Fiber optics are an important part of our modern internet. In these fibers, two different glasses are used to confine the light by total internal reflection at the critical angle for the interface between the core (n core ​
=1.519) and the cladding (n cladding ​
=1.429). A 50% Part (a) Numerically, what is the largest angle (in degrees) a ray will make with respect to the interface internal reflection? θ max

= Hints: deduction per hint. Hints remaining: 2

deduction per feedback. (4 50% Part (b) Suppose you wanted the largest angle at which total internal reflection occurred to be θ max ​
=5 (6\%) Problem 6: Suppose a 200-mm focal length telephoto lens is being used to photograph mountains 9.5 km away. ( 50% Part (a) What is image distance, in meters, for this lens? d i

= \begin{tabular}{llll} \hline Hints: deduction per hint. Hints remaining: 1 & Feedback: \end{tabular}

Answers

Answer 1

This makes the critical angle 5 degrees. To prove this, we use the same formula:sinθc = n2/n1sin(5) = 1.054/1.519θc = 5 degrees

Fiber optics are an important part of our modern internet. In these fibers, two different glasses are used to confine the light by total internal reflection at the critical angle for the interface between the core (ncore=1.519) and the cladding (ncladding=1.429).A 50%Part

(a) Numerically, what is the largest angle (in degrees) a ray will make with respect to the interface internal reflection? θmax=In order to determine the angle that a ray will make with respect to the interface internal reflection, we use Snell's Law: n1sinθ1 = n2sinθ2

where:n1 is the refractive index of the medium the ray is coming fromθ1 is the angle of incidence measured from the normaln2 is the refractive index of the medium the ray is enteringθ2 is the angle of refraction measured from the normalWhen light travels from a medium of a higher refractive index to one of a lower refractive index (i.e. from the core to the cladding),

the angle of refraction is larger than the angle of incidence; that is, the ray is refracted away from the normal. At the critical angle, however, the angle of refraction is 90 degrees. Thus, sinθ2 = 1. Setting sinθ1 = n2/n1, we get the critical angle formula:sinθc = n2/n1θc = sin^(-1)(n2/n1)

The maximum angle a ray will make with respect to the interface internal reflection will be the complement of the critical angle:θmax = 90 - θc = 90 - sin^(-1)(n2/n1) = 90 - sin^(-1)(1.429/1.519) = 42.45 degrees50%Part (b) Suppose you wanted the largest angle at which total internal reflection occurred to be θmax=5°. You could achieve this by decreasing the refractive index of the cladding to ncladding = 1.054.

This makes the critical angle 5 degrees. To prove this, we use the same formula:sinθc = n2/n1sin(5) = 1.054/1.519θc = 5 degrees

to know more about critical

https://brainly.com/question/24281057

#SPJ11


Related Questions

The origins of two frames coincide at t = t' = 0 and the relative speed is 0.996c. Two micrometeorites collide at coordinates x = 101 km and t = 157 μs according to an observer in frame S. What are the (a) spatial and (b) temporal coordinate of the collision according to an observer in frame S’? (a) Number ___________ Units _______________
(b) Number ___________ Units _______________

Answers

The origins of two frames coincide at t = t' = 0 and the relative speed is 0.996c.

Two micrometeorites collide at coordinates x = 101 km and t = 157 μs according to an observer in frame S. We need to find the spatial and temporal coordinate of the collision according to an observer in frame S'.

x = 101 km, t = 157 μs

According to the observer in frame S', the relative velocity of frame S with respect to frame S' is u = v = 0.996c.

Let us apply the Lorentz transformation to the given values.

Lorentz transformation of length is given by, L' = L-√(1-u^2/c^2) Here, L = 101 km and u = 0.996c. We know that, c = 3 × 10^8 m/s.

Lorentz transformation of time is given by, T' = T-uX*c^2√(1-u^2/c^2)

Here, T = 157 μs, X = 101 km and u = 0.996c. We know that, c = 3 × 10^8 m/s.

Now, substituting the values in the above equations: L'=33.89 km

Hence, the spatial coordinate of the collision according to an observer in frame S' is 33.89 km.

The temporal coordinate of the collision according to an observer in frame S' is given by, T' = T-uX*c^2√1-u^2*c^2

Substituting the values of T, X and u, we get T' = -92.14μs

Hence, the temporal coordinate of the collision according to an observer in frame S' is -92.14 μs.

Learn further about related topics: https://brainly.com/question/31072444

#SPJ11

A wheel rotates with a constant angular acceleration of 3.50rad/s 2
. A) If the angular speed of the wheel is 2.00rad/s at t i

=0, through what angular displacement does the wheel rotate in 2.00 s ? B) What is the angular speed of the wheel at t=2.00 s ?

Answers

A wheel has a constant angular acceleration of 3.50 rad/s². The wheel rotates through an angular displacement of 8.00 radians in 2.00 seconds. The angular speed is ω = 8.00 rad/s.

A) To calculate the angular displacement of the wheel in 2.00 seconds, we can use the formula θ = ωi * t + (1/2) * α * t², where θ is the angular displacement, ωi is the initial angular speed, α is the angular acceleration, and t is the time. Substituting the given values into the formula, we have θ = (2.00 rad/s) * (2.00 s) + (1/2) * (3.50 rad/s²) * (2.00 s)². Evaluating this expression gives θ = 8.00 rad. Therefore, the wheel rotates through an angular displacement of 8.00 radians in 2.00 seconds.

B) To find the angular speed of the wheel at t = 2.00 seconds, we can use the formula ω = ωi + α * t, where ω is the angular speed at a given time. Substituting the values into the formula, we have ω = (2.00 rad/s) + (3.50 rad/s²) * (2.00 s). Calculating this expression gives ω = 8.00 rad/s.

Learn more about displacement here:

https://brainly.com/question/11934397

#SPJ11

Thin Lenses: A concave lens will O focalize light rays O reticulate light rays diverge light rays converge light rays

Answers

A concave lens will diverge light rays.

A concave lens is a thin lens that is thinner at the center than at the edges. When light rays pass through a concave lens, they are refracted or bent away from the principal axis of the lens. This bending of light causes the light rays to diverge or spread apart.

Unlike a convex lens, which converges light rays to a focal point, a concave lens disperses light rays. The diverging effect of a concave lens is due to the fact that the center of the lens is thinner than the edges, causing the light rays to bend away from each other.

This phenomenon is known as negative or diverging refraction. As a result, parallel light rays passing through a concave lens will spread out and appear to originate from a virtual point on the same side of the lens as the object. This point is called the virtual focal point.

The ability of a concave lens to diverge light rays makes it useful in correcting certain vision problems. For example, concave lenses are commonly used to correct nearsightedness (myopia), where the light rays converge before reaching the retina.

By adding a concave lens in front of the eye, the light rays are spread out, allowing them to focus properly on the retina.

Learn more about lens here ;

https://brainly.com/question/29834071

#SPJ11

Your friend is a new driver in your car practicing in an empty parking lot. She is driving clockwise in a large circle at a constan speed. Is the car traveling with a constant velocity or is it accelerating?: Since the car is changing direction as it travels around the circle, it has a centripetal acceleration and does not have a constant velocity. The car has a constant speed, so the velocity is constant and there is no acceleration.

Answers

Centripetal acceleration, which points towards the center of the circle, is responsible for this change in direction. Thus, while the car is traveling at a constant speed, it is still accelerating since the direction of its velocity is constantly changing.

