Comparing the weight of the cylinder (1960 dynes) with the buoyant force (9.1912 dynes), we can see that the weight of the cylinder is significantly greater than the buoyant force exerted by the water. The cylinder will sink in the pool of water rather than float.
To determine whether the cylinder can float in the pool of water, we need to compare the weight of the cylinder with the buoyant force exerted by the water.
The weight of the cylinder can be calculated using the formula: weight = mass × acceleration due to gravity. The weight of the cylinder is given as 19.6 N, which is equivalent to 1960 dynes.
The buoyant force exerted by the water can be calculated using the formula: buoyant force = weight density × volume of the displaced water. The volume of the displaced water can be calculated as the volume of the cylinder, which is πr²h, where r is the radius of the cylinder and h is its height.
Given that the diameter of the cylinder is 20 cm, the radius is 10 cm (0.1 m). The height of the cylinder is 30 cm (0.3 m).
Using these values, the volume of the displaced water is calculated as follows:
Volume = π × (0.1 m)² × 0.3 m
≈ 0.00942 m³
Now, let's calculate the buoyant force:
Buoyant force = 980 dynes/cm³ × 0.00942 m³
≈ 9.1912 dynes
Comparing the weight of the cylinder (1960 dynes) with the buoyant force (9.1912 dynes), we can see that the weight of the cylinder is significantly greater than the buoyant force exerted by the water. Therefore, the cylinder will sink in the pool of water rather than float.
Learn more about weight
https://brainly.com/question/86444
#SPJ11
Calculate pH for a weak base/strong acid titration. Determine the pH during the titration of 34.2 mL of 0.278 M trimethylamine ((CH_3)_3N, K₂= 6.3x10-5) by 0.278 M HCIO_4 at the following point,before the addition of any HCIO.
the pH before the addition of any HCIO4 in the titration of trimethylamine is approximately 13.445.
To determine the pH before the addition of any HCIO4 in the titration of trimethylamine ((CH3)3N) with HCIO4, we need to consider the dissociation of trimethylamine as a weak base and calculate the concentration of hydroxide ions (OH-) in the solution.
The balanced equation for the dissociation of trimethylamine is:
(CH3)3N + H2O ⇌ (CH3)3NH+ + OH-
Given:
Initial volume of trimethylamine solution (Vbase) = 34.2 mL
Concentration of trimethylamine solution (Cbase) = 0.278 M
First, we need to calculate the number of moles of trimethylamine:
Number of moles of trimethylamine = Cbase * Vbase
= 0.278 mol/L * 0.0342 L
= 0.0094956 mol
Since trimethylamine is a weak base, it partially dissociates to form hydroxide ions (OH-). Since no acid has been added yet, the concentration of hydroxide ions is equal to the concentration of trimethylamine.
Concentration of OH- = Concentration of trimethylamine = Cbase
= 0.278 M
Now we can calculate the pOH before the addition of any HCIO4:
pOH = -log10(OH- concentration)
= -log10(0.278)
≈ 0.555
Finally, we can calculate the pH using the relationship between pH and pOH:
pH = 14 - pOH
= 14 - 0.555
≈ 13.445
To know more about Concentration visit:
brainly.com/question/30862855
#SPJ11
Using Laplace Transform to solve the following equations
y′′+3y′+2y=e^t, y(0)=0, y′(0)=1.
The solution to the differential equation [tex]y′′+3y′+2y=e^t[/tex], with initial conditions y(0)=0 and y′(0)=1, is:
[tex]y(t) = (8/5)e^t - (2/5)e^(-2t)[/tex]
To solve the differential equation [tex]y′′+3y′+2y=e^t[/tex]using Laplace Transform, we can follow these steps:
1: Take the Laplace Transform of both sides of the equation. Recall that the Laplace Transform of y(t) is denoted as Y(s), where s is the complex frequency variable.
2: Apply the initial conditions y(0)=0 and y′(0)=1 to find the constants in the transformed equation.
