For each of the following, write an oxidation half – reaction and normalize the reaction on an electron equivalent basis. Add H2O as appropriate to either side of the equations in balancing reactions. (a) CH3CH2CH2CHNH2COO oxidation to CO2, NH4, HCO3 (b) Cl to ClO3

Answers

Answer 1

(a) To write the oxidation half-reaction, we need to identify the molecule or ion that is losing electrons. In this case, it is CH3CH2CH2CHNH2COO which is being oxidized to CO2, NH4, and HCO3. We can represent the oxidation of the molecule as follows:
CH₃CH₂CH₂CHNH₂COO --> CO₂ + NH₄+ + HCO₃-

To normalize this reaction on an electron equivalent basis, we need to balance the number of electrons lost and gained in the reaction. The oxidation state of carbon in CH₃CH₂CH₂CHNH₂COO is -2, while the oxidation state of carbon in CO₂ is +4. This means that each carbon atom in CH₃CH₂CH₂CHNH₂COO has lost six electrons.

Therefore, the oxidation half-reaction is:

CH₃CH₂CH₂CHNH₂COO --> 4CO₂ + 8H+ + 8e- + NH₃

Note that we have added 8H+ and 8e- to balance the number of electrons lost by the carbon atoms. We have also added NH₃ to balance the nitrogen atom in the reaction.

(b) To write the oxidation half-reaction for Cl to ClO₃, we need to identify the species that is losing electrons. In this case, it is Cl that is oxidized to ClO₃-. We can represent the oxidation of Cl as follows:

Cl --> ClO₃-

To normalize this reaction on an electron equivalent basis, we need to balance the number of electrons lost and gained in the reaction. The oxidation state of Cl in Cl is 0, while the oxidation state of Cl in ClO₃- is +5. This means that each Cl atom in Cl has lost five electrons.

Therefore, the oxidation half-reaction is:

Cl --> ClO₃- + 6e-

we have added 6e- to balance the number of electrons lost by the Cl atom.

learn more about oxidation here: brainly.com/question/29947856

#SPJ11


Related Questions

what is the reason why mhc molecules are able to bind a variety of peptides?

Answers

The reason why MHC molecules are able to bind a variety of peptides is due to their unique structural features and the biological functions they perform.

MHC molecules, or Major Histocompatibility Complex molecules, are essential components of the immune system that play a critical role in presenting foreign peptides, such as those derived from pathogens, to T-cells. This enables the immune system to recognize and eliminate infected cells. MHC molecules consist of two classes: MHC class I and MHC class II, both classes have a peptide-binding groove that can accommodate peptides of different amino acid sequences. This binding groove is lined with polymorphic amino acid residues, which contribute to the diversity in peptide-binding specificity.

Additionally, the MHC molecules are highly polymorphic, meaning that there are many variations of these molecules within the human population, this polymorphism increases the chances of binding to a wider array of peptides, enhancing the immune response to various pathogens. The ability of MHC molecules to bind various peptides is essential for effective immune surveillance, it allows the immune system to identify and respond to a diverse range of pathogens, including viruses, bacteria, and parasites. This adaptability ensures that the immune system can recognize and neutralize potential threats to maintain a healthy and robust defense against infections. The reason why MHC molecules are able to bind a variety of peptides is due to their unique structural features and the biological functions they perform.

Learn more about MHC molecules at:

https://brainly.com/question/13051585

#SPJ11

At the threshold of activation (aka critical firing level), which ion has stronger net pressure (combined effects of the forces of EP and Diffusion) acting upon it?a. Na+b. K-c. Na-d. Cl+e. K+

Answers

At the threshold of activation, the ion with the stronger net pressure acting upon it is a. Na+. This is because at the threshold of activation, there is a higher concentration of Na+ ions outside the cell compared to inside the cell, creating a net inward pressure on the Na+ ion.

This is because, at the threshold of activation, the membrane potential reaches a level where voltage-gated sodium channels open, allowing Na+ ions to flow into the cell due to their electrochemical gradient. The combined forces of EP and diffusion create a strong net inward pressure for sodium ions, which leads to the depolarization phase of the action potential.

Additionally, the electrostatic force (EP) acting on Na+ is also inward due to the positively charged extracellular environment. The combined effects of these two forces create a stronger net pressure on Na+ compared to the other ions listed.

To learn more about activation- brainly.com/question/28384644

#SPJ11

Calculate the ΔE for the combustion of one mole ofpropane. C3H8, according to the equation:
C3H8 (g) + 5O2 (g) -----> 3Co2 (g) + 4H2O (l)
enthalpies are CO2 is -393.5 kJ/mol
H2Ois- 285.8 kJ/mol
O2is 0 8 kJ/ mol
C3H8is-103.8 kJ/mol

Answers

The change in energy (ΔE) for the combustion of one mole of propane is -2219.9 kJ.

To calculate the ΔE (change in energy) for the combustion of one mole of propane, we'll use the given enthalpies and the balanced chemical equation provided:
[tex]C_3H_8 (g) + 5O_2 (g) --> 3CO_2 (g) + 4H_2O (l)[/tex]
First, we need to calculate the energy change for the products and the reactants:
ΔE = (Energy of products) - (Energy of reactants)
For the reactants, we have 1 mol of [tex]C_3H_8[/tex] and 5 mol of [tex]O_2[/tex]:
Energy of reactants = (1 mol × -103.8 kJ/mol) + (5 mol × 0 kJ/mol) = -103.8 kJ
For the products, we have 3 mol of [tex]CO_2[/tex] and 4 mol of [tex]H_2O[/tex]:
Energy of products = (3 mol × -393.5 kJ/mol) + (4 mol × -285.8 kJ/mol) = -1180.5 kJ - 1143.2 kJ = -2323.7 kJ
Now, we can calculate the ΔE:
ΔE = (-2323.7 kJ) - (-103.8 kJ) = -2219.9 kJ

To learn more about combustion click here https://brainly.com/question/31123826

#SPJ11

The change in energy (ΔE) for the combustion of one mole of propane is -2219.9 kJ.