The car has a centripetal acceleration and does not have a constant velocity. Although the car is traveling with a constant speed, it is still accelerating.What is acceleration?Acceleration refers to the rate of change of velocity. Acceleration may be either positive or negative. When an object speeds up, it has positive acceleration.

When an object slows down, it has negative acceleration, which is also known as deceleration. When an object changes direction, it experiences acceleration.A car driving in a circle at a constant speed is an example of uniform circular motion.

The car's direction is constantly changing since it is moving in a circular path. As a result, the car's velocity is constantly changing even if its speed is constant.

Centripetal acceleration, which points towards the center of the circle, is responsible for this change in direction.

Thus, while the car is traveling at a constant speed, it is still accelerating since the direction of its velocity is constantly changing.

to know more about Centripetal

https://brainly.com/question/898360

#SPJ11

3.A ball of mass 0.8 Kg is dragged in the upward direction on an
inclined plane.Calculate the potential energy gained by this ball
at a height of the wedge of 0.2 meter.
please help. thank u

Answers

The potential energy gained by the ball at a height of wedge of 0.2 meter is 1.57 Joules.

What is potential energy?

Potential energy is the energy gained by the object by virtue of it's position or configuration.

For example water water stored in a dam or a bend scale certainly has some potential energy.  

The potential energy gained by the ball of mass 0.8 Kg at a height of the wedge of 0.2 meter can be calculated using the formula given below:

Potential energy (P.E) = mass of object x acceleration due to gravity x height of the object

PE= mgh

Here, m = 0.8 kg, g = 9.8 m/s² and h = 0.2 m.

So, substituting these values in the above formula, we get the potential energy gained by the ball at a height of the wedge of 0.2 meter.

PE = 0.8 x 9.8 x 0.2

PE = 1.568 Joules

Therefore, the potential energy gained by the ball of mass 0.8 Kg at a height of the wedge of 0.2 meter is 1.568 Joules.

learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ11

That is when the aliens shined light onto their double slit and shouted "Wahahaha, the pattern through this double slit has both double-slit and single-slit effects! You will be tempted to calculate the relationship between the slit width a and slit separation d! While you do that, we are going to attack you, hehehehe!!" They were right, as soon as you saw that the second diffraction minimum coincided with the 14th double-slit maximum, you couldn't think about anything else. What is the relationship between a (slit width) and d (slit separation)? 1 d = 14 a = Od = 7a Od = a/14 d = a/7

Answers

in the given scenario, the relationship between the slit width (a) and the slit separation (d) is determined to be d = a/7, based on the coincidence of the second diffraction minimum with the 14th double-slit maximum.

The double-slit experiment involves passing light through two parallel slits and observing the resulting interference pattern. The pattern consists of alternating bright and dark fringes. The bright fringes correspond to constructive interference, while the dark fringes correspond to destructive interference.

In this case, the second diffraction minimum coincides with the 14th double-slit maximum. The diffraction minimum occurs when the path lengths from the two slits to a particular point differ by half a wavelength, resulting in destructive interference.The double-slit maximum occurs when the path lengths are equal, leading to constructive interference.Since the second diffraction minimum corresponds to the 14th double-slit maximum, we can conclude that the path length difference for the second diffraction minimum is equal to 14 times the wavelength.

The path length difference can be expressed as d*sin(θ), where d is the slit separation and θ is the angle of deviation. For small angles, sin(θ) is approximately equal to θ in radians.Therefore, we have d*sin(θ) = 14λ, where λ is the wavelength of light.Assuming the angle of deviation is small, we can approximate sin(θ) as θ.

Thus, we have d*θ = 14λ.For a small angle, θ can be related to a and d using the small angle approximation: θ ≈ a/d.Substituting this into the previous equation, we get d*(a/d) = 14λ.The d cancels out, resulting in a = 14λ.Therefore, the relationship between the slit width (a) and the slit separation (d) is d = a/7.

Learn more about diffraction here:

https://brainly.com/question/12290582

#SPJ11

Two crates, of mass m1m1 = 64 kgkg and m2m2 = 123 kgkg , are in contact and at rest on a horizontal surface. A 700 NNforce is exerted on the 64 kgkg crate.
I need help with question c and d
c) Repeat part A with the crates reversed.
d) Repeat part B with the crates reversed.
part a and b ---> If the coefficient of kinetic friction is 0.20, calculate the acceleration of the system. = 1.8 m/s^2
Calculate the force that each crate exerts on the other. = 460 N

Answers

part(c) Hence, the acceleration of the system is 3.74 m/s². part(d) Hence, the force that each crate exerts on the other is 119.2 N.

Part (c): If we reverse the crates, that is, if 123 kg mass crate comes in contact with 64 kg mass crate and a force of 700 N is applied on 123 kg crate,

Then the acceleration can be calculated as follows: We need to find the acceleration of the system, which can be calculated using the formula, Total force, F = ma

Where, F = 700 N (force applied on the system)m = m1 + m2 = 64 kg + 123 kg = 187 kg a = acceleration of the system

Hence, the acceleration of the system is 3.74 m/s²

Part (d): If we reverse the crates, then the force that each crate exerts on the other can be calculated as follows:

Let us assume that f is the force that each crate exerts on the other. Then, f is given by:

From the free-body diagram of the 64 kg crate, we have:fn1 = Normal force exerted by the surface on the 64 kg cratefr1 = force of friction acting on the 64 kg crate due to contact with the surface

From the free-body diagram of the 123 kg crate, we have:fn2 = Normal force exerted by the surface on the 123 kg cratefr2 = force of friction acting on the 123 kg crate due to contact with the surface.

Then we have the equations: For the 64 kg crate,fn1 - f = m1 * a ... (1)where a is the acceleration of the system.

As we have calculated a in part (a), we can substitute the value of a into the equation and solve for f.

For the 123 kg crate,fn2 + f = m2 * a ... (2)From equation (2), we have, f = (m2 * a - fn2)

From equation (1), we have,fn1 - f = m1 * afn1 - f = m1 * 1.8fn1 - f = 64 * 1.8fn1 - f = 115.2fn1 = 115.2 + ff = fn1/2 + fn1/2 - m2 * a + fn2/2f = 230.4/2 - (123 * 3.74) + 580.8/2

Hence, the force that each crate exerts on the other is 119.2 N.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

A ²²Na source is labeled 1.50 mci, but its present activity is found to be 1.39 x 10⁷ Bq. (a) What is the present activity in mci? mci (b) How long ago (in y) did it actually have a 1.50 mci activity?

Answers

The present activity in mCi is 3.75 x 10⁵ mCi. It has 1.50 mci activity from 27.19 years.

A ²²Na source is labeled 1.50 mCi, but its present activity is found to be 1.39 x 10⁷ Bq.

(a) Present activity in mCi:

1 mCi = 37 MBq

So, 1.39 x 10⁷ Bq = 1.39 x 10⁷/37

mCi= 3.75 x 10⁵ mCi.

(b) Decay equation: A = A₀e⁻ᵦᵗwhere, A₀ = initial activity, A = present activity, t = time, and β = decay constant or disintegration constant.

Radioactive decay is first-order, so its decay constant is given by the equation:

β = 0.693/T₁/₂

where, T₁/₂ = half-life of ²²Na.

Half-life of ²²Na is 2.6 years.

So,

β = 0.693/2.6 = 0.2666 year⁻¹.

