Give a recursive definition of: a. The set of strings {1, 11, 111, 1111, 11111, ....} b. The function f (n) = n + 1/3, n = 1, 2, 3, ...

Answers

Answer 1

a. The set of strings {1, 11, 111, 1111, 11111, ....} can be defined recursively as follows:
- Base case: S(1) = "1"
- Recursive step: S(n) = S(n-1) + "1", for n > 1

b. The function f(n) = n + 1/3, n = 1, 2, 3, ... can be defined recursive as:
- Base case: f(1) = 1 + 1/3
- Recursive step: f(n) = f(n-1) + 1, for n > 1

Recursion is the process of calling itself. This process provides a way to break complex problems into simpler processes that are easier to solve. Recursion can be a bit confusing. The best way to determine how it works is to experiment with it.

a. The recursive definition of the set of strings {1, 11, 111, 1111, 11111, ....} is as follows:
- The base case is the string "1".
- For any string in the set, we can obtain the next string by appending another "1" to the end. In other words, if s is a string in the set, then s + "1" is also in the set.

b. The recursive definition of the function f(n) = n + 1/3, n = 1, 2, 3, ... is as follows:
- The base case is f(1) = 4/3.
- For any n > 1, we can obtain f(n) by adding 1/3 to f(n-1). In other words, f(n) = f(n-1) + 1/3.

Learn more about Function:

brainly.com/question/12431044

#SPJ11


Related Questions

The National Association of Colleges and Employers (NACE) Spring Salary Survey shows that the current class of college graduates received an average starting-salary offer of $48,127. Your institution collected an SRS (n = 300) of its recent graduates and obtained a 95% confidence interval of ($46,382, $48,008). What can we conclude about the difference between the average starting salary of recent graduates at your institution and the overall NACE average? Write a short summary.

Answers

Based on the information provided, we can conclude that the average starting salary of recent graduates at the institution is likely not significantly different from the overall NACE average of $48,127.

This is because the 95% confidence interval obtained from the institution's SRS includes the NACE average.

However, it is important to note that this conclusion is limited to the specific sample size and methodology used by the institution for their survey.

The National Association of Colleges and Employers (NACE) Spring Salary Survey indicates an average starting-salary offer of $48,127 for recent college graduates.

In comparison, your institution conducted a survey using a Simple Random Sample (SRS) of 300 graduates and calculated a 95% confidence interval of ($46,382, $48,008) for their average starting salary.

In summary, the confidence interval suggests that the average starting salary of recent graduates at your institution is likely to fall between $46,382 and $48,008.

Since the NACE average of $48,127 is not within this interval, it can be concluded that there is a difference between the average starting salary at your institution and the overall NACE average, with your institution's average being slightly lower.

Visit here to learn more about Sample Size:

brainly.com/question/30509642

#SPJ11

Find and calculate the value of c such that ∑ [infinity] n=0 e^nc = 3

Answers

The value of c is approximately -0.4055.

To find the value of c such that the sum ∑ (from n=0 to infinity) of e(nc) equals 3, we recognize this as a geometric series. For a geometric series to converge, the common ratio (r) must be between -1 and 1. In this case, r = ec.

The sum of an infinite geometric series is given by the formula S = a / (1 - r), where a is the first term and r is the common ratio.

In this problem, a = e(0c) = 1, and we want the sum S = 3. Plugging in the values:

3 = 1 / (1 - ec)

Now, solve for c:

1 - ec = 1/3
ec = 2/3

Take the natural logarithm (ln) of both sides:

ln(ec) = ln(2/3)
c = ln(2/3)

Know more about geometric series here:

https://brainly.com/question/4617980

#SPJ11

if 200 units sold results in $4,400 profit and 250 units sold results in $7,250 profit, write the profit function for this company.

Answers

First find the slope:
m=(7250-4400)/(250-200)
m=2850/50
m=57
Then we find the y intercept
4400=11400+b
b=-7000
Therefore the profit is 57x-7000
x is the number of units sold

Select the correct answer. Which graph represents the solution to this system of inequalities? y < -x − 3 y > 2x – 4

Answers

Answer I attached you a graph.
If you graph your inequality this is what it looks like.
Since you didn’t give graphs to chose from you can compare this one to your choices.

a) find the rational zeros and then the other zeros of the polynomial function f(x)=x3-111x+110; that is, solve f(x)=0
b)factor f(x) into linear factors

Answers

the complete set of zeros of f(x) is:

x = 1, x = -11, and x = 10

How to find the rational zeros?

To find the reasonable zeros of the polynomial capability[tex]f(x) = x^3 - 111x + 110[/tex], we can utilize the Normal Root Hypothesis.

Any rational zero of a polynomial function is, in accordance with this theorem, of the form p/q, where p is a factor of the constant term (in this case, 110) and q is a factor of the leading coefficient (which is 1).

So, the possible rational zeros of f(x) are:

p/q = ±1, ±2, ±5, ±10, ±11, ±22, ±55, ±110

We can now use synthetic division or long division to check which of these possible rational zeros actually are zeros of f(x). We start with p/q :

So, x - 1 is a factor of f(x), and we can write:

[tex]f(x) = (x - 1)(x^2 + x - 110)[/tex]

To find the other zeros of f(x), we need to solve the quadratic equation x^2 + x - 110 = 0. We can use the quadratic formula:

[tex]x = (-1 ± \sqrt{ (1^2 - 4(1)(-110)))} / 2(1)[/tex]

[tex]x = (-1 ± \sqrt{441}) / 2[/tex]

x = (-1 ± 21) / 2

So, the other two zeros of f(x) are:

x = -11 and x = 10

Therefore, the complete set of zeros of f(x) is:

x = 1, x = -11, and x = 10

know more about polynomial function visit :

https://brainly.com/question/12976257

#SPJ1

The singular points of the differential equation y" + y'/x+y(x-2)/x-3=0 are Select the correct answer. a. 0 b. 0, 2, 3 c. 0, 3 d. 0, 2 e. none

Answers

The singular points of the differential equation are x=0 and x=3. the correct answer is (c) 0, 3.

The singular points of a differential equation are the points where the coefficients of y'', y' or y become infinite or undefined. In this case, the given differential equation is y" + y'/x + y(x-2)/(x-3) = 0.

To find the singular points, we need to check the coefficients of y'', y', and y for any infinite or undefined values.