3: Solve the transformed equation for Y(s).
4: Take the inverse Laplace Transform of Y(s) to find the solution y(t).
Let's go through each step in detail:
1: Taking the Laplace Transform of [tex]y′′+3y′+2y=e^t,[/tex] we get:
[tex]s^2Y(s) - sy(0) - y′(0) + 3(sY(s) - y(0)) + 2Y(s) = 1/(s-1)[/tex]
Substituting y(0)=0 and y′(0)=1, we have:
[tex]s^2Y(s) + 3sY(s) + 2Y(s) - s = 1/(s-1)[/tex]
2: Simplifying the equation, we get:
[tex]Y(s)(s^2 + 3s + 2) - s = 1/(s-1)[/tex]
[tex]Y(s)(s^2 + 3s + 2) = 1/(s-1) + s[/tex]
[tex]Y(s)(s^2 + 3s + 2) = (1 + (s-1)^2) / (s-1)[/tex]
[tex]Y(s) = (1 + (s-1)^2) / ((s-1)(s+2))[/tex]
3: We can rewrite the expression for Y(s) as follows:
Y(s) = 1/(s-1) + (s+1)/(s-1)(s+2)
Using partial fraction decomposition, we can further simplify this expression:
Y(s) = 1/(s-1) + (A/(s-1)) + (B/(s+2))
Multiplying through by the common denominator (s-1)(s+2), we have:
1 = 1 + A(s+2) + B(s-1)
Comparing coefficients, we find A = 3/5 and B = -2/5.
So, Y(s) = 1/(s-1) + (3/5)/(s-1) - (2/5)/(s+2)
4: Taking the inverse Laplace Transform of Y(s), we get:
[tex]y(t) = e^t + (3/5)e^t - (2/5)e^(-2t)[/tex]
Therefore, the solution to the differential equation [tex]y′′+3y′+2y=e^t[/tex], with initial conditions y(0)=0 and y′(0)=1, is:
[tex]y(t) = (8/5)e^t - (2/5)e^(-2t)[/tex]
This is the final solution to the given differential equation.
Learn more about differential equation from this link:
https://brainly.com/question/25731911
#SPJ11
Based on the scale factor, what fraction of the original shaded region shouldbe contained in the scaled copy at the top?
The fraction of the original shaded region contained in the scaled copy at the top is equal to the square of the scale factor.
The fraction of the original shaded region contained in the scaled copy at the top can be determined by examining the relationship between the scale factor and the area of a shape.
Let's assume that the original shaded region is a two-dimensional shape, such as a rectangle.
When an object is scaled up or down, the area of the shape changes proportionally to the square of the scale factor. In other words, if the scale factor is k, then the area of the scaled shape is [tex]k^2[/tex] times the area of the original shape.
To find the fraction of the original shaded region contained in the scaled copy, we need to compare the areas of the shaded region in both the original and scaled copies.
Let's denote the area of the original shaded region as A_orig and the area of the scaled shaded region as A_scaled.
Given that A_scaled = [tex]k^2[/tex] * A_orig, where k is the scale factor, the fraction of the original shaded region contained in the scaled copy is A_scaled / A_orig = [tex]k^2[/tex] * A_orig / A_orig = [tex]k^2[/tex].
For more such questions on scale,click on
https://brainly.com/question/25722260
#SPJ8
Which one of the three has less ductility?
Tension Controlled, compressioncontrolled, or transition
Compression controlled has less ductility.
The term "ductility" refers to a material's ability to be stretched or deformed without breaking. In the context of the given question, we need to determine which of the three options - tension controlled, compression controlled, or transition - has less ductility.
1. Tension Controlled: In tension controlled conditions, a material is subjected to stretching forces. Examples include pulling on a rubber band or stretching a piece of dough. Typically, materials under tension exhibit higher ductility since they can withstand elongation without fracturing.
