude of the motion. An object with mass 3.2 kg is executing simple harmonic motion, attached to a spring with spring constant 310 N/m. When the object is 0.019 m from its equilibrium position, it is moving with a speed of 0.55 m/s. Express your answer to two significant figures and include the appropriate units. Mi ) ?Calculate the maximum speed attained by the object. Express your answer to two significant figures and include the appropriate units.
The maximum speed attained by the object is approximately 0.19 m/s. To calculate the amplitude of the motion, we can use the formula:
A = [tex]x_{max[/tex]
where A is the amplitude and [tex]x_{max[/tex] is the maximum displacement from the equilibrium position.
Given that the object is 0.019 m from its equilibrium position, we can conclude that the amplitude is also 0.019 m.
So, the amplitude of the motion is 0.019 m.
To calculate the maximum speed attained by the object, we can use the equation:
[tex]v_{max[/tex] = ω * A
where [tex]v_{max[/tex] is the maximum speed, ω is the angular frequency, and A is the amplitude.
The angular frequency can be calculated using the formula:
ω = √(k / m)
where k is the spring constant and m is the mass.
Given that the spring constant is 310 N/m and the mass is 3.2 kg, we can calculate ω:
ω = √(310 N/m / 3.2 kg)
≈ √(96.875 N/kg)
≈ 9.84 rad/s
Now we can calculate the maximum speed:
[tex]v_{max[/tex] = 9.84 rad/s * 0.019 m
≈ 0.19 m/s
Therefore, the maximum speed attained by the object is approximately 0.19 m/s.
To learn more about maximum speed visit:
brainly.com/question/10236290
#SPJ11
Which of the following functions are in the Hilbert space with indicated interval? (a) f(x) = eᶦπˣ, -1≤x≤1 (b) f(x) = e⁻ˣ, x ≥0
(c) f(x) = x⁻¹/⁴, 0 ≤x≤1 (d) f(x) = cos(x), -π ≤ x ≤ π (e) f(x) = 1/(1+ ix), - [infinity] < x < [infinity] (f) f(x) = x⁻¹/², 0 ≤x≤1
All the given functions that are
(a) f(x) = eᶦπˣ, -1≤x≤1
(b) f(x) = e⁻ˣ, x ≥0
(c) f(x) = x⁻¹/⁴, 0 ≤x≤1
(d) f(x) = cos(x), -π ≤ x ≤ π
(e) f(x) = 1/(1+ ix), - [infinity] < x < [infinity] (f) f(x) = x⁻¹/², 0 ≤x≤1 belong to the Hilbert space with the indicated interval.
A function is said to be in the Hilbert space with a given interval when it satisfies the requirements for Hilbert spaces. The terms Hilbert space, interval, and functions will be explained first.
A Hilbert space is an infinite-dimensional vector space that is equipped with an inner product, a scalar product. The space is complete and satisfies a certain set of properties, which include an orthonormal basis.
An interval is the set of all real numbers between two endpoints. It can be closed, such as [a, b], which includes the endpoints, or open, such as (a, b), which excludes them.
A half-open interval is one that includes one endpoint but excludes the other. For example, [a, b) and (a, b] are half-open intervals, while (a, b) is an open interval.
A function is a relationship between two sets of values. It is a rule or mapping that assigns one input value to one output value. In mathematics, a function is represented by f(x).
f(x) = eᶦπˣ, -1≤x≤1: It is in the Hilbert space.
f(x) = e⁻ˣ, x ≥0: It is in the Hilbert space.
f(x) = x⁻¹/⁴, 0 ≤x≤1: It is in the Hilbert space.
f(x) = cos(x), -π ≤ x ≤ π: It is in the Hilbert space.
f(x) = 1/(1+ ix), - [infinity] < x < [infinity]: It is in the Hilbert space.
f(x) = x⁻¹/², 0 ≤x≤1:It is in the Hilbert space.
All the given functions belong to the Hilbert space with the indicated interval.
Learn more about functions https://brainly.com/question/11624077
#SPJ11
For crystal diffraction experiments, wavelengths on the order of 0.20 nm are often appropriate, since this is the approximate spacing between atoms in a solid. Find the energy in eV for a particle with this wavelength if the particle is (a) a photon, (b) an electron, (c) an alpha particle (mc² = 3727 MeV).
a. The energy of a photon is 62.1 eV.
b. The energy of an electron is 227.8 eV.
c. The energy of an alpha particle is 2.33 x 10²⁷ eV
a. Energy of a photon:
E = hc/λ
where,
h = Planck's constant = 6.626 x 10⁻³⁴ J-s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
E = (6.626 x 10⁻³⁴ J-s) x (3 x 10⁸ m/s) / (0.20 x 10⁻⁹ m)
= 9.939 x 10⁻¹² J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (9.939 x 10⁻¹² J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 62.1 eV
Therefore, the energy of a photon with this wavelength is 62.1 eV.
b. Energy of an electron:
E = p²/2m
where,
p = momentum of electron
m = mass of electron = 9.1 x 10⁻³¹ kg
λ = h/p
p = h/λ
E = h²/2m
λ²= (6.626 x 10⁻³⁴ J-s)² / [2 x (9.1 x 10⁻³¹ kg) x (0.20 x 10⁻⁹ m)²]
= 3.648 x 10⁻¹⁰ J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (3.648 x 10⁻¹⁰ J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 227.8 eV
Therefore, the energy of an electron with this wavelength is 227.8 eV.
c. Energy of an alpha particle:
E = mc² / √(1 - v²/c²)
where,
m = mass of alpha particle
c = speed of light = 3 x 10⁸ m/s
λ = h/p
p = h/λ
v = p/m
= (h/λ)/(mc)
= h/(λmc)
E = mc² / √(1 - v²/c²)
E = (3727 MeV) x (1.6 x 10⁻¹³ J/MeV) / √(1 - (6.626 x 10⁻³⁴ J-s/(0.20 x 10⁻⁹ m x 3727 x 1.67 x 10⁻²⁷ kg x (3 x 10⁸ m/s))²))
≈ 3.72 x 10¹³ J
Convert J to eV by dividing by 1.6 x 10⁻¹⁹ J/eV,
E = (3.72 x 10¹³ J) / (1.6 x 10⁻¹⁹ J/eV)
≈ 2.33 x 10²⁷ eV
Therefore, the energy of an alpha particle with this wavelength is 2.33 x 10²⁷ eV.