- The coefficient of y'' is 1, which is finite for all values of x.
- The coefficient of y' is 1/x, which is infinite at x=0.
- The coefficient of y is (x-2)/(x-3), which is undefined at x=3.

Therefore, the singular points of the differential equation are x=0 and x=3. The correct answer is (c) 0, 3.

To learn more about differential equation here:

brainly.com/question/14620493#

#SPJ11

A blueprint for a cottage has a scale of 1:40 one room measures 3.4 m by 4.8 . calculate the dimensions of the room on the blueprint.

​I need students to solve it, with operations

Answers

Answer: its 12.92

first i multiplide 3.4 by 4.8

A 2pi -periodic signal x(t) is specified over one period as x(t) = (1/A t 0 lessthanorequalto t < A 1 A lessthanorequalto t < pi 0 pi lessthanorequalto t < 2pi Sketch x(t) over two periods from t = 0 to 4pi. Show that the exponential Fourier series coefficients D_pi for this series are given by x(t) = {2 pi - A/4 pi n = 0 1/2 pi n (e^-j A n - 1/An) otherwise

Answers

The exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

To sketch [tex]$x(t)$[/tex] over two periods from [tex]$t=0$[/tex] to [tex]$4 \mathrm{pi}$[/tex], we first need to plot one period of [tex]$x(t)$[/tex], which is given as:

[tex]$$\begin{aligned}& \mathrm{x}(\mathrm{t})=(1 / \mathrm{A}) \mathrm{t} 0 < =\mathrm{t} < \mathrm{A} \\& =\mathrm{A} \mathrm{A} < =\mathrm{t} < \mathrm{pi} \\& =0 \mathrm{pi} < =\mathrm{t} < 2 \mathrm{pi}\end{aligned}$$[/tex]

The plot of one period of [tex]x(t)[/tex] is shown below:

  |          /\

  |         /  \

A |        /    \

  |       /      \

  |      /        \

  |_____/          \_____

     0     A      pi    2pi

To sketch [tex]x(t)[/tex] over two periods, we need to repeat this pattern twice. Since [tex]x(t)[/tex] is a 2pi-periodic signal, we only need to sketch one period to represent the entire signal over any number of periods. Therefore, we can simply repeat the above plot twice to obtain the sketch of [tex]x(t)[/tex] over two periods from [tex]t = 0[/tex] to [tex]4pi[/tex], as shown below:

  |          /\          /\

  |         /  \        /  \

A |        /    \      /    \

  |       /      \    /      \

  |_____/        \__/        \_____

     0     A      pi         2pi  3pi

To find the exponential Fourier series coefficients [tex]D_n[/tex], we can use the formula:

[tex]$D_{\ldots} n=(1 / T) * \int[T] x(t) e^{\wedge}(-j n w 0 t) d t$[/tex]

where T is the period of [tex]$x(t)$[/tex], w0 is the fundamental angular frequency, and n is an integer. Since [tex]$x(t)$[/tex] is a 2pi-periodic signal, we have [tex]$T=2 p i$[/tex] and [tex]$\mathrm{wO}=2 \mathrm{pi} / \mathrm{T}=1$[/tex].

The Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$n=0,+/-1,+/-2, \ldots$[/tex] are given by:

[tex]$D_{\ldots} n=(1 / 2 p i) * \int[2 \mathrm{pi}] x(\mathrm{t}) \mathrm{e}^{\wedge}(-j n t) d t$[/tex]

For [tex]$\mathrm{n}=0$[/tex], we have:

[tex]{ D_0 }$[/tex][tex]=(1 / 2 p i)^* \int[2 \mathrm{pi}] \times(t) d t$[/tex]

[tex]=(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) * \int[\mathrm{A}] \mathrm{t} d \mathrm{dt}+\mathrm{A}^* \int[\mathrm{pi}] \mathrm{dt}+0\right] \\& =(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) *\left(\mathrm{~A}^{\wedge} 2 / 2\right)+\mathrm{A}(\mathrm{pi}-\mathrm{A})\right] \\[/tex]

[tex]& =(1 / 2 \mathrm{pi}) *[(\mathrm{~A} / 2)+\mathrm{A}(\mathrm{pi}-\mathrm{A})] \\& =(\mathrm{pi}-\mathrm{A} / 2 \mathrm{pi})\end{aligned}$$[/tex]

For [tex]$n=+/-1,+/-2, \ldots$[/tex], we have:

[tex]$$\begin{aligned}& D_n n=(1 / 2 p i)^* \int[2 p i] x(t) e^{\wedge}(-j n t) d t \\& =(1 / 2 p i)^*\left[(1 / A) * \int[A] t e^{\wedge}(-j n t) d t+A^* \int[\text { pi }] e^{\wedge}(-j n t) d t+0\right] \\& =(1 / 2 \text { pi })^*\left[(1 / A)^*\left((-1)^{\wedge} n-1\right)+A^*\left(1-(-1)^{\wedge} n\right) /(j n)\right] \\& =(-1)^{\wedge} n /(n A)\end{aligned}$$[/tex]

Therefore, the exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]$\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.$[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

Using the formula for the inverse Fourier series, we can write the

To learn more about fundamental visit:

https://brainly.com/question/2224584

#SPJ11

The exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

To sketch [tex]$x(t)$[/tex] over two periods from [tex]$t=0$[/tex] to [tex]$4 \mathrm{pi}$[/tex], we first need to plot one period of [tex]$x(t)$[/tex], which is given as:

[tex]$$\begin{aligned}& \mathrm{x}(\mathrm{t})=(1 / \mathrm{A}) \mathrm{t} 0 < =\mathrm{t} < \mathrm{A} \\& =\mathrm{A} \mathrm{A} < =\mathrm{t} < \mathrm{pi} \\& =0 \mathrm{pi} < =\mathrm{t} < 2 \mathrm{pi}\end{aligned}$$[/tex]

The plot of one period of [tex]x(t)[/tex] is shown below:

  |          /\

  |         /  \

A |        /    \

  |       /      \

  |      /        \

  |_____/          \_____

     0     A      pi    2pi

To sketch [tex]x(t)[/tex] over two periods, we need to repeat this pattern twice. Since [tex]x(t)[/tex] is a 2pi-periodic signal, we only need to sketch one period to represent the entire signal over any number of periods. Therefore, we can simply repeat the above plot twice to obtain the sketch of [tex]x(t)[/tex] over two periods from [tex]t = 0[/tex] to [tex]4pi[/tex], as shown below:

  |          /\          /\

  |         /  \        /  \

A |        /    \      /    \

  |       /      \    /      \

  |_____/        \__/        \_____

     0     A      pi         2pi  3pi

To find the exponential Fourier series coefficients [tex]D_n[/tex], we can use the formula:

[tex]$D_{\ldots} n=(1 / T) * \int[T] x(t) e^{\wedge}(-j n w 0 t) d t$[/tex]

where T is the period of [tex]$x(t)$[/tex], w0 is the fundamental angular frequency, and n is an integer. Since [tex]$x(t)$[/tex] is a 2pi-periodic signal, we have [tex]$T=2 p i$[/tex] and [tex]$\mathrm{wO}=2 \mathrm{pi} / \mathrm{T}=1$[/tex].

The Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$n=0,+/-1,+/-2, \ldots$[/tex] are given by:

[tex]$D_{\ldots} n=(1 / 2 p i) * \int[2 \mathrm{pi}] x(\mathrm{t}) \mathrm{e}^{\wedge}(-j n t) d t$[/tex]

For [tex]$\mathrm{n}=0$[/tex], we have:

[tex]{ D_0 }$[/tex][tex]=(1 / 2 p i)^* \int[2 \mathrm{pi}] \times(t) d t$[/tex]

[tex]=(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) * \int[\mathrm{A}] \mathrm{t} d \mathrm{dt}+\mathrm{A}^* \int[\mathrm{pi}] \mathrm{dt}+0\right] \\& =(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) *\left(\mathrm{~A}^{\wedge} 2 / 2\right)+\mathrm{A}(\mathrm{pi}-\mathrm{A})\right] \\[/tex]

[tex]& =(1 / 2 \mathrm{pi}) *[(\mathrm{~A} / 2)+\mathrm{A}(\mathrm{pi}-\mathrm{A})] \\& =(\mathrm{pi}-\mathrm{A} / 2 \mathrm{pi})\end{aligned}$$[/tex]

For [tex]$n=+/-1,+/-2, \ldots$[/tex], we have:

[tex]$$\begin{aligned}& D_n n=(1 / 2 p i)^* \int[2 p i] x(t) e^{\wedge}(-j n t) d t \\& =(1 / 2 p i)^*\left[(1 / A) * \int[A] t e^{\wedge}(-j n t) d t+A^* \int[\text { pi }] e^{\wedge}(-j n t) d t+0\right] \\& =(1 / 2 \text { pi })^*\left[(1 / A)^*\left((-1)^{\wedge} n-1\right)+A^*\left(1-(-1)^{\wedge} n\right) /(j n)\right] \\& =(-1)^{\wedge} n /(n A)\end{aligned}$$[/tex]

Therefore, the exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]$\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.$[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

Using the formula for the inverse Fourier series, we can write the

To learn more about fundamental visit:

https://brainly.com/question/2224584

#SPJ11

Assume the random variable x is normally distributed with mean μ 82 and standard deviation σ= 5, Find the indicated probability P(x< 80) Plxe 80)= [ (Round to four decimal places as needed.)

Answers

The probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5 is approximately 0.3446 when rounded to four decimal places.

Standard deviation is: It is a measure of how spread out numbers are. It is the square root of the Variance, and the Variance is the average of the squared differences from the Mean.

To find the probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5,

To find this probability, follow these steps:

1. Calculate the z-score for x = 80. The z-score is given by the formula: z = (x - μ) / σ
2. Look up the z-score in a standard normal distribution table (also known as a z-table) to find the corresponding probability.

Step 1: Calculate the z-score
z = (80 - 82) / 5 = -2 / 5 = -0.4

Step 2: Look up the z-score in the z-table
Looking up a z-score of -0.4 in a z-table, we find a corresponding probability of approximately 0.3446.

Learn more about the standard deviation: https://brainly.com/question/475676

#SPJ11

The probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5 is approximately 0.3446 when rounded to four decimal places.

Standard deviation is: It is a measure of how spread out numbers are. It is the square root of the Variance, and the Variance is the average of the squared differences from the Mean.

To find the probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5,

To find this probability, follow these steps:

1. Calculate the z-score for x = 80. The z-score is given by the formula: z = (x - μ) / σ
2. Look up the z-score in a standard normal distribution table (also known as a z-table) to find the corresponding probability.

Step 1: Calculate the z-score
z = (80 - 82) / 5 = -2 / 5 = -0.4

Step 2: Look up the z-score in the z-table
Looking up a z-score of -0.4 in a z-table, we find a corresponding probability of approximately 0.3446.

Learn more about the standard deviation: https://brainly.com/question/475676

#SPJ11

Use continuity to evaluate the limit. lim x→ 8 sin(x sin(x))

Answers

The limit expression sin(x sin(x)) when evaluated by continuity does not exist

Evaluating the limit expression

The limit expression is given as

sin(x sin(x))

Where, x tends to infinity

By examining the function sin(x sin(x)), we can see that the function is a divergent series

This means that the limits diverges or the limit do not exist (DNE)

Hence, the limit expression sin(x sin(x)) where x tends to infinity does not exist

Read more about derivative at

https://brainly.com/question/5313449

#SPJ1

Final answer:

The limit lim x→ 8 sin(x sin(x)) can be evaluated using continuity. The answer is sin(8 sin(8)), which can be calculated approximately using a calculator.

Explanation:

To evaluate the limit lim x→ 8 sin(x sin(x)), we can use the fact that the composition of continuous functions is continuous. Since sin(x) is continuous for all real numbers, and x sin(x) is continuous at x = 8, we can conclude that sin(x sin(x)) is also continuous at x = 8. Therefore, the limit is equal to sin(8 sin(8)).



Using a calculator, we can calculate sin(8 sin(8)) approximately to three decimal places.

Learn more about Evaluating limit using continuity here:

https://brainly.com/question/35736176

#SPJ12

I need help with this. I got B, but I feel like my method is faulty.

Answers

Answer:

  B.  6/7

Step-by-step explanation:

You want the radius of each of two circles tangent to each other and the extended segments of ∆ABC.

Proportion

Referring to the attached figure, we see that ∆EGF is similar to ∆ABC. This means EG/EF = AB/AC = 5/4.

∆AGH is also similar to ∆ABC, so we also have the proportion ...

