Find the coordinates of the midpoint of PQ with endpoints P(-5, -1) and Q(-7, 3).
O (-6, 1)
O (-1,-4)
O (6, 1)
O (-12, 2)

Answers

Answer 1

Answer:

(-6, 1)

Step-by-step explanation:

((-5) + (-7))/2 = -6

((-1) + 3)/2 = 1

so the answer is (-6, 1)

Answer 2
The answer is (-6,1)

Related Questions

help plssssssssssssssssss

Answers

Answer:

35x + 14

Step-by-step explanation:

multiply in the brackets

5x × 7 = 35x

(+)2 × 7 = (+)14

It takes Jada 20 minutes to walk to school. It takes Andre 80 percentage as long to walk to school.How long does it take Andre to walk to school?

Answers

Answer:

16 minutes

Step-by-step explanation:

multiply 20 by 80% (20 times .80)

4) In addition to using graphs, you should also be able to use a table to determine values in an equation. Fill in the following table based on your equation in question three defined the cost for these amount of loaves of bread that you buy.

(Equation is question 3 is y=1.60x+0)

5) where would you break even? In other words, how many loaves of bread would you need to buy where it would be the same cost to make those loaves of bread yourself? Look for the intersection of the two equations when you graph them on desmos.
How much would it cost to buy that many loaves of bread?

6) Give three advantages and three disadvantages to buying a bread maker. Would you choose to buy the bread maker or not? How did you make your decision?

Answers

It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.

Linear equation

A linear equation is in the form:

y = mx + b

where y, x are variables, m is the rate of change and b is the y intercept.

Let x represent the rate of cost of one loaf and y represent the total cost, hence:

y = 0.8x + 100

The rate of cost of one loaf is $0.8 and the start up cost is $100.

For the second bread it is given by:

y = 1.6x

For both cost to be the same:

1.6x = 0.8x + 100

x = 125

a = 1.6(4) = $6.4

b = 1.6(8) = $12.8

c = 1.6(12) = $19.2

It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.

Find out more on Linear equation at: https://brainly.com/question/13763238

Kiran wrote the expression x−10 for this number puzzle: “Pick a number, add -2, and multiply by 5.”
Lin thinks Kiran made a mistake.
How can she convince Kiran he made a mistake?
What would be a correct expression for this number puzzle?

Answers

Step-by-step explanation:

the number is represented by x. you need to add -2 first then multiply by 5.

thus, the correct expression will be:

( x + -2) *5 = (x-2) *5 = 5(x-2)

for e.g, let x be 3.

acc to the puzzle,

3+-2 = 3-2=1

1*5= 5

using Kiran's expression:

x-10; 3-10= -7

here you can see the answer is wrong.

using the "correct expression" :

5(x-2) = 5( 3-2)

= 5(1)

= 5.

hope this helped you!

-s.

The radius of a circle is 4 inches. How would you calculate the circumference?
A. π · 4² in.²
B. 2 · π· 4 in.
C. π · 8² in.²
D. 2· π · 8 in.

Answers

Step-by-step explanation:

the formula for the circumference of a circle is

2×pi×r

so, B is correct : 2×pi×4 in

b) 2 · π· 4 in.

Circumference of a circle: 2 • π • r

B. 2 · π· 4 in.

find the smallest possible value of n for which 99n is multiple of 24​

Answers

Answer:

99 is not multiple of 24 you will get it wrong if you think it is

Step-by-step explanation:

Answer:

The answer is 8.

what is the wavelength of a wave that has a frequency of 15 Hz and a speed of 2 m/s?​

Answers

Wavelength=speed/frequency

=2/15

=0.1333 m

PLEASE HELP ASAP! I am so confused by this for some reason.

Answers

Answer:  9637

=====================================================

Explanation:

You can use your calculator to make short work of this problem. Simply plot the parabola and use the "minimum" feature on the calculator to spot the lowest point (specifically the coordinates of that point).

However, I have a feeling your teacher wants you to use a bit of math here. So I'll focus on another approach instead.