Learn more about the alpha particle:
brainly.com/question/22799756
#SPJ11
A fixed 128-cm-diameter wire coil is perpendicular to a magnetic field 0.63 T pointing up. In 0.30 s, the field is changed to 0.27 T pointing down. What is the average induced emf in the coll? Express your answer to two significant figures and include the appropriate units
The average induced electromotive force (emf) in a fixed wire coil with a diameter of 128 cm can be calculated when the magnetic field changes from 0.63 T pointing up to 0.27 T pointing down in a time of 0.30 s.
Faraday's law of electromagnetic induction states that the induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop.The area of the loop can be calculated as A = πr², where r is the radius.
To calculate the average induced emf, the change in magnetic flux (∆Φ) over the given time interval (∆t). The change in magnetic field (∆B) is the difference between the initial and final magnetic field values. By multiplying ∆B by the area of the loop, we can obtain ∆Φ.
Finally, the average induced emf (ε) is given by ε = ∆Φ/∆t. By substituting the calculated values for ∆Φ and ∆t into the equation, we can determine the average induced emf. The resulting value will be expressed to two significant figures, along with the appropriate units.
Learn more about electromotive here;.
https://brainly.com/question/29178179
#SPJ11
Suppose you throw a rubber ballat a charging elephant not a good idea) When the ball bounces back toward you, is its speed greater than less than or the speed with which you there? Greater than initial speed Lou than inte speed O Equal to initial speed
When the ball bounces back toward you after throwing it at a charging elephant (not a good idea), its speed will be less than the initial speed with which you threw it.
The rubber ball will move less quickly when it comes back your way after being hurled towards a rushing elephant. The conservation of mechanical energy is to blame for this. The ball collides with the elephant, transferring part of its original kinetic energy to the animal or dissipating it as heat and sound. The ball loses energy as a result of the contact, which lowers its speed. The elastic properties of the ball and the surface it bounces off can also have an impact on the ball's subsequent speed.
Learn more about bounces here;
https://brainly.com/question/31657109
#SPJ11
27. The electric potential \( 1.6 \mathrm{~m} \) from a point charge \( q \) is \( 3.8 \times 10^{4} \mathrm{~V} \). What is the value of \( a \) ?
The value of a is 4.2 cm.
Given information:The electric potential \( 1.6 \mathrm{~m} \) from a point charge \( q \) is \( 3.8 \times 10^{4} \mathrm{~V} \).We need to find the value of a.The potential due to a point charge at a distance r is given by,V= kq/r,where k is the electrostatic constant or Coulomb’s constant which is equal to 1/(4πε0) and its value is k = 9 × 109 Nm2/C2ε0 is the permittivity of free space and its value is ε0 = 8.854 × 10−12 C2/Nm2.
Now substituting the given values we have,3.8 × 104 = (9 × 109 × q)/1.6The value of q is3.8 × 104 × 1.6/9 × 109= 6.747 × 10−7 C.Now we need to find the value of a.We know that the potential at a distance r from a point charge q is given by,V = kq/r (k = 9 × 109 Nm2/C2).Here, V = 3.8 × 104 V and r = 1.6 mSubstituting the given values we have,3.8 × 104 = (9 × 109 × 6.747 × 10−7)/aa = 0.042 m or a = 4.2 cmAnswer:Therefore, the value of a is 4.2 cm.
Learn more about electrostatic here,
https://brainly.com/question/17692887
#SPJ11
In an oscillating LC circuit with C = 89.6 pF, the current is given by i = (1.84) sin(2030 +0.545), where t is in seconds, i in amperes, and the phase angle in radians. (a) How soon after t=0 will the current reach its maximum value? What are (b) the inductance Land (c) the total energy? (a) Number Units (b) Number i Units (c) Number Units
Answers: (a) Time taken to reach the maximum value of current = 0.000775 sec
(b) Inductance of the circuit L = 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit E = 1.54 x 10⁻⁷ J.
C = 89.6 pFi = (1.84)sin(2030t + 0.545)
current i = (1.84)sin(2030t + 0.545)
For an A.C circuit, the current is maximum when the sine function is equal to 1, i.e., sin θ = 1; Maximum current i_m = I_0 [where I_0 is the amplitude of the current] From the given current expression, we can say that the amplitude of the current i.e I_0 is given as;I_0 = 1.84.
Now, comparing the given current equation with the standard equation of sine function;
i = I_0sin (ωt + Φ)
I_0 = 1.84ω = 2030and,Φ = 0.545.
We know that; Angular frequency ω = 2πf. Where, f = 1/T [where T is the time period of oscillation]
ω = 2π/T
T = 2π/ω
ω = 2030
T = 2π/2030
Now, the current will reach its maximum value after half the time period, i.e., T/2.To find the time at which the current will reach its maximum value;
(a) The time t taken to reach the maximum value of current is given as;
t = (T/2π) x (π/2)
= T/4
Now, substituting the value of T = 2π/2030; we get,
t = (2π/2030) x (1/4)
= 0.000775 sec
(b) Inductance
L = (1/ω²C) =
(1/(2030)² x 89.6 x 10⁻¹²)
= 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit;
E = (1/2)LI²
= (1/2) x 3.58 x 10⁻⁴ x (1.84)²
= 1.54 x 10⁻⁷ J.