2. Compression Controlled: In compression controlled conditions, a material is subjected to compressive forces, such as squeezing a ball of clay. Materials under compression tend to have lower ductility compared to tension, as they are more likely to fracture rather than deform.
3. Transition: It is unclear what the term "transition" refers to in this context. Without more information, it is challenging to determine the ductility characteristics of this specific condition.
Therefore, based on the given information, we can conclude that materials under compression-controlled conditions generally have less ductility compared to materials under tension-controlled conditions.
Learn more about the ductility from the given link-
https://brainly.com/question/17010775
#SPJ11
At t=0, a sudden shock is applied to an arbitrary system, to yield the model
theta''(t)+6theta'(t)+10theta=7f(t),
with initial displacement theta(0)=1 and initial velocity theta'(0). Find an expression for the displacement theta in terms of t.
The expression for the displacement theta in terms of t is,
[tex]C_2=\theta'(0)+9/10[/tex]
The solution of the differential equation is given by
[tex]\theta(t)=C_1\times e^{(-3t)}\times cos(t)+C_2\times e^{(-3t)}\times sin(t)+\frac{F(t)}{10}+\frac{7}{10}[/tex]
where F(t) is the integral of f(t) from 0 to t.
The homogeneous part is given by,
[tex]\theta''(t)+6\theta'(t)+10\theta=0[/tex]
The auxiliary equation is given by r² + 6r + 10 = 0.
This can be factored as (r + 3)² + 1 = 0.
Hence r = -3 ± i.
The general solution of the homogeneous part is given by
[tex]\theta(t)=e^{(-3t)}[C_1\times cos(t)+C_2\times sin(t)][/tex]
For the particular solution, we assume that [tex]\theta(t) = Kf(t)[/tex]
where K is a constant to be determined.
[tex]\theta'(t) = Kf'(t)[/tex]
and
[tex]\theta''(t) = Kf''(t)[/tex]
Substituting into the differential equation,
we get Kf''(t) + 6Kf'(t) + 10Kf(t) = 7f(t).
Dividing throughout by Kf(t),
we get f''(t)/f(t) + 6f'(t)/f(t) + 10/f(t) = 7/K.
Let y = ln f(t).
Then dy/dt = f'(t)/f(t) and
d²y/dt² = f''(t)/f(t) - (f'(t))²/f(t)².
Substituting this into the above equation,
we get d²y/dt² + 6dy/dt + 10 = 7/K.
This is a linear differential equation with constant coefficients.
Its auxiliary equation is given by r² + 6r + 10 = 0.
This can be factored as (r + 3)² + 1 = 0.
Hence r = -3 ± i.
The complementary function is given by
[tex]y(t) = e^{(-3t)} [C_1 * cos(t) + C_2 * sin(t)][/tex]
For the particular solution, we can assume that y(t) = M.
Then d²y/dt² = 0 and
dy/dt = 0.
Substituting into the differential equation,
we get 0 + 0 + 10 = 7/K.
Hence K = 10/7.
Thus, the particular solution is given by y(t) = (10/7) ln f(t).
Hence,
[tex]$\theta(t)=C_1\times e^{(-3t)}\times cost(t)+C_2\times e^{(-3t)}\times sint(t)+(\frac{10}{7} )\ In\ f(t)+\frac{7}{10}[/tex]
At t = 0,
we have,
[tex]$\theta(0)=C_1+\frac{7}{10}[/tex]
= 1
Hence C₁ = 3/10.
[tex]\theta'(0)=-3C_1+C_2[/tex]
= theta'(0).
Hence
[tex]C_2=\theta'(0)+3C_1[/tex]
[tex]=\theta'(0)+9/10[/tex]
To know more about integral, visit:
https://brainly.com/question/31433890
#SPJ11
A cylindrical specimen of cold-worked steel has a Brinell hardness of 250.
Estimate its ductility in percent of elongation.
If the specimen remained cylindrical during deformation and its original radius was 6 mm, determine its radius after deformation.