---------

The parabolic equation is of the form y = ax^2+bx+c

In this case, we have

a = 0.3b = -192c = 40357

Use the values of 'a' and b to find the x coordinate of the vertex h

h = -b/(2a)

h = -(-192)/(2*0.3)

h = 320

The x coordinate of the vertex is 320.

Plug this into the original equation to find the y coordinate of the vertex.

y = 0.3x^2 - 192x + 40357

y = 0.3(320)^2 - 192(320) + 40357

y = 9637 which is the minimum unit cost, in dollars.

The vertex is (h,k) = (320, 9637). It is the lowest point on this parabola.

Interpretation: If the company made 320 cars, then the unit cost (aka cost per car) is the smallest at $9637 per car.

6.Name two streets that intersect.

7.Name two streets that are parallel

Answers

Answer:

6.Elm and Oak intersect

7.Birch and Maple are parallel

Step-by-step explanation:

If Elm and Oak continue, they will intersect with each other

Birch and Maple have same distance consistently between them



Find the area and circumference of this circle. Write your answer correct to the nearest hundredth

Answers

Answer:

Step-by-step explanation:

So we have that the diameter is 30, meaning the radius is 15.

Area: [tex]A=\pi r^{2}=\pi \cdot 15^{2}=225\pi \approx 706.86[/tex]

Circumference: [tex]C=2\pi r=2\pi \cdot 15 = 30\pi \approx 94.25[/tex]

PLEASE HELP I'LL DO ANYTHING


Simplify the expression

1/5 (5x + 9) + 4/5 (1 - 9x)​

Answers

Step-by-step explanation:

Use the Distributive Property:

[tex]1/5(5x+9)+4/5(1-9x)[/tex]

[tex]x+1.8+4/5-7.2x[/tex]

Combine Like-Terms:

[tex]-6.2x+2.6[/tex]

(1−x21​)5)=?
can someone help me ​

Answers

Answer:

answer is 105 hope u like it

This shows two functions.
f(x)=5x-7
g(x)=x+4
which function represents
h(x) = f(x) ⋅ g(x)

Answers

Answer:

its c just so u know

Step-by-step explanation:

The perimeter of a regular octagon is 96 mm. How long each side?

Answers

Answer:

12

Step-by-step explanation:

regular implies that all sides are equal
8 sides
total of 96
96/8
12

Calculus AB Homework, does anyone know how to do this...

Answers

(a) f(x) is continuous at x = 1 if the limits of f(x) from either side of x = 1 both exist and are equal:

[tex]\displaystyle \lim_{x\to1^-}f(x) = \lim_{x\to1} (2x-x^2) = 1[/tex]

[tex]\displaystyle \lim_{x\to1^+}f(x) = \lim_{x\to1} (x^2+kx+p) = 1 + k + p[/tex]

So we must have 1 + k + p = 1, or k + p = 0.

f(x) is differentiable at x = 1 if the derivative at x = 1 exists; in order for the derivative to exist, the following one-sided limits must also exist and be equal:

[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1^+}f'(x)[/tex]

Note that the derivative of each piece computed here only exists on the given open-ended domain - we don't know for sure that the derivative *does* exist at x = 1 just yet:

[tex]f(x) = \begin{cases}2x-x^2 & \text{for }x\le1 \\ x^2+kx+p & \text{for }x>1\end{cases} \implies f'(x) = \begin{cases}2 - 2x & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2x + k & \text{for }x > 1 \end{cases}[/tex]

Compute the one-sided limits of f '(x) :

[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1} (2 - 2x) = 0[/tex]

[tex]\displaystyle \lim_{x\to1^+}f'(x) = \lim_{x\to1} (2x+k) = 2 + k[/tex]

So if f '(1) exists, we must have 2 + k = 0, or k = -2, which in turn means p = 2, and these values tell us that we have f '(1) = 0.

(b) Find the critical points of f(x), where its derivative vanishes. We know that f '(1) = 0. To assess whether this is a turning point of f(x), we check the sign of f '(x) to the left and right of x = 1.