Using the decay equation:

A₀ = A/e⁻ᵦᵗ

A₀ = 1.50 mCi, A = 3.75 x 10⁵ mCi, and β = 0.2666 year⁻¹.

Substituting these values in the above equation and solving for t, we get:

t = [ln (A₀/A)]/β= [ln (1.50/3.75 x 10⁵)]/0.2666

= 27.19 years

Therefore, the ²²Na source had a 1.50 mCi activity 27.19 years ago.

Present activity in mCi = 3.75 x 10⁵ mCi

It has 1.50 mci activity from 27.19 years.

Learn more about decay at: https://brainly.com/question/9932896

#SPJ11

Part C
Now, to get numerical equations for x and y, you’ll need to know the initial values (at time t = 0) for some velocities and accelerations. On the Table below the video:

Select cm as the mass measurement set to display.
Click the Table label and check all x and y displacement and velocity data: x, y, vx, and vy. Then click Close.
Now rewrite the displacement equations from Part A and Part B above by substituting in the x and y velocity values from time t = 0 and also using the theoretical value of acceleration of gravity. Write them out below.

Answers

To rewrite the displacement equations from Part A and Part B, we'll substitute in the x and y velocity values from time t = 0 and use the theoretical value of acceleration due to gravity.

Displacement equations for x-axis (horizontal motion):

1. x = (vx)t

  where vx is the initial velocity in the x-direction.

Displacement equation for y-axis (vertical motion):

1. y = (vy)t + (1/2)(g)(t^2)

  where vy is the initial velocity in the y-direction and g is the acceleration due to gravity.

1. Start by selecting cm as the mass measurement set to display.

2. Click on the Table label and check all x and y displacement and velocity data: x, y, vx, and vy.

3. Click Close to save the changes.

4. Now, let's rewrite the displacement equations using the given values.

  - For the x-axis displacement, substitute the initial x-velocity value (vx) at time t = 0 into the equation: x = (vx)t.

  - For the y-axis displacement, substitute the initial y-velocity value (vy) at time t = 0 and the acceleration due to gravity (g) into the equation: y = (vy)t + (1/2)[tex](g)(t^2[/tex]).

Please note that the specific values for vx, vy, and g should be provided in the question or the given table. Make sure to substitute the correct values to obtain the numerical equations for x and y displacement.

For more such questions on velocity, click on:

https://brainly.com/question/29396365

#SPJ8

A loop of wire with velocity 3 m/s moves through a magnetic field whose strength increases with distance at a rate of 5T/m. If the loop has area 0.75 m² and internal resistance 5 Ω, what is the current in the wire?
A. I=3 A
B. I=56A
C. I=11.25 A
D. I=2.25A

Answers

The current in the wire is option is A, I = 3A.

The rate of increase of the magnetic field is 5 T/m and the velocity of the wire is 3 m/s.

Therefore, the change in the magnetic field per unit time, that is, the emf induced in the wire is;

emf = Bvl

where

B is the magnetic field,

v is the velocity,

l is the length of the wire, in this case, the length of the wire is equal to the perimeter of the loop.

The area of the loop is 0.75 m²;

therefore, the perimeter is;

P = √(4 × 0.75 m² / π) = 0.977m

Substituting the values given;

emf = (5 T/m × 3.08 m) × 3 m/s = 14.655 V

The current in the wire is given by;

I = emf / R

where

R is the internal resistance of the wire, in this case, it is 5 Ω.

Substituting the values in the equation,

I = 14.655 V / 5 Ω = 2.931 A = 3A(approx)

Therefore, the correct option is A. I = 3A.

Learn more about current:

https://brainly.com/question/1100341

#SPJ11

During the transient analysis of an RLC circuit, if the response is V(s) = (16s-20)/(s+1)(s+5), it is:
A. Step response of a series RLC circuit
B. Natural response of a parallel RLC circuit
C. Natural response of a series RLC circuit
D. None of the other choices are correct
E. Step response of a parallel RLC circuit

Answers

The response V(s) = (16s-20)/(s+1)(s+5) belongs to natural response of a series RLC circuit. Therefore, option C is correct.

Explanation:

The response V(s) = (16s-20)/(s+1)(s+5) belongs to natural response of a series RLC circuit.

In an RLC circuit, the transient analysis relates to the study of circuit responses during time transitions before attaining the steady state. Here, the response of the circuit to a step input or impulse input is analyzed, which is known as step response or natural response.

The natural response of a circuit depends upon the initial conditions, which means it is an undamped oscillation.

The response V(s) = (16s-20)/(s+1)(s+5) does not belong to the step response of a series RLC circuit, nor the natural response of a parallel RLC circuit.

Therefore, option C is correct.

learn more about series RLC circuit here:

https://brainly.com/question/32069284

#SPJ11

A 1.60-m long steel piano wire has a diameter of 0.20 cm. What is the needed tension force in the wire for it to stretch at a length of 0.25 cm? (Continuation) What is the amount of force that could break this wire? The ultimate strength of steel is 500 x10 Pa. What is the elongation length of the wire the moment it breaks?

Answers

To calculate the tension force required to stretch a steel piano wire, we can use Hooke's Law and the formula for the cross-sectional area of a wire. The force that could break the wire can be determined using the ultimate strength of steel. The elongation length of the wire at the moment it breaks can be found using the equation for strain.

To find the tension force required to stretch the piano wire by a certain length, we can use Hooke's Law, which states that the force applied to a spring or elastic material is proportional to the displacement or change in length. The formula for Hooke's Law is F = kΔL, where F is the tension force, k is the spring constant (related to the wire's Young's modulus and cross-sectional area), and ΔL is the change in length.

First, we need to find the cross-sectional area of the wire using its diameter. The formula for the area of a circle is A = πr², where r is the radius. In this case, the diameter is given, so we can divide it by 2 to find the radius.

Once we have the cross-sectional area, we can calculate the spring constant using Young's modulus, which is a property of the material. The spring constant is given by k = (YA) / L, where Y is the Young's modulus, A is the cross-sectional area, and L is the original length of the wire.

To calculate the force that could break the wire, we use the ultimate strength of steel, which is a measure of the maximum stress a material can withstand without breaking. The force is given by F_break = A * ultimate strength.

Finally, to find the elongation length at the moment the wire breaks, we can use the equation for strain: ΔL / L = F_break / (A * Y), where ΔL is the elongation length, L is the original length, F_break is the force that could break the wire, A is the cross-sectional area, and Y is the Young's modulus.

Learn more about tension force here:

https://brainly.com/question/29124835

#SPJ11

A single-slit diffraction pattern is formed when light of λ = 740.0 nm is passed through a narrow slit. The pattern is viewed on a screen placed one meter from the slit. What is the width of the slit (mm) if the width of the central maximum is 2.25 cm?

Answers

The width of the slit can be calculated by using the formula for single-slit diffraction. In this case, the width of the central maximum is given as 2.25 cm, and the wavelength of the light is 740.0 nm. The width of the slit is 0.7400 * 10^-3 mm.

By substituting these values into the formula, the width of the slit can be determined.

The single-slit diffraction pattern can be characterized by the equation:

sin(θ) = m * λ / w

where θ is the angle of diffraction, m is the order of the maximum (for the central maximum, m = 0), λ is the wavelength of the light, and w is the width of the slit.

In this case, the width of the central maximum is given as 2.25 cm. To convert this to meters, we divide by 100: 2.25 cm = 0.0225 m. The wavelength of the light is given as 740.0 nm, which is already in meters.