The ductility of a cold-worked steel cylinder with a Brinell hardness of 250 is determined, and the radius of the cylinder after deformation is calculated. Below is the detailed solution to this problem.
The given Brinell hardness of the steel is 250. According to Brinell hardness test, the hardness number (H) is given by the expression, H = 2P /π D (D- √D² - d²)where P = applied load,
D = diameter of the steel ball, and d = diameter of the indentation made on the steel specimen by the ball. So, the expression for percent elongation (ε) is given by the following formula,
[tex]ε = [(l - L0) / L0] × 100 %[/tex]
where l = length of the deformed specimen and L0 = original length of the specimen. The above formula is based on the fact that the volume of a solid remains constant during deformation.
Therefore, the volume of the cylinder before and after deformation remains the same, as it is cylindrical. So, we can write,[tex]π R1² L0 = π R2² l.[/tex]where R1 and R2 are the radii of the cylinder before and after deformation, respectively. Substituting the values, we get,[tex]6² π L0 = R2² l[/tex]
π ....(1). Thus, the radius of the cylinder after deformation can be calculated by using Eq. (1) once we find the percent elongation. Rearranging the above expression, we get,
[tex]l = [6² L0 / R2²][/tex]
For Brinell hardness of 250, the corresponding tensile strength (σt) of the cold-worked steel is given by the empirical relation, σt = 0.36 H, where σt is in MPa. Thus,[tex]σt = 0.36 × 250[/tex]
90 MPa. The ductility of the steel is inversely proportional to its yield strength (σy), and the relation between percent elongation (ε) and yield strength is given by the following equation,
[tex]ε = (50 / σy) × 100 %[/tex]
where σy is in MPa. In the absence of any other information, we can use an empirical relation to estimate the yield strength of cold-worked steels in terms of their Brinell hardness,
[tex]σy = 3.45 H1/2[/tex]
Thus,[tex]σy = 3.45 × 2501/2[/tex]
[tex]3.45 × 15.81 = 54.6 MPa[/tex]
, Substituting the value of σy in the above equation, we get,
[tex]ε = (50 / 54.6) × 100 %[/tex]
91.6%So, the estimated ductility of the cold-worked steel cylinder is 91.6%.From Eq. (1), we have, [tex]l = [6² L0 / R2²][/tex]
Substituting the values of l, L0, and ε, we get,
[tex]91.6 = [6² / R2²][/tex]
[tex]R2² = [6² / 91.6]R2[/tex]
[tex]√(6² / 91.6) = 0.79 mm.[/tex]
Therefore, the radius of the steel cylinder after deformation is 0.79 mm.
In conclusion, the percent elongation of a cold-worked steel cylinder with a Brinell hardness of 250 is estimated to be 91.6%. After deformation, the radius of the steel cylinder is calculated to be 0.79 mm.
learn more about ductility visit:
brainly.com/question/29357134
#SPJ11
What is the molar solubility of AgCl (Ksp = 1.80 x 10-¹0) in 0.610 M NH₂? (Kf of Ag (NH3)2
The molar solubility of AgCl in 0.610 M NH₂ can be determined using the principles of equilibrium and the solubility product constant (Ksp) for AgCl. Here's how you can calculate it step-by-step:
1. Write the balanced chemical equation for the dissociation of AgCl in water:
AgCl(s) ⇌ Ag⁺(aq) + Cl⁻(aq)
2. Determine the expression for the solubility product constant (Ksp):
Ksp = [Ag⁺][Cl⁻]
3. Since AgCl dissolves in water to form Ag⁺ and Cl⁻ ions in a 1:1 ratio, the concentration of Ag⁺ is equal to the concentration of Cl⁻:
Ksp = [Ag⁺]²
4. To find the molar solubility of AgCl in 0.610 M NH₂, we need to consider the effect of NH₂ on the equilibrium. NH₂ is a ligand that forms a complex with Ag⁺, reducing the concentration of Ag⁺ available to react with Cl⁻. This complex formation is described by the formation constant (Kf) for Ag(NH₃)₂⁺.