Therefore, the answers are;(a) Time taken to reach the maximum value of current = 0.000775 sec
(b) Inductance of the circuit L = 3.58 x 10⁻⁴ H
(c) Total energy stored in the circuit E = 1.54 x 10⁻⁷ J.
Learn more about Inductance: https://brainly.com/question/29462791
#SPJ11
An insulated bucket contains 6 kg of water at 50 ∘
C. A physics student adds 4 kg of ice initially at −20 ∘
C. What is the final state of the system?
we need to consider the energy exchange that occurs between the water and the ice during the process. Final temperature is below 0°C. Therefore, the final state of the system is a mixture of water and ice at approximately -65.88°C.
Heating the water:
To raise the temperature of 6 kg of water from 50°C to its boiling point (100°C), we need to calculate the heat absorbed using the specific heat capacity of water (4.18 J/g·°C):
[tex]Q{water}[/tex]= [tex]m_{water}[/tex]* [tex]C_{water}[/tex]* Δ[tex]T_{water}[/tex]
= 6000 g * 4.18 J/g·°C * (100°C - 50°C)
= 6000 g * 4.18 J/g·°C * 50°C
= 1254000 J
Melting the ice:
To raise the temperature of 4 kg of ice from -20°C to 0°C and melt it, we need to calculate the heat absorbed during the phase change using the latent heat of fusion for ice (334 J/g):
[tex]Q_{ice}[/tex]= ([tex]m_{ice}[/tex]* [tex]C_{ice}[/tex] * Δ[tex]T_{ice}[/tex]) + ([tex]m_{ice}[/tex]* [tex]L_{fusion}[/tex])
= 4000 g * 2.09 J/g·°C * (0°C - (-20°C)) + 4000 g * 334 J/g
= 4000 g * 2.09 J/g·°C * 20°C + 4000 g * 334 J/g
= 167200 J + 1336000 J
= 1503200 J
Combining the water and ice at 0°C:
When the ice melts and reaches 0°C, it will be in thermal equilibrium with the water at 0°C. No additional heat is exchanged during this step.
Heating the water-ice mixture from 0°C to the final temperature:
To raise the temperature of the water-ice mixture from 0°C to its final temperature, we need to calculate the heat absorbed using the specific heat capacity of water (4.18 J/g·°C):
Q_mixture = m_mixture * c_water * ΔT_mixture
= (6000 g + 4000 g) * 4.18 J/g·°C * (T_final - 0°C)
= 10000 g * 4.18 J/g·°C * T_final
= 41800 T_final J
The total heat absorbed by the system is the sum of the heat absorbed in each step:
Q_total = Q_water + Q_ice + Q_mixture
= 1254000 J + 1503200 J + 41800 T_final J
Since energy is conserved in the system, the total heat absorbed must equal zero:
Q_total = 0
1254000 J + 1503200 J + 41800 T_final J = 0
Simplifying the equation:
41800 T_final J = -1254000 J - 1503200 J
41800 T_final J = -2757200 J
T_final = (-2757200 J) / (41800 J)
T_final ≈ -65.88°C
The negative sign indicates that the final temperature is below 0°C. Therefore, the final state of the system is a mixture of water and ice at approximately -65.88°C.
Learn more about boiling point here
https://brainly.com/question/1416592
#SPJ11
The problem involves an insulated bucket containing 6 kg of water at 50 °C, to which a physics student adds 4 kg of ice initially at -20 °C. We need to determine the final state of the system.
When the ice is added to the water, heat transfers between the two substances until they reach thermal equilibrium. The heat transfer equation is given by [tex]Q = m * c * ΔT[/tex], where Q is the heat transfer, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. To find the final state of the system, we need to consider the heat transferred from the water to the ice and the resulting temperatures. The heat transferred from the water to the ice can be calculated as
[tex]Q_1 = m_water * c_water * (T_final - T_water_initial)[/tex]
, and the heat gained by the ice can be calculated as [tex]Q_2 = m_ice * c_ice * (T_final - T_ice_initial)[/tex]
, where T_final is the final temperature of both substances. Since the system is insulated, the total heat transferred is zero.
[tex](Q_total = Q_1 + Q_2 = 0)[/tex]
By substituting the given values and rearranging the equation, we can solve for [tex]T_final[/tex]. After calculating, we find that the final temperature of the system is approximately 0 °C.
Therefore, the final state of the system is a mixture of water and ice at 0 °C.
To learn more about final state of the system
brainly.com/question/31828884
#SPJ11
An electron, traveling at a speed of 5.29 × 10⁷ m/s, strikes the target of an X-ray tube. Upon impact, the electron decelerates to one-quarter of its original speed, emitting an X-ray in the process. What is the wavelength of the X-ray photon?
please provide units and steps to complete, thank you!
An electron, traveling at a speed of 5.29 × 10⁷ m/s, strikes the target of an X-ray tube. Upon impact, the electron decelerates to one-quarter of its original speed, emitting an X-ray in the process.The wavelength of the X-ray photon emitted when the electron decelerates is approximately 2.42 × 10⁻¹¹ meters.
To determine the wavelength of the X-ray photon emitted when the electron decelerates, we can use the concept of energy conservation.
The energy lost by the electron as it decelerates is equal to the energy of the emitted X-ray photon. We can equate the kinetic energy of the electron before and after deceleration to find the energy of the X-ray photon.
Given:
Initial speed of the electron (v₁) = 5.29 × 10⁷ m/s
Final speed of the electron (v₂) = 1/4 × v₁ = (1/4) × 5.29 × 10⁷ m/s
The change in kinetic energy (ΔK.E.) of the electron is given by:
ΔK.E. = (1/2) × m × (v₁² - v₂²)
The energy of a photon can be calculated using the formula:
E = h × c / λ
where E is the energy of the photon, h is Planck's constant (6.626 × 10⁻³⁴ J s), c is the speed of light (3.00 × 10⁸ m/s), and λ is the wavelength of the photon.