To calculate the ΔE (change in energy) for the combustion of one mole of propane, we'll use the given enthalpies and the balanced chemical equation provided:
[tex]C_3H_8 (g) + 5O_2 (g) --> 3CO_2 (g) + 4H_2O (l)[/tex]
First, we need to calculate the energy change for the products and the reactants:
ΔE = (Energy of products) - (Energy of reactants)
For the reactants, we have 1 mol of [tex]C_3H_8[/tex] and 5 mol of [tex]O_2[/tex]:
Energy of reactants = (1 mol × -103.8 kJ/mol) + (5 mol × 0 kJ/mol) = -103.8 kJ
For the products, we have 3 mol of [tex]CO_2[/tex] and 4 mol of [tex]H_2O[/tex]:
Energy of products = (3 mol × -393.5 kJ/mol) + (4 mol × -285.8 kJ/mol) = -1180.5 kJ - 1143.2 kJ = -2323.7 kJ
Now, we can calculate the ΔE:
ΔE = (-2323.7 kJ) - (-103.8 kJ) = -2219.9 kJ

To learn more about combustion click here https://brainly.com/question/31123826

#SPJ11

The rate of a reaction is 2.3 times faster at 60 °C than it is at 50 °C. By what factor will the rate increase on going from 60 °C to 70 °C? (A) By less than a factor of 2.3 (B) By a factor of 2.3 (C) By more than a factor of 2.3(D) The rate increase cannot be determined from the information given.

Answers

The rate increase cannot be determined from the information given; so option D).

How is the rate of a reaction affected by temperature?

The relationship between temperature and rate of a chemical reaction is described by the Arrhenius equation, which states that the rate constant (k) of a reaction increases exponentially with an increase in temperature (T):

k = Ae^(-Ea/RT)

where A is the pre-exponential factor, Ea is the activation energy of the reaction, R is the gas constant, and T is the temperature in Kelvin.

To determine the factor by which the rate of a reaction will increase on going from 60 °C to 70 °C, we will use the given information and make an assumption about the reaction's temperature dependence.

Given information: The rate of the reaction is 2.3 times faster at 60 °C than it is at 50 °C.

Assumption: We will assume that the reaction follows the Arrhenius equation, which states that the rate of a reaction increases exponentially with temperature.

Step 1: Let the rate at 50 °C be R1, at 60 °C be R2, and at 70 °C be R3. We know that R2 = 2.3 * R1.

Step 2: Assume that the rate at 70 °C is x times faster than the rate at 60 °C. So, R3 = x * R2.

Step 3: Using the information from Step 1 and Step 2, we can say that R3 = x * (2.3 * R1).

Without knowing the values of the activation energy (Ea) and the gas constant (R), we cannot determine the exact factor by which the rate increases. Therefore, the correct answer is (D) The rate increase cannot be determined from the information given.

To know more about Arrhenius Equation:

https://brainly.com/question/21659947

#SPJ11

What kind of intermolecular forces act between a chloramine (NH2CI) molecule and a sodium cation? Note: If there is more than one type of intermolecular force that acts, be sure to list them all, with a comma between the name of each force. Х 5 ?

Answers

The intermolecular forces that can act between a chloramine molecule and a sodium cation are ion-dipole interaction, dipole-dipole interaction, and Van der Waals forces.

Chloramine (NH2Cl) is a polar molecule with a dipole moment, and sodium cation (Na+) is a positively charged ion. When these two entities come close to each other, the following intermolecular forces may act between them:

Ion-dipole interaction: Sodium cation being a positively charged ion can interact electrostatically with the negatively charged end of the dipole moment of chloramine. This interaction is called an ion-dipole interaction.

Dipole-dipole interaction: Chloramine molecules have dipole moments due to the presence of the polar N-H and N-Cl bonds. These dipole moments can interact with the dipole moment of neighboring chloramine molecules or with the dipole moment of the sodium cation, leading to a dipole-dipole interaction.

Van der Waals forces: Chloramine and sodium cation can also experience London dispersion forces or instantaneous dipole-induced dipole interactions due to the temporary fluctuations in the electron distribution around them.

learn more about Van der Waals forces here:

https://brainly.com/question/13201335

#SPJ11

What is the purpose of forming 2,4-DNP and semicarbazone derivatives of aldehydes and ketones To identify unknown aldehydes and ketones that are liquid at room temperature. To identify unknown aldehyde and ketones that have very similar boiling points. To identify an unknown aldehyde and ketone when there is a very small amount of compound available and the boiling point cannot be determined. All of the above.

Answers

The purpose of forming 2,4-DNP and semicarbazone derivatives of aldehydes and ketones is to identify unknown aldehydes and ketones that have very similar boiling points, by taking advantage of the different physical properties of the derivatives.

How to find the purpose of forming 2,4-DNP?

The purpose of forming 2,4-DNP and semicarbazone derivatives of aldehydes and ketones is to identify unknown aldehydes and ketones that have very similar boiling points. These derivatives have different physical properties such as melting point and solubility that can be used to distinguish between different aldehydes and ketones that have similar boiling points. While these derivatives can be used to identify unknown aldehydes and ketones that are liquid at room temperature, they are not typically used for this purpose. Additionally, if a sufficient amount of an unknown aldehyde or ketone is available, the boiling point can be determined, making the derivatives unnecessary.