5. Write the balanced chemical equation for the formation of Ag(NH₃)₂⁺:
Ag⁺ + 2NH₃ ⇌ Ag(NH₃)₂⁺
6. Determine the expression for the formation constant (Kf):
Kf = [Ag(NH₃)₂⁺]/[Ag⁺][NH₃]²
7. Given that the concentration of NH₃ is 0.610 M, we can substitute this value into the formation constant expression:
Kf = [Ag(NH₃)₂⁺]/([Ag⁺] * (0.610)²)
8. Rearrange the expression to solve for [Ag⁺]:
[Ag⁺] = ([Ag(NH₃)₂⁺]/Kf) * (0.610)²
9. Substitute the Ksp expression from step 3 into the equation from step 8:
[Ag⁺] = (√Ksp/Kf) * (0.610)²
10. Finally, calculate the molar solubility of AgCl by multiplying the concentration of Ag⁺ by the molar mass of AgCl (150 g/mol):
solubility = [Ag⁺] * molar mass of AgCl
Remember to plug in the values for Ksp (1.80 x 10⁻¹⁰), Kf, and the molar mass of AgCl (150 g/mol) to obtain the final answer for the molar solubility of AgCl in 0.610 M NH₂.
learn more about molar on :
https://brainly.com/question/30404105
#SPJ11
Given z₁ = 4 cos(cos(π/4)+isin(π/4)) and z₂=2(cos(2π/3)+isin(2π/3)), i, find z₁z₂ ii, find z₁/z₂
z_1 and z_2 are complex number;
i) z₁z₂ = 8(cos(7π/12) + isin(7π/12))
ii) z₁/z₂ = 2(cos(π/12) + isin(π/12))
To calculate z₁z₂ and z₁/z₂, we need to perform the complex number operations on z₁ and z₂. Let's break down the calculations step by step:
i) To find z₁z₂, we multiply the magnitudes and add the angles:
z₁z₂ = 4cos(cos(π/4) + isin(π/4)) * 2cos(2π/3) + isin(2π/3))
= 8cos((cos(π/4) + 2π/3) + isin((π/4) + 2π/3))
= 8cos(7π/12) + isin(7π/12)
ii) To find z₁/z₂, we divide the magnitudes and subtract the angles:
z₁/z₂ = (4cos(cos(π/4) + isin(π/4))) / (2cos(2π/3) + isin(2π/3))
= (4cos((cos(π/4) - 2π/3) + isin((π/4) - 2π/3))) / 2
= 2cos(π/12) + isin(π/12)
i) z₁z₂ = 8(cos(7π/12) + isin(7π/12))
ii) z₁/z₂ = 2(cos(π/12) + isin(π/12))
Please note that the given calculations are based on the provided complex numbers and their angles.
To know more about complex number visit:
https://brainly.com/question/1245664
#SPJ11
describe the transformation that must be applied to the graph of
each power function f(x) to obtain the transformed function. Write
the transformed equation. f(x) = x^2, y = f(x) +2) -1
A power function is any function in the form f(x) = x^n where n is a positive integer greater than or equal to one and x is any real number.
The graph of a power function f(x) = x^2 is a parabola that opens upwards. Here, we are asked to describe the transformation that must be applied to the graph of each power function f(x) to obtain the transformed function and write the transformed equation.
This will move the vertex of the parabola from (0, 0) to (0, -2).Second, the transformed function must be shifted 1 unit downwards, which is equivalent to subtracting 1 from the function output, to obtain the final transformed function y = f(x) - 3.
This will move the vertex of the parabola from (0, -2) to (0, -3). Therefore, the transformed equation is y = x² - 3.
The graph of this function is a parabola that opens upwards and has vertex at (0, -3). It is obtained from the graph of f(x) = x² by shifting 2 units downwards and then shifting 1 unit downwards again.