Equating the change in kinetic energy of the electron to the energy of the X-ray photon:
ΔK.E. = E
(1/2) × m × (v₁² - v₂²) = h × c / λ
Rearranging the equation to solve for the wavelength:
λ = (h × c) / [(1/2) × m × (v₁² - v₂²)]
Substituting the given values:
λ = (6.626 × 10⁻³⁴ J s × 3.00 × 10⁸ m/s) / [(1/2) × m × ((5.29 × 10⁷ m/s)² - (1/4 × 5.29 × 10⁷ m/s)²)]
The mass of an electron (m) is approximately 9.11 × 10⁻³¹ kg.
Evaluating the expression:
λ ≈ 2.42 × 10⁻¹¹ m
Therefore, the wavelength of the X-ray photon emitted when the electron decelerates is approximately 2.42 × 10⁻¹¹ meters.
To learn more about X-ray visit: https://brainly.com/question/24505239
#SPJ11
A coil consisting of 50 circular loops with radius 0.50 m carries a 4.0-A current (a) Find the magnetic field at a point along the axis of the coil, 0.70 m from the center. (b) Along the axis, at what distance from the center of the coil is the field magnitude 1/8 as great as it is at the center?
The magnetic field strength at a location on the axis of the coil, situated 0.70 m away from the center, is 2.0 × 10-4 T. At a distance of 0.70 m from the center of the coil, the field magnitude decreases to 1/8 of its value at the center.
(a) Here, the coil consists of 50 circular loops of radius r = 0.50 m and carries a current of I = 4.0 A. We need to find the magnetic field B at a point along the axis of the coil, 0.70 m from the center. The magnetic field at a point on the axis of a circular loop can be given by the formula:
[tex]$$B=\frac{\mu_0NI}{2r}$$[/tex] Where,
[tex]$$\mu_0 = 4\pi × 10^{-7} \ \mathrm{Tm/A}$$[/tex] is the permeability of free space.N is the number of turns in the coil. Here, N = 50. The radius of each circular loop in the coil is 0.50 m, and the current flowing through each turn is 4.0 A.
By plugging the provided values into the formula, we obtain the following result:
[tex]$$B=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2 × 0.50\ \mathrm{m}}$$[/tex]
[tex]$$\Rightarrow B = 2.0 × 10^{-4}\ \mathrm{T}$$[/tex]
Therefore, the magnetic field at a point along the axis of the coil, 0.70 m from the center is 2.0 × 10-4 T.
(b) Along the axis, the magnetic field of a coil falls off as the inverse square of the distance from the center of the coil. Let the distance of this point from the center be x meters. Therefore, the field at this point is given by:
[tex]$$\frac{B_0}{8}=\frac{\mu_0NI}{2\sqrt{x^2+r^2}}$$[/tex]
Here, B0 is the field at the center of the coil. From part (a), we know that,
[tex]$$B_0=\frac{\mu_0NI}{2r}$$[/tex]
[tex]$$\Rightarrow B_0=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2 × 0.50\ \mathrm{m}}$$[/tex]
[tex]$$\Rightarrow B_0 = 2.0 × 10^{-4}\ \mathrm{T}$$[/tex]
Substituting the values of B0 and I in the above equation and solving for x, we get:
[tex]$$\frac{2.0 × 10^{-4}\ \mathrm{T}}{8}=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2\sqrt{x^2+0.50^2\ \mathrm{m^2}}}$$[/tex]
[tex]$$\Rightarrow 2.5 × 10^{-5}\ \mathrm{T}=\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{\sqrt{x^2+0.50^2\ \mathrm{m^2}}}$$[/tex]
Solving for x, we get:
[tex]$$x=\sqrt{\frac{(4\pi × 10^{-7}\ \mathrm{Tm/A}) × 50 × 4.0\ \mathrm{A}}{2.5 × 10^{-5}\ \mathrm{T}}^2-0.50^2\ \mathrm{m^2}}$$[/tex]
[tex]$$\Rightarrow x = 0.70\ \mathrm{m}$$[/tex]
Therefore, the distance from the center of the coil at which the field magnitude is 1/8 as great as it is at the center is 0.70 m.
Learn more about magnetic field at: https://brainly.com/question/7645789
#SPJ11
The environmental lapse rate is 8C/km and the initial
temperature at the surface is
25C. What is the atmospheric stability of the layer from the
surface to 1km?
The atmospheric stability of the layer from the surface to 1 km is stable. it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air
Atmospheric stability is the property of the atmosphere where it opposes the vertical motion of air in response to disturbances.
Based on the given data, the initial temperature at the surface is 25°C and the environmental lapse rate is 8°C/km.
The atmospheric stability of the layer from the surface to 1 km can be calculated by comparing the dry adiabatic lapse rate (DALR) with the environmental lapse rate (ELR). The dry adiabatic lapse rate (DALR) is 10°C/km, which is the rate at which the unsaturated parcel of air rises or sinks as a result of the adiabatic process.
The atmospheric stability can be classified into three categories based on comparing the environmental lapse rate (ELR) and the dry adiabatic lapse rate (DALR). They are as follows:
Unstable Atmosphere (ELR > DALR)
Conditionally Unstable Atmosphere (ELR = DALR)
Stable Atmosphere (ELR < DALR)
The given environmental lapse rate is 8°C/km which is less than the dry adiabatic lapse rate of 10°C/km. So, the atmosphere is stable in this layer from the surface to 1 km.
However, we need to verify whether it is absolutely stable or conditionally stable by looking at the saturated adiabatic lapse rate (SALR) that governs the behaviour of air parcels that are saturated. The saturated adiabatic lapse rate (SALR) is lower than the DALR, indicating that a saturated air parcel cools more slowly than an unsaturated air parcel when it rises or sinks adiabatically.