Therefore, the correct answer is: to identify unknown aldehydes and ketones that have very similar boiling points.

Learn more about Semicarbazone derivatives

brainly.com/question/17251040

#SPJ11

Ga electron configuration in an excuted state chem

Answers

The electronic configuration in an excited state of Galium is [Ar]3d104s14p2.

The placement of electrons in orbitals surrounding an atomic nucleus is known as electronic configuration, also known as electronic structure and electron configuration. The number of electrons within each orbital is denoted by a superscript, and the occupied

Orbitals are listed in order of filling to represent the electronic configuration for an atom according to the quantum-mechanical model. The electrical configuration of sodium in this notation would correspond to 1s22s22p63s1, distributed as 2-8-1. The electronic configuration in an excited state of Galium is [Ar]3d104s14p2.

To know more about electronic configuration, here:

https://brainly.com/question/29757010

#SPJ1

The following molecule (or ion) acts as a base: CH3CHO Draw the structural formula of the conjugate acid formed in a reaction with HCl.

Answers

When CH₃CHO acts as a base and reacts with HCl, it will accept a proton (H⁺) and form its conjugate acid, which is CH₃CH(OH)²⁺. The structural formula of the conjugate acid formed in this reaction is CH₃CH(OH)²⁺.

To draw the structural formula of the conjugate acid formed in a reaction with HCl, follow these steps:

1. Identify the base: CH₃CHO, also known as acetaldehyde
2. The base (CH₃CHO) reacts with HCl, a strong acid
3. The base will accept a proton (H⁺) from the HCl, forming a conjugate acid
4. The oxygen atom in the aldehyde group (C=O) is the most likely site for protonation, due to its electronegativity

The structural formula of the conjugate acid of CH₃CHO after reacting with HCl is CH₃CH(OH)²⁺.

Learn more about conjugate acid at https://brainly.com/question/12584785

#SPJ11

a 20.0-ml sample of 0.25 m hno3 is titrated with 0.15 m naoh. what is the ph of the solution after 29.3 ml of naoh have been added to the acid? please include two decimal places.

Answers

The pH of the solution after 29.3 ml of Na have been added to the acid is 1.91.

To determine the pH of the solution after the titration, we will first calculate the number of moles of HNO₃ and NaOH, then determine the moles of unreacted species and the concentration of the resulting solution. Finally, we will calculate the pH.

1. Calculate moles of HNO₃:
Moles = Molarity × Volume
Moles of HNO₃ = 0.25 M × 0.020 L = 0.005 moles

2. Calculate moles of NaOH:
Moles of NaOH = 0.15 M × 0.0293 L = 0.004395 moles

3. Determine the moles of unreacted species:
Since NaOH and HNO₃ react in a 1:1 ratio, the limiting reactant is HNO₃.
Moles of unreacted HNO₃ = 0.005 moles - 0.004395 moles = 0.000605 moles

4. Calculate the concentration of unreacted HNO₃ in the resulting solution:
New volume = Initial volume of HNO₃ + Volume of NaOH added = 0.020 L + 0.0293 L = 0.0493 L
[HNO₃] = 0.000605 moles / 0.0493 L = 0.01227 M

5. Calculate the pH:
pH = -log10[H+] = -log10(0.01227) = 1.91

After adding 29.3 mL of 0.15 M NaOH to the 20.0 mL sample of 0.25 M HNO₃, the pH of the solution is 1.91.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

subaru's green plant is an example of the application ofpart 2
a. spc.
b. iso 9000.
c. iso 24700.
d. iso 14000.
e. tqm.

Answers

Subaru's green plant is an example of the application of ISO 14000. This standard focuses on environmental management systems and helps organizations minimize their negative impact on the environment while complying with applicable laws and regulations.

The answer is d. ISO 14000. Subaru's green plant is an example of the application of ISO 14000, which is a set of international standards related to environmental management. These standards provide guidelines for organizations to minimize their impact on the environment and improve their sustainability efforts.

Subaru's green plant has implemented various environmental initiatives, such as reducing greenhouse gas emissions, recycling waste materials, and using eco-friendly technologies, in order to meet the requirements of ISO 14000.

To know more about Subaru's click here:

https://brainly.com/question/30032107

#SPJ11

Predict which element has the larger first ionization energy based on periodic trends.
a. Cs b. cannot be determined based on periodic trends
c. Sr

Answers

The correct answer is option c) Sr. We can predict that Sr will have a larger first ionization energy than Cs based on periodic trends.

The first ionization energy is the energy required to remove the outermost electron from an atom in the gas phase.

As we move from left to right across a period of the periodic table, the first ionization energy generally increases due to an increase in effective nuclear charge. The effective nuclear charge is the net positive charge experienced by an electron in an atom, taking into account the shielding effect of inner electrons.

As we move down a group of the periodic table, the first ionization energy generally decreases due to an increase in atomic radius and an increase in shielding effect.

Based on these periodic trends, we can predict that Sr (strontium) has a larger first ionization energy than Cs (cesium). This is because Sr is located to the right of Cs in the same period of the periodic table, and therefore has a higher effective nuclear charge. Additionally, Sr has a smaller atomic radius and less shielding effect compared to Cs, which further increases its first ionization energy.

Therefore, the correct answer is (c) Sr.