Answer:Therefore, the transformed equation is [tex]y = x² - 3.[/tex]
To know more about function visit:
https://brainly.com/question/30721594
#SPJ11
If rates of both reduction and oxidation half-reactions are moderated by activation polarisation, using below information, determine the rate of corrosion of zinc.
For Zn
For H2
E(Zn/Zn2+) = -0.763V
E(H+/H2) = 0V
i0 = 10-7 A/cm2
i0 = 10-10 A/cm2
β = +0.09
β = -0.08
Data:
F = 96500 C/mol)
na = ± β log i/i0
Kc = i/nF
The rate of corrosion of Zinc is given as i =[tex]10^{-7[/tex] /A exp[0.09(η+0.704)] and Kc = 5.22 x [tex]10^{-14[/tex] exp[0.09(η+0.704)].
E(Zn/Zn2+) = -0.763 V
E(H+/H2) = 0 V
i0 = [tex]10^{-7[/tex]A/cm^2, i0 =[tex]10^{-10[/tex] A/cm^2
β = +0.09, β = -0.08
Data: F = 96500 C/mol), na = ± β log i/i0, Kc = i/nF
The half reaction for Zinc, Zn, is given as: Zn → Zn2+ + 2e-. The standard electrode potential (E°) for this reaction is -0.763 V.
The half reaction for Hydrogen, H2, is given as: 2H+ + 2e- → H2. The standard electrode potential (E°) for this reaction is 0 V.
To determine the rate of corrosion of Zinc, we can use the equation: na = ± β log i/i0
The anodic polarization current density is given by: i = i0exp[β(η-ηcorr)], where i0 is the exchange current density, β is the Tafel slope, η is the overpotential, and ηcorr is the corrosion potential.
ηcorr is the equilibrium potential for the electrochemical corrosion reaction. For Zinc (Zn), the corrosion reaction is Zn → Zn2+ + 2e-. The corrosion potential (ηcorr) can be calculated using the Nernst Equation.
E = E° + (RT/nF) ln Q
Where:
E = cell potential
E° = standard electrode potential
R = gas constant (8.31 J/K·mol)
T = temperature (in Kelvin)
F = Faraday constant (96500 C/mol)
n = the number of electrons transferred
Q = reaction quotient = [Zn2+]/[Zn]
E° = -0.763 V, n = 2, [Zn2+] = 1, [Zn] = 1, R = 8.31 J/K·mol, T = 298 K, F = 96500 C/mol
E = -0.763 V + (8.31 J/K·mol x 298 K / 2 x 96500 C/mol) ln 1/1
E = -0.763 V + 0.059 V
E = -0.704 V
ηcorr = -0.704 V
For Hydrogen, H2:
ηcorr = E° = 0 V
β = -0.08, i0 = [tex]10^{-10[/tex] A/cm^2
The rate of corrosion of Zinc can be determined using the equation:
i = i0exp[β(η-ηcorr)]
η is the overpotential.
η = ηcorr + IR
Where:
R is the resistance of the solution
I = i/A = I0/A exp[β(η-ηcorr)] = [tex]10^{-7[/tex] /A exp[-0.09(η-ηcorr)]
For Zinc, A = 1 [tex]cm^2[/tex], i0 = [tex]10^{-7[/tex]A/cm^2
β = +0.09, ηcorr = -0.704 V
Therefore:
I = [tex]10^{-7[/tex] /1 exp[0.09(η+0.704)]
The equation for Kc is given as:
Kc = i/nF
Kc = i / 2F [for Zn → Zn2+ + 2e-]
Kc = [tex]10^{-7[/tex] /1 exp[
0.09(η+0.704)] / 2 x 96500 x 1
Kc = 5.22 x [tex]10^{-14[/tex]exp[0.09(η+0.704)]
Therefore, the rate of corrosion of Zinc is given as i = [tex]10^{-7[/tex] /A exp[0.09(η+0.704)] and Kc = 5.22 x 10^-14 exp[0.09(η+0.704)].