• When e.g. x = 0, we have f '(0) = 2 - 2•0 = 2 > 0

• When e.g. x = 2, we have f '(2) = 2•2 - 2 = 2 > 0

The sign of f '(x) doesn't change as we pass over x = 1, so this critical point is not a turning point. However, since f '(x) is positive to the left and right of x = 1, this means that f(x) is increasing on (-∞, 1) and (1, ∞).

(c) The graph of f(x) has possible inflection points wherever f ''(x) = 0 or is non-existent. Differentiating f '(x), we get

[tex]f'(x) = \begin{cases}2-2x & \text{for }x<1 \\ 0 & \text{for }x=1 \\ 2x+k & \text{for }x>1\end{cases} \implies f''(x) = \begin{cases}- 2 & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2 & \text{for }x > 1 \end{cases}[/tex]

Clearly f ''(x) ≠ 0 if x < 1 or if x > 1.

It is also impossible to choose a value of f ''(1) that makes f ''(x) continuous, or equivalently that makes f(x) twice-differentiable. In short, f ''(1) does not exist, so we have a single potential inflection point at x = 1.

From the above, we know that f ''(x) < 0 for x < 1, and f ''(x) > 0 for x > 1. This indicates a change in the concavity of f(x), which means x = 1 is the only inflection point.

What is the value of triangle?

Answers

Answer:

the area of the triangle is 36

Section 8.1 Introduction to the Laplace Transforms

Problem 1.
Find the Laplace transforms of the following functions by evaluating the integral
[tex]F(s) = {∫}^{ \infty } _{0} {e}^{ - st} f(t)dt[/tex]
[tex](a)t[/tex]
[tex](b) {te}^{ - t} [/tex]
[tex](c) {sinh} \: bt[/tex]
[tex](d) {e}^{2t} - {3e}^{t} [/tex]
[tex](e) {t}^{2} [/tex]

Answers

For the integrals in (a), (b), and (e), you'll end up integrating by parts.

(a)

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt[/tex]

Let

[tex]u = t \implies du = dt[/tex]

[tex]dv = e^{-st} \, dt \implies v = -\dfrac1s e^{-st}[/tex]

Then

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = uv\bigg|_{t=0}^{t\to\infty} - \int_0^\infty v\, du[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = \left(-\frac1s te^{-st}\right)\bigg|_0^\infty + \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1s \left(\lim_{t\to\infty} te^{-st} - 0\right) + \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = \frac1s \int_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1{s^2} e^{-st} \bigg|_0^\infty e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-st} \, dt = -\frac1{s^2} \left(\lim_{t\to\infty}e^{-st} - 1\right) = \boxed{\frac1{s^2}}[/tex]

(b)

[tex]\displaystyle \int_0^\infty t e^{-t} e^{-st} \, dt = \int_0^\infty t e^{-(s+1)t} \, dt[/tex]

Let

[tex]u = t \implies du = dt[/tex]

[tex]dv = e^{-(s+1)t} \, dt \implies v = -\dfrac1{s+1} e^{-(s+1)}t[/tex]

Then

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\dfrac1{s+1} te^{-(s+1)t} \bigg|_0^\infty + \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\dfrac1{s+1} \left(\lim_{t\to\infty}te^{-(s+1)t} - 0\right) + \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = \frac1{s+1} \int_0^\infty e^{-(s+1)t} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\frac1{(s+1)^2} e^{-(s+1)t} \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty t e^{-(s+1)t} \, dt = -\frac1{(s+1)^2} \left(\lim_{t\to\infty}e^{-(s+1)t} - 1\right) = \boxed{\frac1{(s+1)^2}}[/tex]

(e)

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt[/tex]

Let

[tex]u = t^2 \implies du = 2t \, dt[/tex]

[tex]dv = e^{-st} \, dt \implies v = -\dfrac1s e^{-st}[/tex]

Then

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = -\frac1s t^2 e^{-st} \bigg|_0^\infty + \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = -\frac1s \left(\lim_{t\to\infty} t^2 e^{-st} - 0\right) + \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = \frac2s \int_0^\infty t e^{-st} \, dt[/tex]

The remaining integral is the transform we found in (a), so

[tex]\displaystyle \int_0^\infty t^2 e^{-st} \, dt = \frac2s \times \frac1{s^2} = \boxed{\frac2{s^3}}[/tex]

Computing the integrals in (c) and (d) is much more immediate.