  GH/AH = BC/AC = 3/4

In terms of radius r, GH = (3+5/4)r, and AH = r +4:

  (17/4)r / (r +4) = 3/4

  17r = 3(r +4) . . . . . . . . multiply by 4(r+4)

  14r = 12 . . . . . . . . subtract 3r

  r = 6/7 . . . . . . divide by 14, simplify

The radius of each circle is 6/7 units.

What is the area? Round to the nearest tenth if necessary.

Answers

Answer:

Set your calculator to degree mode.

Draw a line from point O to a vertex of this octagon to form a right triangle.

tan(67.5°) = 17/x, so x = 17/tan(67.5°)

Area = (1/2)(34/tan(67.5°))(8)(17) = 957.7

[tex]\underset{ \textit{angle in degrees} }{\textit{area of a regular polygon}}\\\\ A=na^2\cdot \tan\left( \frac{180}{n} \right) ~~ \begin{cases} n=sides\\ a=apothem\\[-0.5em] \hrulefill\\ n=8\\ a=17 \end{cases}\implies A=(8)(17)^2\tan\left( \frac{180}{8} \right) \\\\\\ A=2312\tan(22.5^o)\implies A\approx 957.7[/tex]

Make sure your calculator is in Degree mode.

Find the inverse laplace transform of F(s)=(8s^2-4s+12)/s(s^2+4)

Answers

The inverse Laplace transform of F(s)=(8s^2-4s+12)/s(s^2+4) is 3 + 5cos(2t) - 2sin(2t).

Explanation:

To determine the inverse Laplace transform of(8s^2-4s+12)/s(s^2+4), follow these steps:

Step 1: To find the inverse Laplace transform of F(s)=(8s^2-4s+12)/s(s^2+4), use partial fraction decomposition:

F(s) = (A/s) + (Bs+C)/(s^2+4)

Step 2: Multiplying both sides by s(s^2+4) and equating coefficients, we get:

8s^2 - 4s + 12 = A(s^2+4) + (Bs+C)s

Simplifying, we get:

8s^2 - 4s + 12 = As^2 + 4A + B*s^2 + Cs

Equating coefficients, we get:

A + B = 8

C = -4

4A = 12

Solving for A, B, and C, we get:

A = 3

B = 5

C = -4

Therefore, we can write F(s) as:

F(s) = 3/s + (5s-4)/(s^2+4)

Step 3: Taking the inverse Laplace transform of each term separately, we get:

L^-1{3/s} = 3

L^-1{(5s-4)/(s^2+4)} = 5L^-1{s/(s^2+4)} - 2L^-1{1/(s^2+4)}

Using the table of Laplace transforms, we can find that:

L^-1{s/(s^2+4)} = cos(2t)

L^-1{1/(s^2+4)} = (1/2) sin(2t)

Therefore, the inverse Laplace transform of F(s) is:

L^-1{F(s)} = 3 + 5cos(2t) - 2sin(2t). where L^-1 denotes the inverse Laplace transform operator.

Therefore, the inverse Laplace transform of (8s^2-4s+12)/s(s^2+4) is 3 + 5cos(2t) - 2sin(2t).

Know more about inverse Laplace transform click here:

https://brainly.com/question/31322563

#SPJ11

according to the total probability rule, p(a) equals the sum of p(a ∩ b) and p(a ∩ bc), and is considered conditional on two mutually exclusive and exhaustive events independent of an experiment.

Answers

It is important to remember that the total probability rule refers to the sum of probabilities of intersections between A and two mutually exclusive and exhaustive events (B and BC), while the concept of independence relates to how the occurrence of one event affects the probability of another.



The total probability rule states that if we have two mutually exclusive and exhaustive events B and BC (B complement), then the probability of event A can be calculated as the sum of the probabilities of the intersections of A with both B and BC. Mathematically, this can be expressed as:

P(A) = P(A ∩ B) + P(A ∩ BC)

Now, let's discuss the term "independent". Two events are considered independent if the occurrence of one event does not affect the probability of the other event. In this case, if events A and B are independent, we can say:

P(A ∩ B) = P(A) * P(B)
P(A ∩ BC) = P(A) * P(BC)

However, the total probability rule is not dependent on whether events A and B are independent or not. It is important to remember that the total probability rule refers to the sum of probabilities of intersections between A and two mutually exclusive and exhaustive events (B and BC), while the concept of independence relates to how the occurrence of one event affects the probability of another.

to learn more about probability click here:

https://brainly.com/question/15124899

#SPJ11

Think About the Process What is true about a figure and an image created by
a translation? The vertices of parallelogram GRAM are G(-9,-9), R(-8,-6),
A(-4,-6), and M(-5,-9). Graph GRAM and G'R'A'M', its image after a translation
10 units right and 2 units up.
What is true about a figure and an image created by a translation? Select all that apply.
A. Each point in the image has the same x-coordinate as the corresponding point
in the figure.
B. The figure and the image are the same shape.
C. The figure and the image are the same size.
D. Each point in the image moves the same distance and direction from the
figure.

Answers

Step-by-step explanation:

A. Each point in the image has the same x-coordinate as the corresponding point

in the figure.

D. Each point in the image moves the same distance and direction from the

figure.

These two statements are true about a figure and an image created by a translation. When a figure is translated, every point in the figure is moved the same distance and direction. This means that each point in the image has moved the same way as its corresponding point in the figure. Additionally, since a translation only involves moving a figure without changing its shape or size, the image and figure are the same shape and size, but just in different positions. As such, statement B and C are not true for figures and images created by translation.

To graph the image G'R'A'M', we need to add 10 to each x-coordinate and subtract 2 from each y-coordinate:

G': (-9+10, -9-2) = (1,-11)

R': (-8+10, -6-2) = (2,-8)

A': (-4+10, -6-2) = (6,-8)

M': (-5+10, -9-2) = (5,-11)

Graphing these points and connecting them gives us parallelogram G'R'A'M'.

how many terms of the series sigma^[infinity]_n=1 5/(2n 1)^4 are needed so that the sum is accurate to within 0.00001.[Give the smallest value of n for which this is true.]____________

Answers

At least 5 terms of the series are needed for the sum to be accurate to within 0.00001.