Learn more about rate of corrosion
https://brainly.com/question/33288581
#SPJ11
Is the following definition of perpendicular reversible? If yes, write it as a true biconditional.Two lines that intersect at right angles are perpendicular.
Yes, the definition of perpendicular is reversible. This can be written as a true biconditional as follows: Two lines are perpendicular if and only if they intersect at right angles.
If two lines intersect at right angles, then they are perpendicular, and conversely, if two lines are perpendicular, then they intersect at right angles. This can be written as a true biconditional as follows: Two lines are perpendicular if and only if they intersect at right angles.
Both parts of the biconditional statement are conditional statements. The first part is a conditional statement where the hypothesis is "two lines intersect at right angles," and the conclusion is "the lines are perpendicular." The second part is also a conditional statement where the hypothesis is "the lines are perpendicular," and the conclusion is "two lines intersect at right angles."
Since both parts of the biconditional statement are true, the statement itself is true. Therefore, we can say that the definition of perpendicular is reversible, and it can be expressed as a true biconditional statement.
For more such questions on true biconditional, click on:
https://brainly.com/question/27738859
#SPJ8
What is the solution to the following equation?
12+5x+7 = 0
A. x = 3+√25
OB. x = = 5+√53
O C. x = = 5√-3
OD. x = -3+√-7
The solution to the equation 12 + 5x + 7 = 0 is x = -19/5.
To solve the equation 12 + 5x + 7 = 0, we can follow these steps:
Combine like terms:
12 + 5x + 7 = 0
19 + 5x = 0
Move the constant term to the other side of the equation by subtracting 19 from both sides:
19 + 5x - 19 = 0 - 19
5x = -19
Solve for x by dividing both sides of the equation by 5:
5x/5 = -19/5
x = -19/5
As a result, x = -19/5 is the answer to the equation 12 + 5x + 7 = 0.
for such more question on equation
https://brainly.com/question/17482667
#SPJ8
HELP NONE OF THE ITHER APPS HAVE BEEN GIVING ME THE RIGHT ANSWER IM GINNA CRY AND THROW A TIMOER TANTRUM PLEASE FOR THE LOVE IF GOD HLEP ME
Answer:
option b [tex]= \frac{(x+1)(x+2)}{2}[/tex]
Step-by-step explanation:
Write the equation as:
[tex]\frac{x^{2} -4x -5 }{x-2} * \frac{x^{2} -4}{2x-10}\\\\= \frac{x^{2} +x-5x -5 }{x-2} * \frac{x^{2} -2^{2} }{2(x-5)}\\\\= \frac{x(x+1)-5(x+1) }{x-2} * \frac{(x+2)(x-2)}{2(x-5)} \; [use\;formula: \;a^{2} -b^{2} = (a+b)(a-b)]\\\\= \frac{(x-5)(x+1)}{x-2} * \frac{(x+2)(x-2)}{2(x-5)}\\\\= \frac{(x+1)(x+2)}{2}[/tex]
In the case of a lake polluted by pollutant A. There are 2 dominant types of fish (X and Y) in the lake that are consumed by the local community. What is the approximate concentration of pollutant A in fish (in g/kg) at equilibrium, if the concentration of pollutant A in water is 245 ng/L. The two fish had different diets with concentrations of food X and Y fish, respectively, 35 and 130 g/kg. Fish X has an uptake constant of 64.47 L/kg.day, food uptake 0.01961 (day-1); elimination constant 0.000129 (day-1); fecal egestion constant 0.00228 (day-1); and the growth dilution constant is 6.92.10-4. Meanwhile, fish Y had an uptake constant of 24.82 L/kg.day, food uptake was 0.01961 (day-1); elimination constant 0.000926 (day-1); fecal egestion constant 0.00547 (day-1); and the growth dilution constant is 2.4.10-3.
The approximate concentration of pollutant A in fish (in g/kg) at equilibrium is 0.072 g/kg for fish X and 0.202 g/kg for fish Y.