For the central maximum (m = 0), the angle of diffraction is zero. Therefore, sin(θ) = 0, and the equation becomes:

0 = 0 * λ / w

Simplifying the equation, we find that the width of the slit is equal to the wavelength:

w = λ

Substituting the given wavelength, we have:

w = 740.0 nm = 0.7400 μm = 0.7400 * 10^-3 mm

Therefore, the width of the slit is 0.7400 * 10^-3 mm.

Learn more about single-slit diffraction pattern:

https://brainly.com/question/32079937

#SPJ11

A 3.0 kg puck slides on frictionless surface at 0.40 m/s and strikes a 4.0 kg puck at rest. The first puck moves off at 0.30 m/s at an angle +35 degrees from the incident direction. What is the velocity of the 4.0 kg puck after the impact?

Answers

After the impact, the 4.0 kg puck acquires a velocity of approximately 0.75 m/s in the opposite direction of the incident puck's original motion.

To solve this problem, we can apply the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision. The momentum of an object is calculated by multiplying its mass by its velocity.

Before the collision, the total momentum is given by:

Initial momentum = (mass of first puck * velocity of first puck) + (mass of second puck * velocity of second puck)

= (3.0 kg * 0.40 m/s) + (4.0 kg * 0 m/s) [since the second puck is initially at rest]

= 1.2 kg m/s

After the collision, the total momentum is given by:

Final momentum = (mass of first puck * velocity of first puck after collision) + (mass of second puck * velocity of second puck after collision)

= (3.0 kg * 0.30 m/s * cos(35 degrees)) + (4.0 kg * velocity of second puck after collision)

Since the first puck moves off at an angle, we need to use the cosine of the angle to calculate the horizontal component of its velocity.

Solving the equation, we find that the velocity of the 4.0 kg puck after the impact is approximately 0.75 m/s.

Learn more about motion here:

https://brainly.com/question/12640444

#SPJ11

At dawn, with the Sun just rising in the east, you face the Sun and bend your head back to look straight up, and you examine the blue sky light with a Polaroid filter. (a) [2 points] Why is the light polarized? (b) (2 points) What is the direction of the electric field, east-west or north-south? Explain briefly why

Answers

a. Polarization is caused by the scattering of sunlight off air molecules in the Earth's atmosphere.

b. when you examine the blue sky light with a Polaroid filter, the direction of the electric field is North-South.

a. The electric fields of electromagnetic waves are caused by the vibration of charged particles. A polarized filter is able to block one direction of polarization while allowing the other direction to pass through. This happens because a polarizing filter is made up of a long chain of molecules oriented in one direction, which blocks light waves with electric fields oriented in a perpendicular direction.

The polarization of sunlight is due to the scattering of light off air molecules. This scattering causes light waves with electric fields oriented in a perpendicular direction to the Sun to be polarized. The electric fields of light waves in the blue part of the spectrum are oriented in a north-south direction, while the electric fields of light waves in the red part of the spectrum are oriented in an east-west direction.

To learn more about Polarization, refer:-

https://brainly.com/question/29217577

#SPJ11

An object is placed 45 cm to the left of a converging lens of focal length with a magnitude of 25 cm. Then a diverging lens of focal length of magnitude 15 cm is placed 35 cm to the right of this lens. Where does the final image form for this combination? Please give answer in cm Real or virtual?

Answers

Location of the final image: 27.38 cm to the right of the lens combination

Nature of the final image: Real. To determine the location and nature of the final image formed by the combination of the lenses, we can use the lens formula and the concept of lens combinations.

The lens formula for a single lens is given by:

1/f = 1/do + 1/di

Where:

f = focal length of the lens

do = object distance from the lens

di = image distance from the lens

For the converging lens:

f1 = 25 cm

do1 = -45 cm (since the object is placed to the left of the lens)

Using the lens formula for the converging lens:

1/25 = 1/-45 + 1/di1

Simplifying the equation, we find the image distance di1 for the converging lens:

di1 = 16.67 cm

Now, we consider the diverging lens:

f2 = -15 cm (since it is a diverging lens)

do2 = 35 cm (the object distance from the diverging lens)

Using the lens formula for the diverging lens:

1/-15 = 1/35 + 1/di2

Simplifying the equation, we find the image distance di2 for the diverging lens:

di2 = -10.71 cm

To find the final image distance, we need to consider the combination of the lenses. Since the diverging lens has a negative focal length, we consider it as a virtual object for the converging lens.

The final image distance di_final is given by:

di_final = di1 - do2

di_final = 16.67 - (-10.71)

di_final = 27.38 cm

Since the final image distance is positive, the image is real and formed on the same side as the object. Therefore, the final image forms 27.38 cm to the right of the lens combination.

The answer is:

Location of the final image: 27.38 cm to the right of the lens combination

Nature of the final image: Real

To know more about focal length

brainly.com/question/31755962

#SPJ11

Part C
Just like in the diagram, when Earth was primarily liquid, it separated into layers. What prediction can you make about the
densities of Earth's different layers?

Answers

When the Earth was primarily liquid, it separated into layers. The density of Earth's different layers may be predicted. For instance, it is assumed that the outermost layer, or crust, is less dense than the inner layers.

The Earth's crust is mostly composed of silicates (such as quartz, feldspar, and mica) and rocks, which are less dense than the mantle, core, or outer core.

The mantle is composed of solid rock, which is denser than the Earth's crust.

The core is the most dense layer, and it is composed of a liquid outer core and a solid inner core.

Most of the Earth's layers are composed of different types of rock and minerals.

The layers were formed from the molten material that cooled and solidified.

The Earth's layers are divided into four groups, or spheres, that represent different levels of density.

The lithosphere is the outermost layer, which includes the crust and upper mantle.

The asthenosphere is the soft layer beneath the lithosphere.

The mantle is a solid layer that surrounds the core.

The core is the Earth's central layer, consisting of a liquid outer core and a solid inner core.

For more questions on density

https://brainly.com/question/28853889

#SPJ8

A single-turn square loop carries a current of 16 A. The loop is 15 cm on a side and has a mass of 3.6×10 −2
kg - initially the loop lies flat on a horizontal tabletop. When a horizontal magnetic field is turned on, it is found that only one side of the loop experiences an upward force. Part A Find the minimum magnetic field, B min ​
, necessary to start lipping the loop up from the table. Express your answer using two significant figures. Researchers have tracked the head and body movements of several flying insects, including blowllies, hover fles, and honeybees. They attach lightweight, fexible wires to a small metai coli on the insect's head, and another-on its thorax, and then allow it to fly in a stationary magnetic field. As the coils move through the feld, they experience induced emts that can be analyzed by computer to determine the corresponding orientation of the head and thorax. Suppose the fly turns through an angle of 90 in 31 ms. The coll has 89 turns of wire and a diameter of 2.2 mm. The fly is immersed in a magnetic feld of magnitude 0.16 m T. Part A If the magnetic flux through one of the coils on the insect goes from a maximum to zero during this maneuver find the magnitude of the induced emf. Express your answer using two significant figures.

Answers

For the loop, the minimum magnetic field required to lift it from the table is approximately 0.24 T.