The layer would be conditionally unstable if the environmental lapse rate (ELR) was lower than the saturated adiabatic lapse rate (SALR) but greater than the dry adiabatic lapse rate (DALR). Since we do not know the moisture content in the atmosphere, we cannot compute SALR. Hence, the atmosphere in this layer is stable with an ELR of 8°C/km and a DALR of 10°C/km. Therefore, it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air.
Learn more about atmospheric stability:
https://brainly.com/question/31830207
#SPJ11
There is a solenoid in the magnetic field. The magnetic flux density of a magnetic field as a function of time can be expressed in the form B (t) = (1.3mT / s * t) + (5.3mT / s ^ 2 * t ^ 2=)
. The solenoid has an area of 29cm ^ 2 and has 195,000 turns of wires. The plane of the solenoid is perpendicular to the uniform magnetic field. Calculate the magnitude of the source voltage induced in the solenoid at 5.0s
The magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Given that, Magnetic flux density, B(t) = (1.3 mT/s * t) + (5.3 mT/s^2 * t^2)
Solenoid area, A = 29 cm² = 29 * 10^-4 m²
Number of turns, N = 195,000
To find: The magnitude of the source voltage induced in the solenoid at 5.0 s.
Calculate the magnetic flux at time t = 5 s using the formula Φ = B(t) * A:
Φ(t=5 s) = [(1.3 mT/s * 5 s) + (5.3 mT/s² * (5 s)²)] * (29 * 10^-4 m²)
= (6.5 mT + 133 mT) * (29 * 10^-4 m²)
= 3.9457 * 10^-3 Wb
Now, calculate the EMF using the formula emf = -N * dΦ/dt:
dΦ/dt = dB/dt = (1.3 mT/s) + (10.6 mT/s² * t)
emf(t=5 s) = -(195,000) * (3.9457 * 10^-3 Wb) * [(1.3 mT/s) + (10.6 mT/s² * 5 s)]
= -(195,000) * (3.9457 * 10^-3 Wb) * (1.3 mT/s + 53 mT/s)
= -8.2391 V
Therefore, the magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Learn more about solenoid: https://brainly.com/question/1873362
#SPJ11
Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. When a small mass is added to one of the tines of B, the two forks struck simultaneously produce 9 beats per second. The original frequency of tuning fork B was A) 447 Hz B) 456 Hz C) 472 Hz D) 433 Hz E) 424 Hz
Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. The beat frequency between two tuning forks is equal to the difference in their frequencies. the original frequency of tuning fork B is 433 Hz (option D).
Let's assume the original frequency of tuning fork B is fB. When the two tuning forks are struck simultaneously, 7 beats per second are heard. This means the beat frequency is 7 Hz. So, the difference between the frequencies of the two forks is 7 Hz:
|fA - fB| = 7 Hz
Now, when a small mass is added to one of the tines of tuning fork B, the beat frequency becomes 9 Hz. This implies that the new frequency difference between the forks is 9 Hz:
|fA - (fB + Δf)| = 9 Hz
Subtracting the two equations, we get:
|fB + Δf - fB| = 9 Hz - 7 Hz
|Δf| = 2 Hz
Since Δf represents the change in frequency caused by adding the mass, we know that Δf = fB - fB_original.
Substituting the values, we have:
|fB - fB_original| = 2 Hz
Now, we need to examine the answer choices to find the original frequency of tuning fork B. Looking at the options, we can see that D) 433 Hz satisfies the equation:
|fB - 433 Hz| = 2 Hz
Therefore, the original frequency of tuning fork B is 433 Hz (option D).
Learn more about tuning fork here:
https://brainly.com/question/30442128
#SPJ11
A soccer player kicks the ball toward a goal that is 30.0 m in front of him. The ball leaves his foot at a speed of 18.5 m/s and an angle of 31.0 ° above the ground. Find the speed of the ball when the goalie catches it in front of the net.
The speed of the ball when the goalie catches it would be equal to the horizontal component of the velocity, which is 15.93 m/s.
To find the speed of the ball when the goalie catches it, we first need to separate the initial velocity into its horizontal and vertical components. The horizontal component can be calculated using the equation [tex]V_x = V * cos(\theta)[/tex], where V is the initial velocity of 18.5 m/s and θ is the angle of 31.0°. Thus, [tex]V_x = 18.5 m/s * cos(31.0^0) = 15.93 m/s.[/tex]
The vertical component can be determined using the equation Vy = V * sin(θ), where Vy represents the vertical velocity. Hence, [tex]V_y = 18.5 m/s * sin(31.0^0) = 9.53 m/s.[/tex]
Since the ball is caught by the goalie in front of the net, its vertical velocity at that point would be zero. Therefore, we only need to consider the horizontal component of the velocity.
The speed of the ball when the goalie catches it would be equal to the horizontal component of the velocity, which is 15.93 m/s.
Learn more about projectile motion here.
https://brainly.com/question/12860905
#SPJ11
The A string on a violin has a fundamental frequency of a40 Hz. The length of the vibrating portion is 30.4 cm and has a mass of 0.342 g. Under what tension must the string be placed?
Answer: The tension in the A string of the violin must be placed under 263.7 N of tension.
The A string on a violin has a fundamental frequency of a 440 Hz.
To find the tension (T) in a string: T = (m * v²) / L
Where: m = the mass of the string, L = the length of the vibrating portion, v = the speed of the wave. The speed of the wave is given by the formula: v = √(T/μ)
Where T is the tension in the string and μ is the linear density of the string. To calculate the linear density of the string, we use the formula: μ = m/L
Fundamental frequency, f = 440 Hz
Length of the vibrating portion, L = 30.4 cm = 0.304 m
Mass of the string, m = 0.342 g = 0.000342 kg.