Learn more about periodic trends here: https://brainly.com/question/12074167

#SPJ11

A) Calculate Delta G°ΔG° at 298 K for the following reaction:MgCO3 (s) ⇋ Mg2+ (aq) + CO32- (aq). Enter a number to 1 decimal place.B) Use the value of Delta G°ΔG° determined in the previous problem to find K at 298K. Multiply your answer by 1e9 and enter that into the field.MgCO3 (s) ⇋ Mg2+ (aq) + CO32- (aq)

Answers

A. The value of Delta G° for the reaction is 416.6 kJ/mol or 416600 J/mol.

B. The value of K at 298 K for the reaction is 1.3 × 10¹.

What is standard Gibbs free energy?

Standard Gibbs free energy is the Gibbs free energy change that occurs in a reaction under standard conditions, which are defined as a temperature of 298 K,pressure of 1 bar, and concentration of 1 M.

A.) To calculate Delta G° at 298 K for the reaction:

MgCO₃ (s) ⇋ Mg₂+ (aq) + CO₃₂- (aq)

ΔG° = -RT ln K

where ΔG° is the standard Gibbs free energy change, R is the gas constant (8.314 J/K·mol), T is the temperature in Kelvin (298 K), and K is the equilibrium constant.

The standard Gibbs free energy change for the dissociation of MgCO₃ is given by:

ΔG° = ΔG°f(Mg₂+) + ΔG°f(CO₃₂-) - ΔG°f(MgCO₃)

where ΔG°f is the standard Gibbs free energy of formation of the species.

ΔG°f(Mg₂+) = 0

ΔG°f(CO₃₂-) = -677.1 kJ/mol

ΔG°f(MgCO₃) = -1093.7 kJ/mol

Substituting these values into the equation gives:

ΔG° = (0) + (-677.1) - (-1093.7) = 416.6 kJ/mol

Converting to Joules gives:

ΔG° = 416600 J/mol

B.) To find K at 298 K using the value of Delta G° determined above, we rearrange the Gibbs free energy equation:

K = [tex]e^{(\frac{-\Delta G}{RT} )}[/tex]

Substituting the values:

ΔG° = 416600 J/mol

R = 8.314 J/K·mol

T = 298 K

gives:

K = [tex]e^{(-416600 J/mol / (8.314 J/K*mol * 298 K))}[/tex]

K = 1.3 × 10⁻⁸

Multiplying by 1e9 gives:

K = 1.3 × 10¹

To know more about Gibbs free energy visit:

https://brainly.com/question/9179942

#SPJ1

the bohr model was based on the helium atom and rings around the nucleus are called orbits. true or false

Answers

The statement "the Bohr model was based on the helium atom and rings around the nucleus are called orbits" is partially true and partially false.

The Bohr model was actually based on the hydrogen atom, not the helium atom. However, it is true that the rings around the nucleus are called orbits. So, the correct answer would be that the statement is both true and false due to the inaccuracy regarding the atom the model was based on.

The statement mentioned in the question is not entirely accurate. The Bohr model was based on the hydrogen atom, not the helium atom. The Bohr model was developed to explain the hydrogen atom's atomic structure, which is simpler than the helium atom's atomic structure. The hydrogen atom has one electron and one proton, whereas the helium atom has two electrons and two protons.

On the other hand, the second part of the statement is accurate. The rings around the nucleus in the Bohr model are called orbits. These orbits are specific, quantized energy levels that electrons can occupy in an atom. When an electron transitions between these energy levels, it emits or absorbs a photon of specific energy, which gives rise to the spectral lines observed in atomic spectra.

Therefore, the statement "the Bohr model was based on the helium atom and rings around the nucleus are called orbits" is partially true and partially false. The first part of the statement is incorrect because the Bohr model was based on the hydrogen atom, not the helium atom. The second part of the statement is accurate because the rings around the nucleus in the Bohr model are called orbits.

To know more about "Bohr model " refer here:

https://brainly.com/question/13606024#

#SPJ11

Which element has the highest (most negative) electron affinity?Group of answer choicesA. LiB. KrC. SD. MgE. Cr

Answers

Among the given elements, Chlorine (symbol: Cl) has the highest (most negative) electron affinity.

Electron affinity is defined as the amount of energy released or absorbed when an electron is added to a neutral atom in the gaseous state to form a negative ion. Chlorine has an electron affinity of -349 kJ/mol, which is the highest among the given options.

Electron affinity is a physical property of an atom or a molecule that refers to the amount of energy released or absorbed when an electron is added to a neutral atom or molecule to form a negative ion. It is a measure of how much an atom or a molecule "likes" or attracts an additional electron.

Therefore, the correct answer is C. Cl.

learn more abouT  electron affinity here:

https://brainly.com/question/977718

#SPJ4

pls examples of heavy chemicals

Answers

Explanation:

Sulfuric acid, Nitrogen , oxygen,ethylene, propylene.

Predict the boiling point of a 4.5 m aqueous solution of MgCl2. The molal freezing-point-elevation and boiling-point-elevation constants for water are: Kf=1.86 °C/m Kb=0.51 °C/m a. 93.1 °C b. 95.4 °C c. 97.7 °C d. 102.3 °C e. 104.6 °C f. 106.9 °C

Answers

To predict the boiling point of a 4.5 m aqueous solution of MgCl2, we can use the boiling-point-elevation formula: ΔTb = Kb × m × i, where ΔTb is the boiling point elevation, Kb is the boiling-point-elevation constant for water (0.51 °C/m), m is the molality of the solution (4.5 m), and i is the van't Hoff factor (number of ions produced per formula unit of solute).
The closest answer is  102.3 °C.

To predict the boiling point of the solution, we need to use the boiling-point-elevation constant (Kb) and the molality of the solution (4.5 m). The formula we use is:

ΔTb = Kb x m

where ΔTb is the boiling point elevation, Kb is the boiling-point-elevation constant, and m is the molality of the solution.