As for the flying insect, the magnitude of the induced emf in the coil due to a change in magnetic flux is approximately 0.29 mV.  For the square loop, we equate the magnetic force with the gravitational force. Magnetic force is given by BIL where B is the magnetic field, I is the current, and L is the length of the side. Gravitational force is mg, where m is mass and g is gravitational acceleration. Setting BIL=mg and solving for B gives us the minimum magnetic field. For the insect, the change in magnetic flux through the coil induces an emf according to Faraday's law, given by ΔΦ/Δt = N*emf, where N is the number of turns and Δt is the time taken. Solving for emf provides the induced voltage.

Learn more about magnetic forces here:

https://brainly.com/question/33127932

#SPJ11

A star spans a parallax angle θ = 2 arcsecond when seen on Earth (6 months spans 2θ). Its distance is _____ light years from us.

Answers

A star spans a parallax angle θ = 2 arcsecond when seen on Earth (6 months spans 2θ). Its distance is 0.00000954 light years from us.

Parallax is a method used to measure the distance to nearby stars. The distance to the star is 0.00000954 light years, or 9.54 x 10^-6 light years, which was calculated using the parallax angle of 2 arcseconds observed on Earth. The parallax angle θ of a star is related to its distance d from Earth by the equation:

d = 1 / p

where p is the parallax in arcseconds.

In this problem, we are given that the star spans a parallax angle of 2 arcseconds when seen on Earth. Therefore, the distance to the star is:

d = 1 / (2 arcseconds) = 1 / 0.00055556 radians = 1800 radians

To convert this distance to light years, we need to divide by the speed of light, which is approximately 299,792,458 meters per second. Using the fact that there are approximately 31,536,000 seconds in a year, we get:

d = (1800 radians) / (299,792,458 meters/second × 31,536,000 seconds/year)

d = 0.00000954 light years

Therefore, the star is approximately 0.00000954 light years, or 9.54 × 10^-6 light years, away from us.

To know more about Parallax, visit:
brainly.com/question/29210252
#SPJ11

The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement: The motor's synchronous speed is 3000 RPM and its rated power is 30 HP. O The motor's synchronous speed is 2500 RPM at 50 Hz. O The motor has 2 poles and operates at a slip of 6%. o The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.

Answers

The correct statement is that the motor has 4 poles and operates at a slip of 2%. and the motor torque at full load is 48.4 Nm

Synchronous speed of induction motor The synchronous speed (N_s) of an induction motor is calculated using the below formula: N_s = (f/P) × 120 where, f is the frequency of the power supply applied P is the number of poles in the motor

From the above formula, we get the synchronous speed of the motor = (50/2) × 120 = 3000 RPM

The motor operates at a slip of 2%.

The speed of the motor is given by, Speed of motor (N) = Synchronous speed – Slip speed where Slip speed = (Slip × Synchronous speed) / 100

Now, Speed of motor (N) = 3000 – (2% × 3000) = 2940 RPM

Therefore, the motor has 4 poles. The rated power of the motor is given as 15 kW, which is equal to 20 HP (1 HP = 0.746 kW).

So, the motor's rated power is 20 HP.

The formula for calculating the motor torque is given by the below formula, T = (P × 60) / (2 × π × N) Where, P = Output power of the motor

N = Speed of the motor

Substituting the values we get, T = (15 × 60) / (2 × π × 2940) = 48.4 Nm

Therefore, the motor torque at full load is 48.4 Nm.

know more about Synchronous speed

https://brainly.com/question/31605298

#SPJ11

The complete question is -

The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement:

o The motor's synchronous speed is 3000 RPM and its rated power is 30 HP.

O The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.

O The motor has 2 poles and operates at a slip of 6%.

O The motor's synchronous speed is 2500 RPM at 50 Hz.

Determine which of the following arguments about the magnetic field of an iron-core solenoid are not always true.
a. Increase I, increase B
b. Decrease I, decrease B
c. B = 0 when I = 0
d. Change the direction of I, change the direction of B

Answers

Of the following arguments about the magnetic field of an iron-core solenoid are not always true.  the arguments c and d are not always true

The arguments about the magnetic field of an iron-core solenoid that are not always true are c. "B = 0 when I = 0" and d. "Change the direction of I, change the direction of B."

c. While it is true that the magnetic field (B) of an iron-core solenoid is proportional to the current (I) passing through it, it does not necessarily mean that the field becomes zero when the current is zero. This is because the iron core in the solenoid can retain some magnetization, even when the current is zero. This residual magnetization in the iron core can contribute to a nonzero magnetic field.

d. The direction of the magnetic field (B) inside the solenoid depends on the direction of the current (I) flowing through it, according to the right-hand rule. However, changing the direction of the current does not always result in an immediate change in the direction of the magnetic field. This is because the magnetic field inside the iron core of the solenoid takes some time to adjust to the new current direction due to the magnetic properties of the iron core. Therefore, there may be a brief delay before the magnetic field aligns with the new current direction.

In summary, the arguments c and d are not always true for an iron-core solenoid due to the presence of residual magnetization in the core and the time delay in changing the direction of the magnetic field when the current direction changes.

Learn more about magnetic field here:

https://brainly.com/question/7645789

#SPJ11

A flat coil of wire consisting of 26 turns, each with an area of ​​43 cm², is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.82 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places

Answers

The magnitude of the induced current in the coil is 126.83 A to two decimal places

Number of turns in the coil: 26turns

Area of each turn: 43 cm²

Magnetic field strength, B1: 2.0 T

New magnetic field strength, B2: 6.0 T

Time, t: 2.0 s

Resistance, R: 0.82 Ω

Formula for the emf induced by Faraday's law of electromagnetic induction is shown below;

emf = -N (dΦ/dt) Where N is the number of turns in the coil, and (dΦ/dt) is the rate of change of the magnetic flux linked with the coil.

The negative sign represents Lenz's law which states that the direction of the induced emf and induced current opposes the change causing it.

Since the coil is flat and perpendicular to the uniform magnetic field, the area vector of each turn in the coil is perpendicular to the magnetic field. Hence, the magnetic flux linked with each turn is given by;

ΦB = B A where A is the area of each turn in the coil, B is the magnetic field strength and the angle between B and A is 90°.

Since there are 26 turns in the coil, the total flux linked with the coil is given by;

ΦB = N Φ

Where N is the number of turns in the coil, and Φ is the flux linked with each turn in the coil.

Substituting for Φ and rearranging the formula for emf above gives;

emf = -N (dΦB/dt)

But B changes at a constant rate from B1 to B2 in time, t. Therefore, the rate of change of the magnetic flux linked with the coil is given by;

(dΦB/dt) = ΔB/Δt

Substituting this value in the formula for emf and rearranging gives;

emf = -N B (Δt)^-1 ΔB

Substituting the given values, the emf induced in the coil is given by;

emf = -26 x 2.0 (2.0)^-1 (6.0 - 2.0) = -104 V

The negative sign indicates that the direction of the induced current is such that it opposes the increase in the magnetic field strength.

The magnitude of the induced current, I can be obtained using Ohm's law;

I = V / R where V is the emf induced and R is the resistance of the coil.

Substituting the given values, the magnitude of the induced current is given by;

I = 104 / 0.82 = 126.83 A

Therefore, the magnitude of the induced current in the coil is 126.83 A to two decimal places.

Learn more about induced current https://brainly.com/question/27605406

#SPJ11

You are looking for a mirror that will enable you to see a 3.4-times magaified virtual image of an object that is placed 4.1 em from the mirror's vertex.
Part (a) What kind of mirror will you need? Part (b) What should the mirror's radius of curvature be, in centimeters?
R = _____________

Answers

The mirror that you need is concave mirror and the radius of curvature of the concave mirror should be -5.44 cm to get a 3.4 times magnified virtual image.