To find the smallest value of n for which the sum of the series σ^[infinity]_n=1 5/(2n-1)^4 is accurate to within 0.00001, follow these steps,

1. Recognize that the given series is a converging series since the terms are positive and decreasing.
2. Use the Remainder Estimation Theorem for alternating series, which states that the error in using the sum of the first n terms of a converging alternating series is less than the (n+1)th term.
3. In this case, the error should be less than 0.00001, so we have:
  5/(2(n+1)-1)^4 < 0.00001

4. Solve for n,
  (2(n+1)-1)^4 < 5/0.00001
  (2n+1)^4 < 500000
  n = 4.54 (approximately)

Since n must be an integer, the smallest value of n that satisfies the condition is n = 5. Therefore, at least 5 terms of the series are needed for the sum to be accurate to within 0.00001.

Learn more about "series": https://brainly.com/question/24643676

#SPJ11

maximize production: p = k2/5l3/5 budget constraint: b = 4k 5l = 100

Answers

The maximum production is 3.334 at the point (k, l) is (4.022, 5.029)

How to maximize production?

To maximize production, we need to maximize the production function:

[tex]p = k^{(2/5)} * l^{(3/5)}[/tex]

subject to the budget constraint:

b = 4k + 5l = 100

We can use the method of Lagrange multipliers to solve this problem. The Lagrangian function is:

[tex]L = k^{(2/5)} * l^{(3/5)} + \lambda(100 - 4k - 5l)[/tex]

where λ is the Lagrange multiplier.

To find the critical points, we need to take the partial derivatives of L with respect to k, l, and λ, and set them equal to zero:

∂L/∂k = [tex]2/5 * k^{(-3/5)} * l^{(3/5)} - 4\lambda[/tex] = 0

∂L/∂l =[tex]3/5 * k^{(2/5)} * l^{(-2/5)} - 5\lambda[/tex] = 0

∂L/∂λ = 100 - 4k - 5l = 0

Solving these equations, we get:

k = [tex](25/6)^{(5/7)}[/tex] ≈ 4.022

l = [tex](20/3)^{(5/7)}[/tex] ≈ 5.029

λ =[tex](2/5) * (25/6)^{(-2/7)} * (20/3)^{(-3/7)}[/tex]≈ 0.327

Therefore, the maximum production is:

p =[tex]k^{(2/5)} * l^{(3/5)}[/tex] ≈ 3.334

at the point (k, l) ≈ (4.022, 5.029), subject to the budget constraint 4k + 5l = 100.

Learn more about maximize production

brainly.com/question/28963112

#SPJ11

Segments HS and WB are equal in length. HS= (8x +15) and WB = (12-13). Which of the following is the value of x?
A) 3
B)4
C)6.5
D)7

Answers

Since HS=WB, we can set their expressions equal to each other:

8x + 15 = 12 - 13

Simplifying the right-hand side:

8x + 15 = -1

Subtracting 15 from both sides:

8x = -16

Dividing both sides by 8:

x = -2

Therefore, none of the given options are correct.

Answer:lol it was 7

Step-by-step explanation:

The term error is used in two different ways in the context of a hypothesis test. First, there is the concept of standard error (i.e. average sampling error), and second, there is the concept of a Type I error.
a. What factor can a researcher control that will reduce the risk of a Type I error?
b. What factor can a researcher control that will reduce the standard error?

Answers

The following parts can be answered by the concept of hypothesis test.

a. To reduce the risk of a Type I error, a researcher can control the significance level or alpha level of their hypothesis test. By setting a lower alpha level (such as 0.01 instead of 0.05), the researcher is decreasing the likelihood of rejecting the null hypothesis when it is actually true.

b. To reduce the standard error, a researcher can increase the sample size of their study. As the sample size increases, the standard error decreases because there is less variability in the sample means. Additionally, ensuring that the sample is representative of the population can also help reduce standard error.

To learn more about hypothesis test here:

brainly.com/question/30588452#

#SPJ11

complete the transformations below. then enter the final coordinates of the figure

Answers

The transformations of coordinates of A(2,2) is  A'' = (-1, -1) , B(1, -2) is  B'' = (0, 3) and C (4,-4) is  C'' = (-3, 5).

The coordinates are given in the figure as,

A's coordinates are (2, 2) ;

B's coordinates are (1, -2) ;

and C's coordinates are (4, -4)

The coordinates are to be transformed as A", B" and C'' as,

First invert the number's sign and then to add up 1.

Therefore,

For A" :

At x- axis, +2 becomes -2 and the by adding 1 we get, -1

Similarly at y- axis, +2 becomes -2 and the by adding 1 we get, -1

Thus, A'' = (-1, -1)

For B" :

At x- axis, +1 becomes -1 and the by adding 1 we get, 0

Similarly at y- axis, -2 becomes +2 and the by adding 1 we get, +3

Thus, B'' = (0, 3)

For C" :

At x- axis, +4 becomes -4 and the by adding 1 we get, -3

Similarly at y- axis, -4 becomes +4 and the by adding 1 we get, +5

Thus, C'' = (-3, 5)

To know more about transformations of coordinates here

https://brainly.com/question/16989680

#SPJ1

Answer:A(-1,5) B(0,1) C(-3,-1)

Step-by-step explanation:I had the question

a random sample of n = 9 scores is selected from a normal population with a mean of μ = 100. after a treatment is administered to the individuals in the sample, the sample mean is found to be M=106.
a. If the population standard deviation is σ=10, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α=.05.
b. Repeat part a, assuming a one-tailed test with α=.05.
c. If the population standard deviation is σ, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α
d. Repeat part c, assuming a one-tailed test with α.
e. Comparing your answers for parts a, b, c, and d, explain how the magnitude of the standard deviation and the number of tails in the hypothesis influence the outcome of a hypothesis test.

Answers

(a) The sample mean is sufficient cannot conclude that the treatment has a significant effect.

(b) A one-tailed test with α = 0.05, is conclude that the treatment has a significant effect.

(c) A two-tailed test, We fail to reject the null hypothesis.

(d) one-tailed test with α we reject the null hypothesis

(e) A one-tailed test has a greater probability of rejecting the null hypothesis than a two-tailed test.

Can we to determine the sample mean is sufficient to conclude that the treatment?

a. To determine if the sample mean is sufficient to conclude that the treatment has a significant effect, we need to perform a two-tailed hypothesis test:

Null hypothesis: μ = 100

Alternative hypothesis: μ ≠ 100

The level of significance is α = 0.05. Since the population standard deviation σ is known, we can use a z-test:

z = (M - μ) / (σ / √n) = (106 - 100) / (10 / √9) = 1.8

The critical values for a two-tailed test with α = 0.05 are ±1.96. Since the calculated z-value of 1.8 does not fall in the rejection region, we fail to reject the null hypothesis. Therefore, we cannot conclude that the treatment has a significant effect.