Substituting the values we have, we get:

ΔTb = 0.51 °C/m x 4.5 m
ΔTb = 2.295 °C

This means that the boiling point of the solution will be 2.295 °C higher than the boiling point of pure water, which is 100 °C at standard pressure.

Therefore, the boiling point of the solution can be calculated as:

Boiling point = 100 °C + ΔTb
Boiling point = 100 °C + 2.295 °C
Boiling point = 102.295 °C

Therefore, the answer is d. 102.3 °C.

Learn more about boiling here:

https://brainly.com/question/29319965

#SPJ11

at 25.0∘c , the molar solubility of lead sulfate in water is 1.40×10^−4 m . calculate the solubility in grams per liter.

Answers

Solubility of lead sulfate in water at 25.0°C is approximately 0.0425 grams per liter.

To calculate the solubility of lead sulfate in grams per liter at 25.0°C with a molar solubility of 1.40×10^−4 M, follow these steps:

1. Determine the molar mass of lead sulfate (PbSO4):
Lead (Pb): 207.2 g/mol
Sulfur (S): 32.07 g/mol
Oxygen (O): 16.00 g/mol (there are 4 oxygen atoms in PbSO4, so multiply 16.00 by 4)

Molar mass of PbSO4 = 207.2 + 32.07 + (4 * 16.00) = 303.27 g/mol

2. Multiply the molar solubility by the molar mass of lead sulfate to find the solubility in grams per liter:

Solubility (g/L) = Molar solubility (M) × Molar mass (g/mol)

Solubility (g/L) = 1.40×10^−4 M × 303.27 g/mol ≈ 0.0425 g/L

Therefore, the solubility of lead sulfate in water at 25.0°C is approximately 0.0425 grams per liter.

To know more about lead sulphate- https://brainly.com/question/31428897

#SPJ11

Which of the compounds listed are not sp'd hybridized at the central atom? I. BF3 II. AsI5III. SF4 IV. BrFs V. XeF4A) III and IV B) I, II, and III C) I, IV, and V D) III and V E) all are spd hybridized at the central atom

Answers

The compounds that are not sp³d hybridized at the central atom are in option B) I, II, and III.

In these compounds, the central atoms have the following hybridization:

I. BF3: The boron atom is sp² hybridized. All three bond pairs.

II. AsI5: The arsenic atom is sp³d² hybridized. Five bond pairs and one lone pair.

III. SF4: The sulfur atom is sp³d hybridized. Four bond pairs and one lone pair.

To know more about hybridization, click below.

https://brainly.com/question/29290058

#SPJ11

If the myelin sheath was not interrupted by gaps, then the action potential would degrade to nothing and thus the signal would fail to cause neurotransmitter release.
Group of answer choices
True
False

Answers

True.If the myelin sheath was not interrupted by gaps (known as nodes of Ranvier), the action potential would degrade to nothing, and thus the signal would fail to cause neurotransmitter release.

The gaps in the myelin sheath are crucial for maintaining the speed and efficiency of nerve signal transmission, as they allow for saltatory conduction, where the action potential "jumps" from one node to the next. Without these gaps, the signal would lose strength and eventually fail to stimulate neurotransmitter release. A lipid-rich substance called myelin surrounds the axons of nerve cells, insulates them, and speeds up the transmission of electrical impulses along the axon.

learn more about myelin Refer: https://brainly.com/question/1205625

#SPJ11

3. Cahn-Ingold-Prelog a. Prioritize all four groups connected to the chirality center Number the following groups based on priority. This is done one atom at a time, not the group! CH3 Me но ButIi Prop Et Cl Br b. If necessary, rotate the molecule so that the fourth priority group is on a dash. Redraw each of the following molecules such that the fourth priority is on the dash. Cl Cl он H3P ermine whether the 1-2-3 sequence is clockwise (R-) or counterclockwise (S-). Cl CH3 SH 2 PH3 3 3

Answers

According to the Cahn-Ingold-Prelog: Priority is first done by

1) Greater atomic number have high priority

2) Greater atomic mass number have high priority.

The Cahn-Ingold-Prelog (CIP) sequence rules, commonly known as the CIP priority convention and named for R.S. Cahn, C.K. Ingold, and Vladimir Prelog, are an accepted method in organic chemistry for formally and unambiguously identifying a stereoisomer of a molecule. In order to uniquely specify the configuration of the complete molecule by including the descriptors in its systematic name, the CIP system assigns a R or S descriptor to each stereocenter and an E or Z descriptor to each double bond.

Each stereocenter and double bond in a molecule, which can have any number of each, often gives birth to two distinct isomers. Typically, a molecule having n stereocenters will contain 2n stereoisomers and 2n1 stereocenters.

Any stereoisomer of any organic molecule with all atoms of ligancy of fewer than 4 (but includes ligancy of 6 as well; this word refers to the "number of neighbouring atoms" attached to a centre) may be precisely named according to the CIP sequence rules.

Learn more about Cahn-Ingold-Prelog:

https://brainly.com/question/29220459

#SPJ4

what is the structure of the enol produced when 3,3,6-trimethyl-4-heptanone is treated with acid?

Answers

When 3,3,6-trimethyl-4-heptanone is treated with acid, the structure of the enol produced is 3,3,6-trimethyl-3-hepten-4-ol.

The structure of the enol produced when 3,3,6-trimethyl-4-heptanone is treated with acid is as follows:

Step 1: Identify the carbonyl group in 3,3,6-trimethyl-4-heptanone. The carbonyl group is the C=O bond found in the ketone, which is located at the 4th carbon.