(c)

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \int_0^\infty \frac{e^{bt}-e^{-bt}}2 \times e^{-st} \, dt[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \int_0^\infty \left(e^{(b-s)t} - e^{(b+s)t}\right) \, dt[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left(\frac1{b-s} e^{(b-s)t} - \frac1{b+s} e^{(b+s)t}\right) \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left[\lim_{t\to\infty}\left(\frac1{b-s} e^{(b-s)t} - \frac1{b+s} e^{(b+s)t}\right) - \left(\frac1{b-s} - \frac1{b+s}\right)\right][/tex]

[tex]\displaystyle \int_0^\infty \sinh(bt) e^{-st} \, dt = \frac12 \left(\frac1{b+s} - \frac1{b-s}\right) = \boxed{\frac{s}{s^2-b^2}}[/tex]

(d)

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \int_0^\infty \left(e^{(2-s)t} - 3e^{(1-s)t}\right) \, dt[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \left( \frac1{2-s} e^{(2-s)t} - \frac3{1-s} e^{(1-s)t} \right) \bigg|_0^\infty[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \lim_{t\to\infty} \left( \frac1{2-s} e^{(2-s)t} - \frac3{1-s} e^{(1-s)t} \right) - \left( \frac1{2-s} - \frac3{1-s} \right)[/tex]

[tex]\displaystyle \int_0^\infty (e^{2t} - 3e^t) e^{-st} \, dt = \frac3{1-s} - \frac1{2-s} = \boxed{-\frac{2s-5}{s^2-3s+2}}[/tex]

Consider five circles with radii of 1, 2, 4, 8, and 16 inches.

a. Complete the table.
b. Compare the areas and circumferences. What happens to the circumference of a circle when you double the radius? What happens to the area?
c. What happens when you triple the radius?

Please answer all questions or just the table, because I need help. Thanx!

Answers

Answer:

a) 2. 4pi (in) , 4pi  

  3. 8pi , 16pi

  4. 16pi, 64pi

  5. 32 pi  ,  256pi

Step-by-step explanation:

b) when radius increase , the areas and circumferences increase to

circumference = 2 pi * radius ; so if you double the radius , circumference will be double

area = pi * radius * radius ; if you double the radius , area will be 2^2 or 4 times

c) circumference will be triple and

area will be 3^2 or 9 times

How do you solve -8>v-3?

Answers

Answer:

v < -5

Step-by-step explanation:

Add 3 to both sides. This gives -8+(-3)>v-3+3, or -5>v. Rewriting the inequality gives v < -5.


Is anybody able to help me with this?

Answers

Answer:

Step-by-step explanation:

9. Suppose you are comparing frequency data for two different
groups, 25 managers and 150 blue collar workers. Why would a
relative frequency distribution be better than a frequency
distribution?
ents

Answers

Answer:

A relative frequency distribution is better for comparison between groups whose numbers are different, since ratios are readily comparable.