(a) You will need a concave mirror to see a 3.4-times magnified virtual image of an object placed 4.1 cm away from the mirror's vertex.

(b) The radius of curvature (R) of the mirror can be calculated using the mirror formula for concave mirrors, which is given as:

1/f = 1/v + 1/u

where,

f is the focal length,

v is the image distance,

u is the object distance

The magnification (m) of the mirror is given as:-

m = v/u

Using the above equations, we can calculate the focal length (f) and magnification (m) of the concave mirror, and then use the formula,

R = 2f

u = -4.1 cm (since the object is placed in front of the mirror)

v = -13.94 cm (since the virtual image is formed behind the mirror)

m = -3.4 (since the image is 3.4 times larger than the object, it is magnified)

Using the mirror formula, we get:

1/f = 1/v + 1/u= 1/-13.94 + 1/-4.1= -0.123 + (-0.244)= -0.367

f = -2.72 cm

Using the magnification formula,

-m = v/u

v = -m/u

v = -57.14 cm

Using the formula for radius of curvature,

R = 2f

R = 2(-2.72)

R = -5.44 cm

The radius of curvature of the concave mirror should be -5.44 cm.

Learn more about virtual image:

https://brainly.com/question/9861899

#SPJ11

The smaller disk dropped onto a larger rotating one. (frame rate=30fps. Frames=36)(time 1.2 s). The large disk is made of dense plywood rotating on a low-friction bearing. The masses of the disks are: large disk: 2.85kg Radius of large disk = 0.3m small disk: 3.06 kg Radius of small disk= 0.18m
(1) Make measurements and calculations to determine the final speed of the two disk rotating together, and calculate the percent difference between your predicted value and the experimental value. Hint: The final velocity of the two-disk system should be measured when the two disks reach the same angular velocity. How can you tell when that happens?
(2) Determine the total angular momentum of the two-disk system after the smaller disk is dropped on the larger one. Calculate the percent difference: percent change=((L sys−L sys)​/L sys)×100
(3) Determine the total kinetic energy of the two-disk system before and after the collision. Calculate the percent difference between the two values.
(4) Compare the percent change in angular momentum of the system to the percent change in the rotational kinetic energy of the system. Explain the difference between these two values.

Answers

The final speed of the two-disk system can be determined by equating the angular momentum before and after the collision. The total angular  of the two-disk system after the smaller disk is dropped on the larger one is the sum of the individual angular momenta of the disks.

(1) The angular momentum is given by the product of the moment of inertia and the angular velocity. Since the system is initially at rest, the initial angular momentum is zero. When the two disks reach the same angular velocity, the final angular momentum is given by the sum of the individual angular momenta of the disks. By equating these two values, we can solve for the final angular velocity. The final linear speed can then be calculated by multiplying the final angular velocity with the radius of the combined disks. To determine when the disks have reached the same angular velocity, one can observe their motion visually and note when they appear to be rotating together smoothly.

(2) The angular momentum of a disk is given by the product of its moment of inertia and angular velocity. By adding the angular momenta of the large and small disks, we can calculate the total angular momentum of the system. The percent difference can be calculated by comparing this value to the initial angular momentum, which is zero since the system starts from rest.

(3) The total kinetic energy of the two-disk system before and after the collision can be calculated using the formulas for rotational kinetic energy. The rotational kinetic energy of a disk is given by half the product of its moment of inertia and the square of its angular velocity. By summing the rotational kinetic energies of the large and small disks, we can determine the initial and final kinetic energies of the system. The percent difference can be calculated by comparing these two values.

(4) The percent change in angular momentum of the system and the percent change in the rotational kinetic energy of the system may not be the same. This is because angular momentum depends on both the moment of inertia and the angular velocity, while rotational kinetic energy depends only on the moment of inertia and the square of the angular velocity. Therefore, changes in the angular velocity may not be directly proportional to changes in the rotational kinetic energy. The difference between these two values can arise due to factors such as the redistribution of mass and changes in the system's geometry during the collision.

To know more about angular momentum, click here :

https://brainly.com/question/29897173

#SPJ11

What is the time constant? s (b) How long will it take to reduce the voltage on the capacitor to 0.100% of its full value once discharge begins? s (c) If the capacitor is charged to a voltage V 0

through a 133Ω resistance, calculate the time it takes to rise to 0.865V 0

(this is about two time constants). S

Answers

Therefore, it takes approximately 26.4 seconds to rise to 0.865V0.

Time ConstantIt is the time required by an electric circuit or system to change its state from an initial state to its final state after an abrupt change in one of its variables. The transient response of the circuit or system is characterized by the time constant.

The formula for the time constant in seconds is given by the product of the resistance and the capacitance, i.e.,T=RC(a) To determine the time it takes for the capacitor to discharge to 0.100% of its full value after discharge begins.

Given, V=100% and V'=0.100%It is known that the equation for the capacitor voltage with time during discharge is given by;V = V0e-t/RCSubstituting for the final and initial voltages we have,0.100% V0 = V0e-t/RC

Taking the natural logarithm of both sides,ln(0.001) = -t/RCln(0.001) = -t/1.2 x 10^3 x 2.2 x 10^-6t = 31.2 seconds (to the nearest whole number)Therefore, it will take approximately 31.2 seconds to reduce the voltage on the capacitor to 0.100% of its full value once discharge begins.

(c) If the capacitor is charged to a voltage V0 through a 133Ω resistance, calculate the time it takes to rise to 0.865V0 (this is about two time constants).It is known that the equation for the capacitor voltage with time during charging is given by;V = V0(1 - e-t/RC)

We are required to find the time it takes for the voltage across the capacitor to rise to 0.865V0, which is equivalent to a voltage difference of 0.135V0 from the initial voltage.

Therefore, substituting for the final and initial voltages we have,0.865V0 = V0(1 - e-2T/RC)Rearranging,1 - 0.865 = e-2T/RCln(0.135) = -2T/RCt = 2T = 2 x 1.2 x 10^3 x 2.2 x 10^-6 x ln(0.135)t = 26.4 seconds (to the nearest whole number) Therefore, it takes approximately 26.4 seconds to rise to 0.865V0.

to know more about electric

https://brainly.com/question/2969220

#SPJ11

(b) Two charged concentric spherical shells have radi 5.0 cm and 10 cm. The charge on the inner shell is 5.0 ng, and that on the outer shell is-20 nC. In order to calculate the electric field at a distance of 20 cm from the centre of the spheres, an appropriate Gaussian surface is A sphere with a radius of 20 cm A sphere with a radius of 10 cm a A cylinder with a radius of 20 cm A sphere with a radius of 70 cm (1) The total enclosed charge is 3.0 nc 70 nc -20 nc 5.0 nc (i) Calculate the electric field in Newtons per Coulomb at 20 cm

Answers

Answer: the electric field at a distance of 20 cm from the center of the spheres is 1.8 × 10^3 N/C.

The appropriate Gaussian surface to calculate the electric field at a distance of 20 cm from the center of the spheres is a sphere with a radius of 20 cm.

(1) The total enclosed charge is -20 nC + 5.0 ng. The total enclosed charge is

-20 nC + 5.0 ng =

-20 × 10^-9 C + 5.0 × 10^-9 C

= -15.0 × 10^-9 C.