Step 2: Locate the alpha-hydrogen, which is the hydrogen atom bonded to the carbon adjacent to the carbonyl group. In this case, the alpha-hydrogen is found at the 3rd carbon.

Step 3: When the compound is treated with acid, the alpha-hydrogen is removed and a double bond forms between the alpha-carbon and the carbonyl carbon, while the carbonyl oxygen acquires a hydrogen atom.

Step 4: The resulting enol structure is 3,3,6-trimethyl-3-hepten-4-ol.

In summary, when 3,3,6-trimethyl-4-heptanone is treated with acid, the structure of the enol produced is 3,3,6-trimethyl-3-hepten-4-ol.

Learn more about acid : https://brainly.com/question/28544279

#SPJ11

A gas is collected over water and occupies a volume of 596mL at 43 Celsius and 760 torr. What would the number of moles of the dry gas be at the same temperature? The vapor pressure of water at 43 Celsius is 65 torr.

Answers

The number of mole of the dry gas at the same temperature is 0.021 mole

How do i determine the number of mole of the dry gas?

First, we shall list out the given parameters from the question. This is given below:

Volume of gas (V) = 596 mL = 596 / 1000 = 0.596 LTemperature (T) = 43 °C = 43 + 273 = 316 KVapour pressure = 65 torrPressure of dry gas (P) = 760 - 65 = 695 torrGas constant (R) = 62.36 torr.L/mol KNumber of mole (n) =?

The number of mole of the dry gas collected can be obtained as follow:

PV = nRT

695 × 0.596 = n × 62.36 × 316

414.22 = n × 19705.76

Divide both sides by 19705.76

n = 414.22 / 19705.76

n = 0.021 mole

Thus, we can conclude that the number of mole of the dry gas is 0.021 mole

Learn more about number of mole:

https://brainly.com/question/29927685

#SPJ1

list the symmetry elements of the following molecules and name the point groups to which they belong: (a) naphthalene, (b) anthracene, (c) three dichlorobenzene isomers.

Answers

(a) The symmetry elements of naphthalene are a C2 rotation axis perpendicular to the plane of the molecule, a C2 rotation axis in the plane of the molecule passing through the center of the rings, and a horizontal mirror plane passing through the center of the molecule. Therefore, naphthalene belongs to the point group D2h.

(b) The symmetry elements of anthracene are a C2 rotation axis perpendicular to the plane of the molecule, a C2 rotation axis in the plane of the molecule passing through the center of the rings, and a horizontal mirror plane passing through the center of the molecule. Additionally, there are two vertical mirror planes that bisect the molecule along the long axis. Therefore, anthracene belongs to the point group C2h.

(c) The three dichlorobenzene isomers are 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene. Each of these molecules has a C2 rotation axis perpendicular to the plane of the molecule and a horizontal mirror plane passing through the plane of the molecule. Therefore, all three molecules belong to the point group C2v.

Learn more about isomers here:

https://brainly.com/question/12796779

#SPJ11

Determine the name for tico 3. remember that titanium forms several ions.
a. titanium (ii) carbonite
b. titanium carbonite
c. titanium carbide
d. titanium i carbonate
e. titanium ii carbonate

Answers

a. titanium (ii) carbonate. the chemical formula [tex]Ti(CO_3)_2[/tex], titanium carbonate is a solid substance.

In what way is titanium carbide bonded?

Chemical bonding has a direct impact on the hardness of titanium carbide compounds. Metallic Ti-Ti links, powerful covalent C-C bonds, and partly ionic Ti-C bonds are the three bonding characteristics that are present in principle.

Titanium carbide: a composite material?

High hardness, high fracture toughness, and high thermal shock resistance are all characteristics of these composites. Even at temperatures as high as 800 °C, they retain their hardness.

Titanium: a carbide or not?

Given its combination of high hardness and wear endurance, titanium carbide (TiC) is widely utilized for cutting tools. One of the hardest natural carbides is this one.

To know more about the titanium carbide visit:

https://brainly.com/question/10521961

#SPJ1

a. titanium (ii) carbonate. the chemical formula [tex]Ti(CO_3)_2[/tex], titanium carbonate is a solid substance.

In what way is titanium carbide bonded?

Chemical bonding has a direct impact on the hardness of titanium carbide compounds. Metallic Ti-Ti links, powerful covalent C-C bonds, and partly ionic Ti-C bonds are the three bonding characteristics that are present in principle.

Titanium carbide: a composite material?

High hardness, high fracture toughness, and high thermal shock resistance are all characteristics of these composites. Even at temperatures as high as 800 °C, they retain their hardness.

Titanium: a carbide or not?

Given its combination of high hardness and wear endurance, titanium carbide (TiC) is widely utilized for cutting tools. One of the hardest natural carbides is this one.

To know more about the titanium carbide visit:

https://brainly.com/question/10521961

#SPJ1

What is the expected relative integration of multiplets in the 1H-NMR spectrum of 3-chloropentane?Cl|\/\/A. 1:2:2 B. 1:2:3 C. 1:5:5 D. 1:4:6

Answers

The expected relative integration of multiplets in the 1H-NMR spectrum of 3-chloropentane (Cl|\/\/A) would be 1:2:2, which is option A.

The expected relative integration of multiplets in the 1H-NMR spectrum of 3-chloropentane  would be 1:2:2.This is because there are three sets of protons in the molecule: the methyl group (1 proton), the methylene group adjacent to the chlorine (2 protons), and the methylene group further away from the chlorine (2 protons). The methyl group will appear as a singlet, while the two methylene groups will each appear as a multiplet with a 1:2:2 relative integration due to the coupling between the protons on adjacent carbons.