Using the frequency and the length of the vibrating portion, we can find the speed of the wave:
v = f * λλ
= 2L = 2(0.304 m)
= 0.608 mv
= (440 Hz)(0.608 m)
= 267.52 m/s.
Now, we can find the tension in the string:
T = (m * v²) / L
T = (0.000342 kg * (267.52 m/s)²) / 0.304 m
T ≈ 263.7 N.
Therefore, the tension in the A string of the violin must be placed under 263.7 N of tension.
Learn more about tension: https://brainly.com/question/24994188
#SPJ11
Which best describes a feature of the physical change of all substances?
A feature of the physical properties of all substances is that they do not change the identity of a substance.
Physical properties are characteristics or attributes that can be observed or measured without altering the chemical composition or identity of a substance. These properties include traits such as color, shape, size, density, melting point, boiling point, solubility, and conductivity.
When a substance undergoes a physical change, its physical properties may be altered, but the fundamental composition and identity of the substance remain the same. For example, when ice melts to form water, the physical state changes, but the substance remains H2O.
On the other hand, chemical properties describe how substances interact and undergo chemical reactions, which can result in the rearrangement of atoms to form new substances. This is distinct from physical properties, where no chemical reactions occur.
Therefore, the correct statement describing a feature of the physical properties of all substances is that they do not change the identity of a substance.
For more questions on melting point, click on:
https://brainly.com/question/40140
#SPJ8
I think it is the question:
Which describes a feature of the physical properties of all substances?
can dissolve in water
can conduct heat and electricity
rearranges atoms to form new substances
does not change the identity of a substance
Three charged conducting metal balls are hanging from non-conducting strings. Initially, ball #1 has a charge of -12 uc, ball #2 has 22 uC, and ball #3 has -11 PC. Ball #1 is brought in contact with ball #2 and then the two are separated. Ball #2 is then moved over and brought into contact with ball #3, after which the two are separated. What are the final charges on each ball?
The final charges on each ball are as follows:
Ball #1: 10 μC
Ball #2: -1 μC
Ball #3: -1 μC
To determine the final charges on each ball, we need to consider the transfer of charge when the balls come in contact with each other. When two conductive objects come in contact, charge can flow between them until they reach equilibrium.
Let's analyze the situation step by step:
Step 1: Ball #1 (-12 μC) is brought in contact with Ball #2 (22 μC).
When the two balls touch, electrons will flow from the negatively charged Ball #1 to the positively charged Ball #2 to equalize the charge distribution.
The net charge after contact will be the sum of the initial charges on Ball #1 and Ball #2.
Net charge = -12 μC + 22 μC = 10 μC
Ball #1 and Ball #2 now have the same charge of 10 μC each.
Step 2: Ball #2 (10 μC) is moved over and brought into contact with Ball #3 (-11 μC).
When the two balls touch, charge will flow to equalize the charge distribution.
Since Ball #2 has a higher charge, electrons will flow from Ball #2 to Ball #3.
The net charge after contact will be the sum of the initial charges on Ball #2 and Ball #3.
Net charge = 10 μC - 11 μC = -1 μC
Ball #2 now has a charge of -1 μC, and Ball #3 has a charge of -1 μC.
Step 3: Ball #1 (10 μC) is separated from Ball #2 (-1 μC).
The charges remain unchanged since they are no longer in contact.
To knwo more about electrons
https://brainly.com/question/12001116
#SPJ11
For each statement, select True or False
a) Total internal reflection of light can happen when light travels between any 2 mediums as long as the correct angle is used for the incident light.
b) The index of refraction of a medium depends on the wavelength of incident light.
c) We can see the color of a purple flower because the flower absorbs all colors except the purple
d) According to the Second Postulate of Relativity, if a source of light is travelling at a speed v, then thelight wave will travel at speed cry for an observer at rest respect to the source
e) Simultaneity is absolute. 2 events that happen at the same time in a reference frame will also be simultaneous in any other reference frame as long as it is inertial.
f) According to the theory of Relativistic Energy, an object with mass M, at rest, and with zero potential energy, has a zero total energy.
g) If a train travels at a speed close to the speed of light, an observer at rest on the platform will see a contraction of the train in both the vertical and horizontal directions.
h) Optical fibers can guide the light because of the total internal reflection of light.
i) If you are at rest on a platform, measuring the time it takes for a train to pass in front of you, you are measuring the proper time
j) The lifetime of a particle measured in a lab will always be larger than the lifetime in the particle's reference system
a) Trueb) Falsec) True d) Fale) Falsef) Falseg) Falseh) Truei) Truej) False.
a) The statement "Total internal reflection of light can happen when light travels between any 2 mediums as long as the correct angle is used for the incident light" is True.b) The statement "The index of refraction of a medium depends on the wavelength of incident light" is False.c) The statement "We can see the color of a purple flower because the flower absorbs all colors except the purple" is True.
d) The statement "According to the Second Postulate of Relativity, if a source of light is travelling at a speed v, then the light wave will travel at speed cry for an observer at rest respect to the source" is False.e) The statement "Simultaneity is absolute. 2 events that happen at the same time in a reference frame will also be simultaneous in any other reference frame as long as it is inertial" is False.
f) The statement "According to the theory of Relativistic Energy, an object with mass M, at rest, and with zero potential energy, has a zero total energy" is False.g) The statement "If a train travels at a speed close to the speed of light, an observer at rest on the platform will see a contraction of the train in both the vertical and horizontal directions" is False.h) The statement "Optical fibers can guide the light because of the total internal reflection of light" is True.
i) The statement "If you are at rest on a platform, measuring the time it takes for a train to pass in front of you, you are measuring the proper time" is True.j) The statement "The lifetime of a particle measured in a lab will always be larger than the lifetime in the particle's reference system" is False.