Step-by-step explanation:

Jeff is buying books at a used bookstore he wants to approximate the total cost of his purchase before checking out which amount is the most reasonable approximation of the total price of the five books

Answers

Answer:

$35.00

Step-by-step explanation:

I just did it rn

which systems have infinite solution? check all that apply
A. y = 0.5x + 2.75 and 2y = x + 2.75
B. y = 0.5x + 2.75 and y - 0.5x = 2.75
C. y = 0.5x + 2.75 and 0.5x + y = 2.75
D. y = 0.5x + 2.75 and y = 0.5(x + 5.5)
E. y = 0.5x + 2.75 and y = -2(-0.25x) + 2.75​

Answers

Answer:

B

Step-by-step explanation:

Answer:

Ok got it

Step-by-step explanation:

the answers are y = 0.5x + 2.75 and y – 0.5x = 2.75

y = 0.5x + 2.75 and y = 0.5(x + 5.5)

y = 0.5x + 2.75 and y = –2(–0.25x )+ 2.75

Using the net below, find the surface area
of the rectangular prism.
7 cm
3 cm
7 cm
5 cm
5 cm
3 cm
3 cm
3 cm
Surface Area

Answers

Answer:

the surface area of the rectangular prism is 142cm³

Step-by-step explanation:

35+15+21+21+35+15

There are 380 light bulbs lined up in a row in a long room.
Each bulb has its own switch and is currently switched off.
Each bulb is numbered consecutively from 1 to 380. You
first flip every switch. You then flip the switch on every
second bulb(turning off 2, 4,6...). You then flip the switch
on every third bulb (3, 6, 9...). This continues until you
have gone through the process 380 times.

Answers

Bulb 2 was activated 760 times throughout the process.

How to calculate how many times light bulb #2 was activated?

To calculate how many times light bulb #2 was activated, we must identify how many times it is activated in each process.

Based on the information provided, bulb two has the following activity.

Power on oncePower off once

According to the above, bulb #2 is activated 2 times each process. So to know how many times it is activated in total, we must multiply the number of times it is activated in each process by the total number of processes (380).

380 × 2 = 760

Note: This question is incomplete because the question is missing. Here is the question:

After repeating this process 380 times, how many times was light bulb 2 activated?

Learn more about light bubs in: https://brainly.com/question/4723473

please answer with explanation​

Answers

Answer:

The length of the other diagonal is 42 cm.

Step-by-step explanation:

Area of Rhombus = 966 cm^2 (squared)

one length of diagonal(d2) =46cm

The are of rhombus= d1 x d2/2  

*substitution from equation above* = 966= 46 x d2/2 *plug answer in* :  966=23 x d2  *divide next*

d2=966/23

d2=42cm

I don't know if that makes sense hopefully it helps.

Does anyone know the answer to this question?

Answers

Answer:

4

Step-by-step explanation:

You can set up the equation as 5x-3=2x+9. Subtract 2x from both sides, then add three to both sides which gives you 3x=12. Divide both sides by 3, and you get x=4.

HELP PLS - ITS DUE TMR

Answers

The first one is 68 and the second one is 360

Find the difference between 3x+5 and 10x-4.

Answers

Answer:

7x+9

Step-by-step explanation:

10x- 3x=7x

5--4=9

so you just bring them together so 7x+9

Help with math?Please? ANYONE

Answers

Answer:

(-1, 1)

Step-by-step explanation:

Hi there!

We want to solve the system of equations given as:
2x-3y=-5

3x+y=-2

Let's solve this equation by substitution, where we will set one variable equal to an expression containing the other variable, substitute the expression as the variable that it equals, solve for the other variable (the variable that the expression contains), and then use the value of the solved variable to find the value of the first variable
In the second equation, we have y by itself; therefore, if we subtract 3x from both sides, then we will get an expression that y is equal to.

So subtract 3x from both sides

y=-3x-2

Now substitute -3x-2 as y in the first equation.
It will look something like this:

2x - 3(-3x-2)=-5

Now do the distributive property.