Learn more about NMR Spectrum : https://brainly.com/question/30583972

#SPJ11

If 27.0 mL of water containing 0.035 mol HCl is mixed with 28.0 mL of water containing 0.035 mol NaOH in a calorimeter such that the initial temperature of each solution was 24.0C and the final temperature of the mixture is 33.0 C, how much heat (in kJ) is released in the reaction? Assume that the densities of the solutions are 1.00 g/mL. (Volume is additive). O 3.2 kJ O 20.5 kJ O 2.1 kJ O 32 kJ

Answers

The heat released in the reaction is 2.1 kJ, and the correct answer is option C: 2.1 kJ.

What is the heat released?

To calculate the heat released in the reaction, we can use the equation:

q = m * C * ΔT

where:

q = heat released (in Joules)m = mass (in grams)C = specific heat capacity (in J/g°C)ΔT = change in temperature (in °C)

First, we need to calculate the total mass of the mixture. Since volume is additive, the total volume of the mixture is the sum of the volumes of water and it can be calculated as:

V_total = V_HCl + V_NaOH

where:

V_HCl = volume of HCl solution = 27.0 mLV_NaOH = volume of NaOH solution = 28.0 mLV_total = 27.0 mL + 28.0 mL = 55.0 mL

Next, we need to convert the volume from milliliters (mL) to grams (g), using the density of the solutions:

density = mass / volume

mass = density * volume

The density of water is 1.00 g/mL, so the mass of the water in the mixture is:

mass_water = density_water * V_total

mass_water = 1.00 g/mL * 55.0 mL

mass_water = 55.0 g

Now, we can calculate the heat released using the specific heat capacity of water, which is 4.18 J/g°C:

q = mass_water * C_water * ΔT

q = 55.0 g * 4.18 J/g°C * (33.0°C - 24.0°C)

q = 55.0 g * 4.18 J/g°C * 9.0°C

q = 2091.9 J

Finally, we can convert the heat from Joules to kilojoules by dividing by 1000:

q = 2091.9 J / 1000

q = 2.1 kJ

Learn more about heat energy here: https://brainly.com/question/7541718

#SPJ1

There are 17 key nutrients essential for bone health in the human body. The ideal intake of calcium is approximately 1.25 g per day. How many atoms of calcium are contained in 1.25 g of calcium?

Answers

Explanation:

6.02×10^23 atoms are present in 40g of Calcium

x atoms are present in 1.25g of Calcium

Therefore, x =

[tex](1.25 \times 6.02 \times {10}^{23}) \div 40[/tex]

x =

[tex]1.88 \times {10}^{22} [/tex]

Consider the following unbalanced chemical equation for the reaction which is used to determine blood alcohol levels:H1+ + Cr2O72− + C2H6O → Cr3+ + CO2 + H2OBalance the equation using the smallest whole number coefficients. What is the coefficient in front of carbon dioxide in the balanced chemical equation?2134

Answers

The coefficient in front of carbon dioxide in the balanced chemical equation is 3.

First, let's identify the atoms that are unbalanced in the equation: On the left side, we have:1 hydrogen atom (H)1 chromium atom (Cr)2 oxygen atoms (O)2 carbon atoms (C)On the right side, we have:1 chromium atom (Cr)1 carbon atom (C)3 oxygen atoms (O)2 hydrogen atoms (H)To balance the equation, we need to make sure that the number of each type of atom is the same on both sides. We can start by balancing the chromium atoms:H1+ + Cr2O72− + C2H6O → 2 Cr3+ + CO2 + H2O.

Now we have:2 chromium atoms (Cr) on both sides. Next, let's balance the oxygen atoms by adding coefficients to the reactants and products:H1+ + Cr2O72− + 3 C2H6O → 2 Cr3+ + 3 CO2 + 7 H2ONow we have:14 hydrogen atoms (H) on both sides2 chromium atoms (Cr) on both sides18 oxygen atoms (O) on both sides6 carbon atoms (C) on both sides. Therefore, the coefficient in front of carbon dioxide in the balanced chemical equation is 3.

Learn more about chemical equation here:https://brainly.com/question/26694427

#SPJ11

Iodine is very slightly soluble in water, but its solubility is so low that it is very difficult to see any concentration gradients. Yet it is very esy to determine experimentally that it must be at least slight soluble in water. Why is it so easy?

Answers

It is easy to determine experimentally that iodine is at least slightly soluble in water because iodine crystals produce a visible brown color when placed in water.

Why is it so easy  to determine experimentally that it must be at least slight soluble in water?

It is effortless to determine experimentally that iodine is at least somewhat soluble in water because iodine crystals produce a perceptible brown color when placed in water due to the formation of a small amount of iodine solution, even though the concentration is very low.

Iodine is a nonpolar molecule, which means it does not have a charge and is not attracted to the polar water molecules. As a result, the solubility of iodine in water is very low. However, iodine is easily detected because it is a dark purple color. Even at very low concentrations, the purple color of iodine is visible to the eye. This makes it easy to determine experimentally that iodine is at least slightly soluble in water, even though the concentration gradient is very small. Additionally, the solubility of iodine can be increased by adding iodide ions to the water, which react with iodine to form an iodide ion complex that is more soluble in water.

Learn more about iodine and its compounds here:

https://brainly.com/question/30957837

#SPJ1

It is easy to determine experimentally that iodine is at least slightly soluble in water because iodine crystals produce a visible brown color when placed in water.

Why is it so easy  to determine experimentally that it must be at least slight soluble in water?

It is effortless to determine experimentally that iodine is at least somewhat soluble in water because iodine crystals produce a perceptible brown color when placed in water due to the formation of a small amount of iodine solution, even though the concentration is very low.