(i) The electric field in Newtons per Coulomb at 20 cm. The electric field in N/C at a point at a distance r from the center of a spherical shell of radius R and charge q is given by the equation

E = {q(r)/4πε₀r³}.

E = Electric field in N/Cq. (r) = Total charge enclosed within the Gaussian surface which is -15.0 × 10^-9 C. ε₀ = Permittivity of free space = 8.854 × 10^-12 C²/N.m². r = distance from the center of the shell where the electric field is being calculated = 20 cm = 0.20 m.

For r > R₂, the electric field at a point outside a shell of charge q and radius R₂ is zero.

Hence, only the electric field due to the 5.0 cm inner shell will be considered. E = {q(r)/4πε₀r³}E = {5.0 × 10^-9 C/4π(8.854 × 10^-12 C²/N.m²)(0.20 m)³}E = 1.8 × 10^3 N/C.

Therefore, the electric field at a distance of 20 cm from the center of the spheres is 1.8 × 10^3 N/C.

Learn more about Gaussian surface : https://brainly.com/question/14773637

#SPJ11

A transformer is used to step down 160 V from a wall socket to 9.1 V for a radio. (a) If the primary winding has 600 turns, how many turns does the secondary winding have?_____ turns (b) If the radio operates at a current of 480 mA, what is the current (in mA) through the primary winding? ____mA

Answers

(a) If the primary winding has 600 turns, how many turns does the secondary winding have? 34 turns (b) If the radio operates at a current of 480 mA, what is the current (in mA) through the primary winding? 27.2 mA.

(a) Given that the primary winding has 600 turns and the voltage across the primary winding is 160 V, and the voltage across the secondary winding is 9.1 V, we can calculate the number of turns in the secondary winding (N2) as follows: Picture is given below.

Therefore, the secondary winding has approximately 34 turns.

(b)To find the current through the primary winding, we can use the current ratio equation:

[tex]\frac{I1}{I2}[/tex] = [tex]\frac{N2}{N1}[/tex]

where I1 and I2 re the currents through the primary and secondary windings respectively, and N1 and N2are the number of turns in the primary and secondary windings respectively.

Given that the current through the secondary winding (I2) is 480 mA, and the number of turns in the primary winding (N1) is 600, we can calculate the current through the primary winding (I1) as follows: Picture is given below.

Therefore, the current through the primary winding is approximately 27.2 mA.

To know more baout primary winding

https://brainly.com/question/28335926

#SPJ11

Suppose you measure the terminal voltage of a 3.280 V lithium cell having an internal resistance of 4.70 Ω by placing a 1.00 kΩ voltmeter across its terminals. (a) What current flows (in amps)? __________ A (b) Find the terminal voltage. _____________ V (c) To see how close the measured terminal voltage is to the emf, calculate their difference. __________ V

Answers

the current flows through the circuit is 0.697 A.

the terminal voltage is 6.55 V.

the difference between the measured terminal voltage and the emf is 3.25 V

The voltage of a 3.280 V lithium cell having an internal resistance of 4.70 Ω measured by placing a 1.00 kΩ voltmeter across its terminals. We have to find the current, terminal voltage, and the difference between the measured terminal voltage and the emf.

(a) The current flows can be calculated using Ohm's law which states that

V=IR

Where;

V = voltage = 3.280V

R = internal resistance = 4.70 Ω

I = current

Rearranging the above equation, we get

I = V / R

I = 3.280V / 4.70 Ω

I = 0.697 A

Therefore, the current flows through the circuit is 0.697 A.

(b) Now, we have to find the terminal voltage;

The voltage drop across the internal resistance of the lithium cell is;V

IR = IRV

IR = (0.697 A)(4.70 Ω)V

IR = 3.27 V

The total voltage across the terminals can be found by adding the voltage drop across the internal resistance to the voltage measured by the voltmeter.

V = Vmeasured + VIR

V = 3.280 V + 3.27 V

V = 6.55 V

Therefore, the terminal voltage is 6.55 V.

(c) The difference between the measured terminal voltage and the emf can be calculated as follows;

V - Vemf=IR

Where;

V = terminal voltage = 6.55 V

Vemf = voltage of the cell = 3.280

V= internal resistance = 4.70 Ω

I = current

Rearranging the above equation, we get;

Vemf = V - IR

Vemf = 6.55 V - (0.697 A)(4.70 Ω)

Vemf = 3.25 V

Therefore, the difference between the measured terminal voltage and the emf is 3.25 V.

Learn more about voltage:

https://brainly.com/question/24858512

#SPJ11

20 pts) A system is described by the differential equation below and assuming all initial conditions are zero, dy(t) dt dx(t) dt find the transfer function, H(s), Y(s), and y(t) for x(t) = u(t). Is the system stable? d²y(t) dt² +10 ! + 24 y(t) = + x(t)

Answers

The transfer function, H(s), and output, Y(s), were found by taking the Laplace transform of the given differential equation and using partial fraction decomposition. The output in the time domain, y(t), was found by taking the inverse Laplace transform. The system is stable because all the poles of the transfer function have negative real parts.

To find the transfer function, H(s), we can take the Laplace transform of the differential equation and rearrange it as follows:

s²Y(s) + 10sY(s) + 24Y(s) = X(s)

H(s) = Y(s)/X(s) = 1/(s² + 10s + 24)

To find Y(s), we can multiply both sides of the transfer function by X(s) and use partial fraction decomposition:

Y(s) = X(s)H(s) = X(s)/(s² + 10s + 24) = A/(s + 4) + B/(s + 6)

where A and B are constants that can be solved for using algebraic manipulation. In this case, we have:

X(s) = 1/s

A/(s + 4) + B/(s + 6) = 1/(s² + 10s + 24)

Multiplying both sides by (s + 4)(s + 6), we get:

A(s + 6) + B(s + 4) = 1

Substituting s = -4, we get:

A = -1/2

Substituting s = -6, we get:

B = 3/2

Therefore, the output Y(s) is:

Y(s) = (-1/2)/(s + 4) + (3/2)/(s + 6)

To find y(t), we can take the inverse Laplace transform of Y(s):

y(t) = (-1/2)e^(-4t) + (3/2)e^(-6t)

The system is stable because all the poles of the transfer function have negative real parts. Specifically, the poles are at s = -4 and s = -6, which correspond to exponential decay terms in the output.

To know more about transfer function, visit:
brainly.com/question/28881525
#SPJ11

magnetic field (wider than 10 cm ) with a strength of 0.5 T pointing into the page. Finally it leaves the field. While entering the field what is the direction of the induced current as seen from above the plane of the page? clockwise counterclockwise zero While in the middle of the field what is the direction of the induced current as seen from above the plane of the page? clockwise counterclockwise zero While leaving the field what is the direction of the induced current as seen from above the plane of the page? clockwise counterclockwise zero

Answers

When a conductor enters a magnetic field, the direction of the induced current can be determined using Fleming's right-hand rule. As seen from above the plane of the page, the direction of the induced current while entering the field is counterclockwise. While in the middle of the field, the induced current is zero, and while leaving the field, the direction of the induced current is clockwise.

Fleming's right-hand rule is a way to determine the direction of the induced current in a conductor when it is moving in a magnetic field. According to this rule, if the thumb of the right hand points in the direction of the motion of the conductor, and the fingers point in the direction of the magnetic field, then the direction in which the palm faces represents the direction of the induced current.