Can a one-tailed test with α = 0.05, conclude that the treatment has a significant effect.?

b. To perform a one-tailed test with α = 0.05, we need to change the alternative hypothesis:

Null hypothesis: μ = 100

Alternative hypothesis: μ > 100

The critical value for a one-tailed test with α = 0.05 is 1.645. Since the calculated z-value of 1.8 is greater than the critical value, we reject the null hypothesis. Therefore, we can conclude that the treatment has a significant effect.

Can we determine sample mean sufficient has a significant effect two-tailed test with α?

c. If the population standard deviation is unknown, we need to use a t-test instead of a z-test. The null and alternative hypotheses are the same as in part a:

Null hypothesis: μ = 100

Alternative hypothesis: μ ≠ 100

The sample standard deviation can be used as an estimate of the population standard deviation:

t = (M - μ) / (s / √n) = (106 - 100) / (s / √9)

Since σ is unknown, we cannot use the critical values for a z-test. Instead, we need to use the t-distribution with n-1 degrees of freedom. For a two-tailed test with α = 0.05 and 8 degrees of freedom, the critical values are ±2.306. If the calculated t-value falls within the rejection region, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

Can we determine sample mean sufficient has a significant effect one-tailed test with α?

d. To perform a one-tailed test with α = 0.05, we need to change the alternative hypothesis:

Null hypothesis: μ = 100

Alternative hypothesis: μ > 100

The critical value for a one-tailed test with α = 0.05 and 8 degrees of freedom is 1.859. If the calculated t-value is greater than the critical value, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

How the magnitude of standard deviation and number of tails of a hypothesis test?

e. The magnitude of the standard deviation and the number of tails in the hypothesis test can both influence the outcome of a hypothesis test. A larger standard deviation will result in a larger standard error, which in turn will decrease the calculated t- or z-value and make it less likely to reject the null hypothesis.

The number of tails in the hypothesis also affects the outcome.  A one-tailed test has a greater probability of rejecting the null hypothesis than a two-tailed test, given the same level of significance and sample mean. However, a one-tailed test can be more susceptible to type I errors if the alternative hypothesis is not well-supported by the data.

Learn more about hypothesis test

brainly.com/question/30588452

#SPJ11

Determine whether the nonhomogeneous system Ax = b is consistent, and if so, write the solution in the form x = xn + xp where xh is a solution of Ax = 0 and xp is a particular solution of Ax = b.

2x - 4y + 5z = 8
-7x + 14y + 4z = -28
3x - 6y + z = 12

Answers

The general solution of non-homogeneous system can be written as:

x = xh + xp = [2t + 1, t, -2s - 2] + [-1, -28, 1]

We can now write the augmented matrix of the system as:

[2    -4    5     8]

[-7   14   4   -28]

[3   -6    1      12]

We can use row reduction to determine whether the system is consistent and to find its solutions.

Performing the row reduction, we get:

[1  -2  0  2]

[0   0  1 -2]

[0   0  0 0]

From the last row of the row-reduced matrix, we can see that the system has a dependent variable, which means that there are infinitely many solutions. We can write the general solution as:

x = x1 = 2t + 1

y = y1 = t

z = z1 = -2s - 2

Here, t and s are arbitrary parameters.

To find a particular solution, we can use any method we like. One method is to use the method of undetermined coefficients. We can guess that xp is a linear combination of the columns of A, with unknown coefficients:

xp = k1[2 -7 3] + k2[-4 14 -6] + k3[5 4 1]

where k1, k2, and k3 are unknown coefficients.

We can substitute this into the system and solve for the coefficients. This gives:

k1 = -1

k2 = -2

k3 = 1

Therefore, a particular solution is:

xp = [-1 -28 1]

So the general solution can be written as:

x = xh + xp = [2t + 1, t, -2s - 2] + [-1, -28, 1]

where t and s are arbitrary parameters.

To know more about non-homogeneous system refer here:

https://brainly.com/question/13720217

#SPJ11

Use the Integral Test to determine whether the series is convergent or divergen sigma^infinity_n=1 ne^(-9n) Evaluate the following integral^infinity-1 xe^-9x dx.
Since the integral _______ finite, the series is_______

Answers

To use the Integral Test to determine whether the series is convergent or divergent, we need to evaluate the integral ∫(xe^(-9x) dx) from 1 to ∞.

Let's evaluate the integral first:

∫(xe^(-9x) dx) from 1 to ∞

We use integration by parts for this, where:

u = x, dv = e^(-9x) dx
du = dx, v = -1/9 e^(-9x)

According to the integration by parts formula, ∫u dv = uv - ∫v du.

So, ∫(xe^(-9x) dx) = -1/9 x e^(-9x) - ∫(-1/9 e^(-9x) dx)

Now, we can integrate -1/9 e^(-9x) dx:

∫(-1/9 e^(-9x) dx) = (-1/9) * (-1/9) * e^(-9x) = 1/81 e^(-9x)

Thus, our integral becomes:

-1/9 x e^(-9x) - 1/81 e^(-9x)

Now we must evaluate the integral from 1 to ∞:

lim (x→∞) [ -1/9 x e^(-9x) - 1/81 e^(-9x) ] - [ -1/9 (1) e^(-9) - 1/81 e^(-9) ]

Since the exponential term e^(-9x) approaches 0 as x approaches ∞, the limit becomes:

0 - [ -1/9 e^(-9) - 1/81 e^(-9) ] = 1/9 e^(-9) + 1/81 e^(-9)

Since the integral is finite, the series is convergent.

Visit here to learn more about Integral  : https://brainly.com/question/18125359
#SPJ11

<
Archimedes drained the water in his tub.
The amount of water left in the tub (in liters) as a function of time (in
minutes) is graphed.
Water (liters)
360-
320-
280-
240-
200-
160-
120+
80+
40-
3
2
Time (minutes)

Answers

The rate at which water is draining is 72 liters per second.

What is the slope of a graph?

The slope of a graph is a measure of how steep the graph is, or how much the dependent variable changes in relation to the independent variable.

The rate at which water is draining is equal to the slope of the graph;

Mathematically, the slope is defined as the ratio of the change in the vertical or y-axis value (the dependent variable) to the change in the horizontal or x-axis value (the independent variable) between two points on the graph. It represents the rate of change or the steepness of the graph.