Learn more about energy here,
https://brainly.com/question/2003548
#SPJ11
A school bus is traveling at a speed of 0.3 cm/s. School children on the bus and on the sidewalk are both attempting to measure the it takes for the bus to travel one city block by timing the times the bus enters and leaves the city block. According to school children on the bus, it takes 6 s. How long does it take according to school children on the sidewalk? 6.290 s 6.928 s 6.124 s 6.547 s
According to school children on the bus, it takes 6 seconds for the bus to travel one city block. However, according to school children on the sidewalk, it would take approximately 6.928 seconds for the bus to travel the same distance.
The difference in the measured times between the school children on the bus and on the sidewalk can be attributed to the concept of relative motion and the observer's frame of reference.
When the bus is moving at a speed of 0.3 cm/s, the school children on the bus are also moving with the same velocity. Therefore, from their perspective, the time it takes for the bus to travel one city block would be 6 seconds.
However, for the school children on the sidewalk who are stationary, they observe the bus moving at a speed of 0.3 cm/s relative to them. To calculate the time it takes for the bus to travel the city block from their perspective, we need to consider the length of the city block.
Since the speed of the bus is 0.3 cm/s, the distance it travels in 6 seconds, according to the school children on the sidewalk, would be 0.3 cm/s * 6 s = 1.8 cm. Therefore, the time it takes for the bus to travel the city block, assuming it is longer than 1.8 cm, would be longer than 6 seconds.
Among the given options, the closest value to the calculated time is 6.928 seconds, indicating that it would take approximately 6.928 seconds for the bus to travel one city block according to the school children on the sidewalk.
Learn more about relative motion here:
https://brainly.com/question/30428774
#SPJ11
A ray of of light in air is incident on a surface that partially reflected and partially refracted at a boundary between air and a liquid having an index refraction of 1.46. The wavelength of the light ray traveling is 401 nm. You must show the steps and formula below. Solve for - The wavelength of the refracted light. - The speed of the light when propagating in the liquid. - At an angle of 30deg for the incidence of the light ray, the angle of refraction. BONUS Solve for the smallest angle of incidence (for the exact purpose of the ray undergoing total internal refraction) for a second ray traveling in the liquid in the opposite direction on the provided surface (water/air interface).
To solve the given problem, we can use Snell's law and the formula for the critical angle. By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.
The wavelength of the refracted light: Snell's law relates the indices of refraction and the angles of incidence and refraction. It can be written as [tex]n1sin(theta1) = n2sin(theta2)[/tex], where n1 and n2 are the refractive indices and theta1 and theta2 are the angles of incidence and refraction, respectively. Rearranging the equation, we can solve for the sine of the angle of refraction: [tex]sin(theta2) = (n1/n2)*sin(theta1)[/tex]. Substituting the given values, we find sin(theta2) = (1/1.46)*sin(30°). From the calculated value of sin(theta2), we can determine the corresponding angle and use it to find the wavelength of the refracted light using the formula: [tex]wavelength2 = wavelength1 * (speed1/speed2)[/tex], where wavelength1 is the initial wavelength, and speed1 and speed2 are the speeds of light in air and the liquid, respectively.
Speed of light in the liquid: The speed of light in a medium is related to the refractive index by the formula: [tex]speed = c/n[/tex], where c is the speed of light in vacuum and n is the refractive index. Substituting the given refractive index, we can calculate the speed of light in the liquid.
The angle of refraction for an angle of incidence: Using Snell's law, we can calculate the angle of refraction for a given angle of incidence. Substituting the values into the equation, we find [tex]sin(theta2) = (1/1.46)*sin(30^o)[/tex], and then we can determine the corresponding angle.
The smallest angle of incidence for total internal refraction: The critical angle is the angle of incidence that results in the refracted angle being 90°. It can be found using the formula: [tex]critical angle = arcsin(n2/n1)[/tex], where n1 and n2 are the refractive indices of the two mediums. Substituting the values, we can calculate the critical angle, which represents the smallest angle of incidence for total internal refraction.
By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.
Learn more about refraction here:
https://brainly.com/question/14760207
#SPJ11
We have a 3 phase 11kV line with a line length of 10km. The conductor is Fox. What will the voltage be at the end of the line if the load is 50A?
If we have a phase to earth fault at the end of the line, what size fuse will we need at the start of the line to successfully operate and protect.
The fuse size should be at least 75 A is the answer.
The conductor is Fox, and we have a 3-phase 11kV line with a line length of 10km. To find out what the voltage will be at the end of the line if the load is 50A, we have to use Ohm's Law formula. We also know that the power factor is 0.85. Therefore, Voltage drop, V = IZ, where I is the current, and Z is the impedance of the line. Z can be calculated as Z = R + jX, where R is the resistance of the line, and X is the inductive reactance of the line. The voltage drop in a 3-phase system, Vp = √3 Vl cosϕ, where Vp is the voltage drop per phase, Vl is the line voltage, and ϕ is the power factor. Using the above formulas, we can calculate the voltage drop per phase:
Vp = 11 kV * √3 * 0.85 * (10/3) / (50 * 1000)
= 0.1456 kV
Therefore, the voltage at the end of the line will be:
11 kV - 0.1456
kV = 10.8544 kV
If there is a phase-to-earth fault at the end of the line, we will need a fuse at the start of the line that will be able to protect the cable.
To calculate the size of the fuse, we need to know the short-circuit current at the end of the line.
The formula for calculating the short-circuit current is Isc = Vp / (Zs + Zc), where Vp is the voltage drop per phase, Zs is the impedance of the source, and Zc is the impedance of the cable.
Assuming that the source impedance is negligible, we can calculate the cable impedance as Zc = R + jX = 0.455 + j0.659 Ω.
Then Isc = 10.8544 kV / (0.455 + j0.659) Ω = 17.8 A.
The fuse rating is typically chosen to be about 1.5 to 2 times the maximum load current.