When the conductor enters the magnetic field, the motion of the conductor is from left to right (as seen from above the plane of the page), and the magnetic field is pointing into the page. Using Fleming's right-hand rule, if we point the thumb of the right hand in the direction of the motion (left to right) and the fingers into the page (opposite to the magnetic field), the palm will face counterclockwise. Therefore, the direction of the induced current while entering the field is counterclockwise.

While in the middle of the field, the conductor is moving parallel to the magnetic field, resulting in no change in the magnetic flux through the conductor. Therefore, there is no induced current during this phase.

When the conductor leaves the magnetic field, the motion of the conductor is from right to left (as seen from above the plane of the page), and the magnetic field is pointing into the page. Applying Fleming's right-hand rule, if we point the thumb in the direction of the motion (right to left) and the fingers into the page (opposite to the magnetic field), the palm will face clockwise. Hence, the direction of the induced current while leaving the field is clockwise.

Learn more about conductor here:

https://brainly.com/question/14405035

#SPJ11

Other Questions
What formula is used to find the experimental equivalent resistance? question 1The Good Guy Supervisor Bernie was promoted from assistantsupervisor to supervisor of the employee cafeteria at Port MartinsCollege. It was a big move up for him, he had always been a As a result of the Battle of Iwo Jima, the U.S. forces:A. destroyed the Japanese navy.B. captured the strategically important Philippines.C. halted the Japanese advance across the Pacific.D. had a base from which to bomb Japan. 21. Howard Becker's theory that said it is not the actthat makes one a deviant but the way others react to it wascalled:act-react theorydifferential association theoryanomie ABC Company has a weekly payroll of $20,000, paid each Friday (employees work Monday - Friday). December 31 falls on Tuesday. What is the correct adjusting journal entry? Select one: a. Debit Salary Expense, $16,000; Credit Salary Payable, $16,000 b. Debit Salary Payable, $4,000; Credit Salary Expense, $4,000. c. Debit Salary Expense, $20,000; Credit Salary Payable, $20,000 None of the above O d. O e. Debit Salary Expense, $8,000; Credit Salary Payable, $8,000 On March 1, a retailer borrowed $30,000 from its bank, and signed a 6%, 10-month promissory note. Principal and accrued interest are due on January 1. If the retailer's year end is July 31, the year end adjusting entry to record interest would be: Select one: a. debit Interest Receivable, $900; credit Interest Revenue, $900. b. debit Interest Expense, $1,800; credit Interest Payable, $1,800. C. debit Interest Expense, $600; credit Interest Payable, $600. O d. debit Interest Expense, $750; credit Interest Payable, $750. e. debit Interest Receivable, $1,500; credit Interest Revenue, $1,500. Explain how energy is transformed when you cook food on a stove. Tickets are numbered from 1 to 25. 4 tickets are chosen. In how many ways can this be done if the selection contains only odd numbers?a.1716b.1287c.715d.66 What is an HSA account and how does work from a tax perspective? Would you recommend that individuals contribute to them? Why?What are your perspectives regarding student loans and the associated tax treatment? Do student loans create opportunities or burdens for those that take them? A rectangular loop of 270 turns is 31 cmcm wide and 17 cmcmhigh.Part AWhat is the current in this loop if the maximum torque in afield of 0.49 TT is 23 NmNm ? Read through the part of the TRCC report on reconciliation linked in the course module. How does religion/spirituality factor in to the process of reconciliation, both on the part of non-Indigenous and Indigenous people? What role can religion/spirituality play, and how might this require rethinking this role on the part of non-Indigenous people in particular? From a mature Zambian company's perspective, examine the practicality of Modigliani and Miller's Dividend Irrelevance Hypothesis. 3. Generally, the purpose of financial statements is to help investors and other users make informed financial decisions about the entity in which they have an interest or stakeholding. Financial statements provide the owners of the business with some means of assessing the proficiency with which their business is being run. These statements are therefore one way in which shareholders can assess or evaluate the directors' performance in running the company. This is because financial statements report the impact management decisions have on the company's financial position and cash flows for the year. However, with creative accounting being practiced by the corporate world, it seems published financial statements rarely serve the purpose for which they are prepared. Discuss. 3. Generally, the purpose of financial statements is to help investors and other users make informed financial decisions about the entity in which they have an interest or stakeholding. Financial statements provide the owners of the business with some means of assessing the proficiency with which their business is being run. These statements are therefore one way in which shareholders can assess or evaluate the directors' performance in running the company. This is because financial statements report the impact management decisions have on the company's financial position and cash flows for the year. However, with creative accounting being practiced by the corporate world, it seems published financial statements rarely serve the purpose for which they are prepared. Discuss. Read the passage below and answer the question that follows:And now Adonis, with a lazy spright,And with a heavy, dark, disliking eye,His louring brows o'erwhelming his fair sight,Like misty vapours when they blot the sky,Souring his cheeks cries 'Fie, no more of love!The sun doth burn my face: I must remove.'Adonis is speaking to Venus, the Roman goddess of love. Based on this passage, what does Adonis think of Venus? Properties refer to the characteristics of a substance that describe its physical or chemical behavior. For instance, density, melting point, boiling point, and reactivity are all examples of properties.Different substances have different properties because of their unique atomic structure. For example, if we take two elements such as sodium and chlorine, we can see that they have different properties.Sodium is a highly reactive metal that reacts with water and produces hydrogen gas. It has a low melting point of 98C and a low boiling point of 883C. In contrast, chlorine is a highly reactive non-metal that exists as a diatomic molecule (Cl2). It has a boiling point of -34C and a melting point of -101C.These properties of sodium and chlorine are due to their unique atomic structure. Sodium has a single valence electron that it readily loses, while chlorine has seven valence electrons that it readily gains. This difference in valence electrons accounts for their different properties.In conclusion, two substances have different properties because of their unique atomic structures. The properties of a substance depend on the number and arrangement of its atoms and electrons. Question 47 You just moved to a new town and have become friends with a new group of people. You met up with a friend from the town you previously lived in, and they said you were talking with a funny accent and saying phrases that you never said prior to moving. You realized that your new group of friends talks with that accent and says those phrases, so you must have picked up on them. What is this called? Automatic mimicry Conformity Social loafing 1 pts Chameleon effect A trapeze artist swings in simple harmonic motion on a rope that is 10 meters long, Calculate the period of the rope supporting the trapeze. all of the following are examples for crime? How does quorum consensus guarantee strong consistency whenthere is no node failure or network partition? Develop the truth table showing the counting sequences of a MOD-14 asynchronous-up counter. [3 Marks] b) Construct the counter in question 3(a) using J-K flip-flops and other necessary logic gates, and draw the output waveforms. [8 Marks] c) Formulate the frequency of the counter in question 3(a) last flip-flop if the clock frequency is 315kHz. [3 Marks] d) Reconstruct the counter in question 3(b) as a MOD-14 synchronous-down counter, and determine its counting sequence and output waveforms. A current event is something that has occurred within the last year which is related to a concept studied in Part 1 of the course. The papers should be no more than one page in which you provide the link to the information, explain the facts of the event, explain how the event is related to current topics being studied, and provide a short opinion on the situation.the course is blaw261-352 When an inductor is connected to a 60.0 Hz source it has an inductive reactance of 57.0 0. Determine the maximum current in the inductor (in A) if it is connected to a 45.0 Hz source that produces a 115 V rms voltage.