Iodine is a nonpolar molecule, which means it does not have a charge and is not attracted to the polar water molecules. As a result, the solubility of iodine in water is very low. However, iodine is easily detected because it is a dark purple color. Even at very low concentrations, the purple color of iodine is visible to the eye. This makes it easy to determine experimentally that iodine is at least slightly soluble in water, even though the concentration gradient is very small. Additionally, the solubility of iodine can be increased by adding iodide ions to the water, which react with iodine to form an iodide ion complex that is more soluble in water.

Learn more about iodine and its compounds here:

https://brainly.com/question/30957837

#SPJ1

arrange these ions according to ionic radius ba2 cs i- te2- sb3-

Answers

The order of the ions according to their ionic radius is: Te²⁻ < Sb³⁻ < I⁻ < Cs < Ba²⁺

Ionic radius is determined by the size of the ion and the charge. Generally, when moving down a group in the periodic table, the ionic radius increases. In this case, we have: barium (Ba²⁺), cesium (Cs), iodide (I⁻), telluride (Te²⁻), and antimonide (Sb³⁻).

Since negative ions (anions) are larger than positive ions (cations) due to the additional electron(s) in their outer shell, Te²⁻, Sb³⁻, and I⁻ are larger than Ba²⁺ and Cs.

Among the anions, Te²⁻ has the smallest ionic radius because it's higher in the periodic table, followed by Sb³⁻, and then I⁻. For the cations, Cs has a larger ionic radius than Ba²⁺ because it is lower in the periodic table.

So, the order is: Te²⁻ < Sb³⁻ < I⁻ < Cs < Ba²⁺

To know more about ionic radius click on below link:

https://brainly.com/question/6637706#

#SPJ11

Other Questions
At the dairy 3 choc bars and 4 iceblocks cost $20, while 4 choc bars and 3 iceblocks cost $22.How much would 6 choc bars and 2 iceblocks cost?(A) $16(B) $18(C) $24(D) $26(E) $28 _____ doesn't directly identify a patient, but may contain some identifiers. a. De-identifies information b. A limited data set c. Standard health information d. A blind data what is the ph of a 0.124 m solution of barium hydroxide ba(oh)2 From this perspective, why might there be too few bank failures as the result of deposit insurance?A. Banks are prevented from taking on risks that might cause them to fail.B. Banks are so large now that they are too big to fail.C. Rather than let banks fail, the FDIC steps in to minimize the amount of money it will have to pay out.D.Conservative money management on the part of bank managers reduces the risk of failing. what is a direct and indirect source of particulate matter fad diets often exclude one food group such as most dietary carbohydrates or most dietary fat. which of the following reasons best describe why its not a good idea to drastically limit dietary carbohydrates lab scopes are being discussed. technician a says a lab scope can be used to measure resistance. technician b says that a lab scope can be used to measure frequency by dividing the length of a cycle into 1. who is correct? A survey showed that 31% of human resource professionals are at companies that rejected job candidates because ofinformation found on their social media. If 24 human resource professionals are randomly selected, would 13 be asignificantly high number to be at companies that rejected job candidates because of information found on theirsocial media? Why or why not? There is a 7% chance that a band's lead singer's voice isn't working due to illness on any given Saturday. This band has played 19 Saturday gigs so far this year, and at each of these the lead singer's voice has been fine. What is the probability that the lead singer's voice will be fine at the band's next Saturday gig, which is 2 weeks from now? Assume she never is sick for more than 6 consecutive days, and the interval between bouts of illness is inherently unpredictable. the standard deviation is used to describe what property of a set of scores?a. sample sizeb. variabilityc. frequency distributiond. reliability Mr. Hedges was tired one night and wrote the (awful, terrible, & atrocious) work below. Identifyhis error and correct the mistake:(Look in the picture) The volume of a triangular pyramid is 99 units 3 3 . If the base and height of the triangle that forms its base are 9 units and 6 units respectively, find the height of the pyramid. please help need to turn in now use integration in cylindrical coordinates in order to compute the volume of: u = {(x, y, z) : 0 z 36 x 2 y 2 } The sum of one positive number and the square of another equals to 30. Find the numbers so that their product is as large as possible. A 2 decimal answer or exact answer is ok. The maximal value of the product is: how much work must be done in order to double the plate separation with the plate disconnected Recently, six single-family homes in San Luis Obispo County in California sold at the following prices (in $1,000s): $662, $609, $834, $702, $741, $766. Use Table 2.a.Construct a 90% confidence interval for the mean sale price in San Luis Obispo County.(Round intermediate calculations to 4 decimal places, "sample mean" and "sample standard deviation" to 2 decimal places and "t" value to 3 decimal places, and final answers to 2 decimal places.) How many singly-linked Node objects could the Java Virtual Machine mark as "garbage" after all the following statements have executed? Node n = null; n = new Node("T"); n.next = new Node("I", new Node("G")); Node m- n.next.next; m.next = new Node ("E", new Node ("R")); null; A. 2 B. 3 C. 4 D. 5 O B O D Starting from the core of the Sun and going outward, the temperature decreases. Yet, above the photosphere, the temperature increases. How can this be?A. Sunspots cause lower temperature gases to sink into the Sun and only the high temperature particles remain.B. The particles in the chromosphere and corona can get to high velocities and therefore have high temperatures.C. The high density of the photosphere increase the temperatures of the particles within it.D. Convection on the surface of the Sun release energy into the photosphere. Calculate total volumes :H2 at 400 atm and 25c SO2 at 2 atm and 0 k ar at stp N2 at 1 atm and -70c CO at 200 atm and 25c