Therefore, the fuse size should be at least 75 A.
know more about Ohm's Law formula.
https://brainly.com/question/30766716
#SPJ11
A 5.0-µF capacitor is charged to 50 V, and a 2.0-µF capacitor is charged to 100 V. The two are disconnected from charging batteries and connected in parallel, with the positive plate of one attached to the positive plate of the other.
(a) What is the common voltage across each capacitor after they are connected in this way? (b) Compare the total electrostatic energy before and after the capacitors are connected. Speculate on the discrepancy. (c) Repeat Parts (a) and (b) with the charged capacitors being connected with the positive plate of one attached to the negative plate of the other.
a) The common voltage across each capacitor is 75 V.
b) The total electrostatic energy before the capacitors are connected is 675 µJ and after the capacitors are connected is 1.40625 mJ.
c) The total voltage across the capacitors is still 75 V, but now one capacitor has a positive voltage and the other has a negative voltage.
d) The total energy stored in the system is 1.40625 mJ.
(a) The common voltage across each capacitor after they are connected in parallel is 75 V. This is because the total charge on the capacitors must remain constant.
The total charge on the capacitors is given by
Q = C1V1 + C2V2
where
Q is the charge,
C is the capacitance,
V is the voltage
When the capacitors are connected in parallel, the voltage across each capacitor becomes equal, so we can write:
Q = (C1 + C2)Vtotal.
Solving for Vtotal, we get
Vtotal = Q / (C1 + C2).
Plugging in the values, we get:
Vtotal = (5.0 × 10⁻⁶ × 50 + 2.0 × 10⁻⁶ × 100) / (5.0 × 10⁻⁶ + 2.0 × 10⁻⁶) = 75 V.
(b) The total electrostatic energy before the capacitors are connected is given by,
U = (1/2)C1V1² + (1/2)C2V2²
where
U is the energy,
C is the capacitance,
V is the voltage
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶)(50)² + (1/2)(2.0 × 10⁻⁶)(100)² = 675 µJ.
After the capacitors are connected, the total energy stored in the system is given by
U = (1/2)(C1 + C2)Vtotal².
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶ + 2.0 × 10⁻⁶)(75)² = 1.40625 mJ.
The discrepancy between the two energies is due to the fact that energy is lost as heat when the capacitors are connected in parallel. This is because there is a potential difference between the two capacitors which causes current to flow between them, dissipating energy as heat.
(c) When the charged capacitors are connected with the positive plate of one attached to the negative plate of the other, the voltage across each capacitor becomes -25 V. This is because the charge on each capacitor is still the same, but the polarity of one of the capacitors has been reversed, so the voltage across it is negative. The total voltage across the capacitors is still 75 V, but now one capacitor has a positive voltage and the other has a negative voltage.
(d) The total electrostatic energy before the capacitors are connected is still 675 µJ.
After the capacitors are connected, the total energy stored in the system is given by
U = (1/2)(C1 + C2)Vtotal².
Plugging in the values, we get:
U = (1/2)(5.0 × 10⁻⁶ + 2.0 × 10⁻⁶)(75)² = 1.40625 mJ.
The discrepancy between the two energies is still due to the fact that energy is lost as heat when the capacitors are connected in parallel. This is because there is a potential difference between the two capacitors which causes current to flow between them, dissipating energy as heat.
Learn more about voltage:
https://brainly.com/question/14883923
#SPJ11
A concave mirror with a focal length of 20 cm has an object placed in front of it at a distance of 18 cm. The object is 3 cm high. Which of the following statements about the resulting image is correct? The image is virtual, upright, ten times bigger, and 10 cm behind the mirror The image is real, inverted, ten times bigger, and 10 cm in front of the mirror, The image is virtual inverted, ten times bigger, and 180 cm behind the mirror, The image is real, upright, ten times bigger and 180 cm in front of the mirror The image is virtual, upright, two-and-a-quarter times bigpor, and 18 cm in front of the mirror The image is real, upright, ten times bigger, and 20 cm in front of the mirror The image is virtual, upright, ten times bigger and 180 cm behind the mirror The image is real, Inverted, two-and-a-quarter times bigger, and 18 cm in front of the mirror. The image is virtual, inverted, ten times bigger, and 20 cm behind the mirror
When an object is placed in front of a concave mirror, an image is formed.
According to the mirror formula, 1/f = 1/v + 1/u.
Where f is the focal length of the mirror,
u is the distance of the object from the mirror, and
v is the distance of the image from the mirror.
Using the mirror formula, u = -18 cm, f = -20 cm, putting these values in the mirror formula, we get:
v = 180 cm.
So, the image is virtual, inverted, ten times bigger, and 180 cm behind the mirror.
Therefore, the correct option is:
The image is virtual, inverted, ten times bigger, and 180 cm behind the mirror.
Learn more about concave mirror here
https://brainly.com/question/27841226
#SPJ11
A car that starts from rest with a constant acceleration travels 40 m in the first 5 S. The car's acceleration is O 0.8 m/s^2 he O 1.6 m/s^2 O 3.2 m/s^2 O 16 m/s^2
A car that starts from rest with a constant acceleration travels 40 m in the first 5 s.
The car's acceleration is 3.2 m/s².
The acceleration of the car can be determined by using the formula below:
s = ut + (1/2)at²
Here,
u = initial velocity of the car (0)
m = distance traveled by the car (40m)
t = time taken by the car (5s)
a = acceleration of the car (unknown)
Substituting the values in the formula above and solving for a;
40 = 0 + (1/2)a(5)²
40 = 12.5a
a = 40/12.5
a = 3.2m/s²
Therefore, the car's acceleration is 3.2 m/s².
The distance it travels in the first 5s is irrelevant in finding the acceleration.
We only need the distance, time and initial velocity of an object to determine the acceleration.
Learn more about acceleration here
https://brainly.com/question/25876659
#SPJ11