2x+9x+6=-5

Combine like terms

11x+6=-5

Subtract 6 from both sides

11x=-11

Divide both sides by 11

x=-1

Now substitute -1 as x in the equation y=-3x-2 to solve for y:

y=-3(-1)-2

multiply

y=3-2

Subtract

y=1

The answer is x=-1, y=1; this can also be written as an ordered pair, which would be (-1, 1)
Hope this helps!
If you would like to see another problem for additional practice, take a look here: https://brainly.com/question/19212538

[tex]\begin{cases} 2x-3y=-5\\ 3x+y=-2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 2x-3y=-5\implies 2x=3y-5\implies x=\cfrac{3y-5}{2} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{substituting on the 2nd equation}}{3\left( \cfrac{3y-5}{2} \right)+y=-2}\implies \cfrac{3(3y-5)}{2}+y=-2 \\\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2\left( \cfrac{3(3y-5)}{2}+y \right)}=2(-2)\implies 3(3y-5)+2y=-4 \\\\\\ 9y-15+2y=-4\implies 11y-15=-4\implies 11y=11[/tex]

[tex]y=\cfrac{11}{11}\implies \blacktriangleright y=1 \blacktriangleleft \\\\\\ \stackrel{\textit{since we know that}}{x=\cfrac{3y-5}{2}}\implies x=\cfrac{3(1)-5}{2}\implies x=\cfrac{-2}{2}\implies \blacktriangleright x=-1 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (-1~~,~~1)~\hfill[/tex]

Other Questions
Complete the following:Multiply these numbers the quickest and easiest way possible: 87 x 5 x 2 Explain how you were able to quickly determine the product. Justify your reasoning using a property of multiplication. When exercise increases, so does the breathing rate. This helps return the person to homeostasis. An image of an alveolus, a microscopic part of the lung, is shown here. What describes how increased breathing helps return the individual to homeostasis?1. Increased breathing rate allows for more oxygen gas to diffuse into the bloodstream, which can be delivered to muscle cells.2. Increased breathing rate increases the conversion of carbon dioxide into glucose, which can be used to provide energy to the heart. 3. Increased breathing rate allows for faster active transport of glucose into the blood, which can be used to energize the muscle cells. 4. Increased breathing rate allows for more carbon dioxide to be moved into the bloodstream via facilitated diffusion, which can be delivered to the heart, which is beating faster. civil rights flocabulary? What does it mean when we say that Unity handles terrain natively, and how can that assist in game development? Are these triangles congruent?A. Yes, Angle B Equals Angle F.B. Yes, Side BC Equals Side FD.C. Yes, All Corresponding Sides And Angles Are Equal.D. No, No Corresponding Sides And Angles Are Equal. Please Hurry, I'm timed. 30 Points And Will Give Brainlist. A researcher using factor analysis to identify basic traits is likely to favor the ________ approach. FIVE ADAPTATIONS OF AN ELEPHANT IS SCIENCE Can anyone help me on this The solutions to a certain quadratic equation are x= -4 and X = 3. Write the equation in standard form below.[blank] +x [blank] [blank] = 0 8.15 = e + 6Solving one step equations Addition and subtraction Please help me simplify both of these. GIVING BRAINLIEST FOR BEST ANSWER!Solve two and one third times two and three fourths.A) Four and three twelfthsB) Six and five twelfthsC) Seven and five twelfthsD) Eight and three twelfths Make a conjecture about what happens when expressions are subtracted in the opposite order. What happens when the results are added? Support your conjecture with an example in which several of the signs are negative. Help pls asap so confused PLS Which statement describes the Security Council of the United Nations?It requires two-thirds of members to agree on decisions.It has five permanent members and ten rotating members.It contains representatives from every member nation.It gives veto power over policies to all council members. a. tipping fees (cost per ton to dispose of garbage at the landfill or waste-to-energy plant) in Osceola A flask that weighs 345.8 g is filled with 225 ml of carbon tetrachloride. The weight of the flask and carbon tetrachloride is found to be 703.55g. Calculate the density in g/ml and g/L. What phase is shown in the picture? Which of the following information is not provided in most dictionaries?a. syllablesb. frequency of usec. guide to pronunciationd. part of speeche. synonyms THIS IS DUE IN 5 MINUTES!!!!!!!!!!! I NEEED THIS ASAP! A 13 3/4 -inch candle burns down in 11 hours. If b represents how much of the candle, in inches, has burned away at any time given in hours, t, write a proportional equation for b in terms of t that matches the context.