The slope is usually denoted by the letter "m" and is calculated using the following formula:

Slope (m) = (change in y-axis value)/(change in x-axis value)

rate = slope = (0 L - 360 L )/( 5 s - 0 s )

rate = -360 L / 5 s

rate = -72 L/s

Learn more about slope here: https://brainly.com/question/3493733

#SPJ1

Let random variable X have pmf f(x)=1/8 with x=-1,0,1 and u(x)=x2. Find E(u(x). 1/2 A. 1/4 OB. Oc 1/8 D. 1/16

Answers

The expected value of the function u(x) = x^2 for the given random variable X with pmf f(x) = 1/8 for x = -1, 0, 1 is option (B) 1/4.

The expected value of u(x) can be calculated using the formula

E(u(x)) = Σ u(x) × f(x) for all values of x

Given that the probability mass function (pmf) of X is f(x) = 1/8 for x = -1, 0, 1, we can calculate the expected value of u(x) as follows

E(u(x)) = (-1)^2 × f(-1) + 0^2 × f(0) + 1^2 × f(1)

= 1 × (1/8) + 0 × (1/8) + 1 × (1/8)

Do the arithmetic operation

= 2/8

Simplify the term

= 1/4

Therefore, the answer is option (B) 1/4.

Learn more about probability mass function here

brainly.com/question/30765833

#SPJ4

how do i write the inequality of this?​

Answers

Answer:

y < 3

Step-by-step explanation:

The line is y = 3

Since it is under the line,

y < 3

Since it is dotted, it will remain as y < 3

Hope this helps and be sure to mark this as brainliest! :)

let f(x) = x4(x − 4)3. (a) find the critical numbers of the function f. (enter your answers from smallest to largest.)

Answers

The critical numbers of the function f(x) = [tex]x^{4} (x - 4)^{3}[/tex] are x = 0 and x = 4.

Find the critical numbers of the function f?

To find the critical numbers of the function f(x) = [tex]x^{4}(x - 4)^{3}[/tex], we need to find the values of x at which the derivative of f(x) is equal to zero or undefined.

First, we will find the derivative of f(x) using the product rule:

f'(x) = [tex]4x^{3} (x - 4)^{3} + x^{4} 3(x - 4)^{2}(1)[/tex]

Simplifying this expression, we get:

f'(x) = [tex]4x^{3} (x - 4)^{2} (4 - x)[/tex]

Now, we can set f'(x) equal to zero and solve for x:

[tex]4x^{3} (x - 4)^{2} (4 - x)[/tex] = 0

From this equation, we can see that the critical numbers are x = 0, x = 4, and x = 4.

To check if x = 4 is a critical number, we need to find the limit of f'(x) as x approaches 4 from the left and from the right:

lim x→4- f'(x) = lim x→4- 4[tex]x^{3}[/tex][tex](x - 4)^{2}[/tex](4 - x) = 0

lim x→4+ f'(x) = lim x→4+ 4[tex]x^{3}[/tex][tex](x - 4)^{2}[/tex](4 - x) = 0

Since both limits are equal to zero, x = 4 is a critical number.

Therefore, the critical numbers of the function f(x) = [tex]x^{4} (x - 4)^{3}[/tex] are x = 0 and x = 4.

to know more about numbers

brainly.com/question/17429689

#SPJ1

. (4 4 4 4 4 4 pts). suppose that, for −1 ≤ α ≤ 1, the probability density function of (y1, y2) is given by f(y1, y2) = ( [1 − α{(1 − 2e −y1 )(1 − 2e −y2 )}]e −y1−y2 , 0 ≤ y1, 0 ≤ y2, 0, elsewhere.

Answers

[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]Therefore, [tex]f(y_1, y_2)[/tex] is a valid probability density function for −1 ≤ α ≤ 1, since it satisfies the non-negativity and normalization properties.

To determine if the given probability density function [tex]f(y_1, y_2)[/tex]is valid, we need to check that it satisfies the following two properties:

[tex]f(y_1, y_2)[/tex] is non-negative for all [tex](y_1, y_2)[/tex]

The integral of [tex]f(y_1, y_2)[/tex]over the entire [tex](y_1-y_2)[/tex] plane is equal to 1.

Non-negativity:

[tex]f(y_1, y_2)[/tex] is non-negative if it is greater than or equal to zero for all [tex]y_{2}[/tex] and [tex]y_{2}[/tex].

For 0 ≤ y1, 0 ≤ y2, we have

[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}]e -y_1-y_2 \geq 0[/tex]

since the term in the brackets is between 0 and 1 for −1 ≤ α ≤ 1.

For all other values of y1 and y2, f(y1, y2) is zero, which is non-negative.

Therefore, f(y1, y2) is non-negative for all (y1, y2).

Normalization:

The integral of f(y1, y2) over the entire y1-y2 plane is equal to 1, i.e.,

∫∫[tex]f(y_1, y_2)dy1dy^2[/tex] = 1

We split the integral into two parts:

∫∫[tex]f(y_1, y_2)dy_1dy_2[/tex] = ∫∫[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]

The integral on the right-hand side can be evaluated using the fact that the integral of e^(-y) over the entire positive real line is equal to 1.

∫∫[tex]f(y_1, y_2)dy_1dy_2[/tex] = ∫∫[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]

= ∫∫[tex][e -y_1 e -y_2 -e -y_1 e -y_2 (1 −-2e -y_1 )(1 - 2e y_2 )]dy_1dy_2[/tex]

= ∫0∞e −y2 dy2 ∫0∞e −y1dy1 − α∫0∞e −y2 dy2 ∫0∞e −y1dy1 ∫0∞(1 − 2e −y1 )(1 − 2e −y2) e −y1−y2dy1dy2

= 1 − α(1 − 1)(1 − 1)∫0∞e −y2 dy2 ∫0∞e −y1dy1

= 1

To know more about probability visit:

https://brainly.com/question/30034780

#SPJ1

Evaluate the geometric series or state that it diverges Infinity sigma n = 0 e -4n = Select the correct choice below and, if necessary, fill in the A. Infinity sigma n = 0 e -4n = B. The series diverges.

Answers

The correct choice is:
A. Infinity sigma n = 0 e^(-4n) = 1 / (1 - e^(-4))


To evaluate the given geometric series or state that it diverges, we need to first identify the general form of a geometric series:

Σ (from n=0 to infinity) ar^n

where 'a' is the first term and 'r' is the common ratio between consecutive terms.

In the given series, Σ (from n=0 to infinity) e^(-4n), we can identify that:

a = e^(0) = 1
r = e^(-4)

For a geometric series to converge, the common ratio 'r' must be between -1 and 1 (excluding -1 and 1):

-1 < r < 1

In this case:

-1 < e^(-4) < 1

Since the common ratio 'r' is between -1 and 1, the series converges, and we can use the formula to find the sum of an infinite geometric series:

S = a / (1 - r)

Substitute the values of 'a' and 'r':

S = 1 / (1 - e^(-4))

So, the correct choice is:

A. Infinity sigma n = 0 e^(-4n) = 1 / (1 - e^(-4))

Visit here to learn more about geometric series:

brainly.com/question/4617980

#SPJ11

Find the measurement of angle A and round the answer to the nearest tenth. :)
(Show work if you can plsss)

Answers

Answer:

40.82

Step-by-step explanation:

You need to use trig identities, which are sin(θ)=opposite length/hypotenuse length, cos(θ)=adjacent length/hypotenuse length, and tan(θ)=opposite length/adjacent length.

In your diagram, we see that the only available information is the length opposite of the angle x (19) and adjacent to angle x (22), so we will use the tan identity.

tan(x)=19/22

we need to solve for x, and so we need to get x alone. This can be done by using inverse tan: arctan or [tex]tan(x)^{-1}[/tex]. Note that we ARE NOT taking the equation to the exponent of -1, this is just notation for a trig identify.

arctan(x)tan(x)=x

x= arctan(19/22)

arctan(19/22)= 40.82

and so

x=40.82

Other Questions
A journal entry has only two lines: a) Increase in Owners' Equity, b) Decrease in Dividends. a) is a DR and b) is a CR so the entry is valid a) is a DR and b) is a DR so the entry is NOT valid a) is a CR and b) is a CR so the entry is NOT valid a) is a CR and b) is a DR so the entry is valid Khalil is a waiter at a restaurant. Each day he works, Khalil will make aguaranteed wage of $35, however the additional amount that Khalilearns from tips depends on the number of tables he waits on that day.From past experience, Khalil noticed that he will get about $10 in tipsfor each table he waits on. How much would Khalil expect to earn in aday on which he waits on 11 tables? How much would Khalil expect tomake in a day when waiting on t tables?Total earnings with 11 tables:Total Earnings with t tables: In a parliamentary system of government, how is the leader chosen?A.By the political party with the most members in the legislatureB.By the national court systemC.By a majority vote of the legislatureD.In a vote by the citizens Arab expansion brought what to North Africa, Southwest Asia, and Central Asia. The General Fund levies property taxes in the amount of $1,000,000 for calendar year 2022. It expects to collect $950,000 during the year, $30,000 in the first 60 days of the next year, and $15,000 during the rest of the next year. It does not expect to collect the remaining $5,000.How much property tax revenue should it recognize for the year 2022? a. $1,000,000 b. $980,000 c. $990,000 d. $995,000 The following question refers to the topic of conservatism in the nineteenth century.Which of the following best explains why Russia emerged as the leading supporter of the conservative political order established in 1815 ?A. Russian society had been less influenced by Enlightenment thought than were other European states.B. The Russian monarchy had undertaken a program of modernization and Westernization under Tsar Peter the Great and his successors.C. Russia had formed part of the coalition that defeated Napoleon.D. Russia was the largest European state in terms of land area and population. Faceoff, Inc. identified the following selected transactions that occured during the year ended December 31, 2018:a. Issued 1200 shares of $5 par common stock for cash of $26,000. b. Issued 4,700 shares of $5 par common stock for a building with a fair market value of $91,000 C. Purchased new truck with a fair market value of $30,000. Financed it 100% with a long-term note d. Retired short-term notes of $21,000 by issuing 2,400 shares of S5 par common stock e. Paid long-term note of $7,500 to Bank of Tallahassee. Issued new long-term note of $20,000 to Bank of Trust. Which of the labeled groups in compound A is the best leaving group? Which of the labeled groups is the worst leaving group? HNY :OH Which option correctly ranks the marked groups from best to worst leaving group? 0 O OH,*>OHNH, -NH, >-OH-OH, -OH, >-NH, > -OH -OH >NH, >-OH -OH -OH2>-NH, Which of the following statements is true when using the Excel Regression tool?a. The range for the independent variable values must be specified in the box for the Input Y Range.b. The Regression tool can be found in the Tools tab under Insert group.c. Adding an intercept term reduces the analysis' fit to the data.d. Checking the option Constant is Zero forces the intercept to zero. The concentration C in milligrams per milliliter (mg/ml) of a certain drug in a person's blood-stream t hours after a pill is swallowed is modeled by 2t c(t) = 3+ -0.011 Estimate the change in concentration when t changes from 40 to 50 minutes. 1 + -e The change in concentration is about mg/ml. (Type an integer or decimal rounded to the nearest thousandth as needed.) 55 yo M presents with fatigue, weight loss, and constipation. He has a family history of colon cancer. What the diagnose? On 4 August 2021, Africa Traders bought machinery of R250 000 (excluding VAT) from SA Dealers, on credit,for the use of manufacturing the goods sold to customers. Africa Traders and SA Dealers are registered VATvendors.Which account(s) will be debited, and which account(s) will be credited in the general ledger of Africa Traders? what is an ambidentate ligand? give two examples (other than no2) A heavy crate applies a force of 1500 N on a 25 m^2 piston. The smaller piston is 5 m^2. What force is needed to lift the crate? find the differential dy of the given function. y = csc 9x It's illegal to bet on political races in the United States, but overseas betting on American elections is common. As of this writing, Hillary Clinton is the favorite to win the presidency in 2016, with odds listed as 8/11. Explain what that means, including relating it to probability. Which of the following would explain a companys inventory turnover ratio rising from 2.5 to 3.5? In 1831, soldiers marched across the Broughton Bridge in England in "lock step"that is, marching in time together. As they marched, the bridge began to bounce in time with their footsteps; the amplitude of this bouncing became larger and larger until the bridge suddenly collapsed. Explain why the lock step of the soldiers caused this collapse and why afterward soldiers were ordered to "break step," or march at their own individual rates, as they crossed bridges. determine the most effective buffer made by hno2 and nano2 has a ph of 3.15. ka of hno2 is 7.1104 (a) The switch is disconnected from point b and connected to point a,_ What will happen to the voltage . across the capacitor? The voltage will increase exponentially with time Correct