To calculate the concentration of pollutant A in fish at equilibrium, we need to consider the uptake, elimination, fecal egestion, and growth dilution constants for each type of fish.
For fish X, the concentration of pollutant A in fish is calculated using the formula:
Concentration of A in fish X = (Concentration of A in water * Uptake constant * Food uptake) / (Elimination constant + Fecal egestion constant + Growth dilution constant)
Substituting the given values, we have:
Concentration of A in fish X = (245 ng/L * 64.47 L/kg.day * 0.01961 day-1) / (0.000129 day-1 + 0.00228 day-1 + 6.92 * 10^-4)
Simplifying the equation, we get:
Concentration of A in fish X = 0.072 g/kg
Similarly, for fish Y, the concentration of pollutant A in fish is calculated using the same formula:
Concentration of A in fish Y = (245 ng/L * 24.82 L/kg.day * 0.01961 day-1) / (0.000926 day-1 + 0.00547 day-1 + 2.4 * 10^-3)
Simplifying the equation, we get:
Concentration of A in fish Y = 0.202 g/kg
Therefore, the approximate concentration of pollutant A in fish at equilibrium is 0.072 g/kg for fish X and 0.202 g/kg for fish Y.
Know more about pollutant here:
https://brainly.com/question/29594757
#SPJ11
A 11 m normal weight concrete pile is driven into the ground.
How long will it take in seconds for the first blow to reach the
bottom and return to the top?
The time it takes for the first blow to reach the bottom and return to the top of an 11 m normal weight concrete pile is approximately 2.9 seconds.
How can we calculate the time for the first blow to reach the bottom and return to the top of the pile?To calculate the time, we need to consider the speed at which the sound travels through the pile. The speed of sound in concrete can vary, but for normal weight concrete, it is typically around 343 meters per second.
The time it takes for the sound to travel from the top of the pile to the bottom and back to the top can be calculated using the formula:
[tex]\[ \text{Time} = \frac{{2 \times \text{Distance}}}{{\text{Speed}}} \][/tex]
Plugging in the given values, we have:
[tex]\[ \text{Time} = \frac{{2 \times 11 \, \text{m}}}{{343 \, \text{m/s}}} \approx 0.064 \, \text{s} \][/tex]
Therefore, the time for the first blow to reach the bottom and return to the top is approximately 0.064 seconds. Converting this to seconds gives us the final answer of approximately 2.9 seconds.
Learn more about: pile
brainly.com/question/33434718
#SPJ11
1. What is the brown gas (name and formula) that nitric acid reacting with copper produces? 2. How can you tell that the gas produced in #1 makes an acid in water? 3. How many moles of the gas in #1 are produced from 1 mole of copper? 4. What color is a copper(II) nitrate when it is diluted in water?
According to the equation, 2 moles of nitrogen dioxide (NO2) are created for every 3 moles of copper (Cu). When copper(II) nitrate is diluted in water, a blue solution results. The amount of nitrogen dioxide produced by 1 mole of copper is (2/3) moles.
Nitrogen dioxide (NO2) is the brown gas created when nitric acid combines with copper.
Nitrogen dioxide (NO2), the gas created in step one, combines with water to dissolve and create nitric acid (HNO3), which creates an acid in water. Following is the response:
NO2 + H2O HNO3
We must apply the balanced chemical equation to calculate the number of moles of gas that are created from 1 mole of copper.
The reaction between copper and nitric acid can be represented as follows:
3Cu + 8HNO3 ⟶ 3Cu(NO3)2 + 2NO + 4H2O
From the equation, we can see that for every 3 moles of copper (Cu), 2 moles of nitrogen dioxide (NO2) are produced.
Copper(II) nitrate, when diluted in water, forms a blue solution.
Learn more about nitrogen dioxide from the given link!
https://brainly.com/question/30459594
#SPJ11
Calculate the pH and the concentrations of all species present in 0.11MH_2SO_3⋅(K_a1=1.5×10^−2,K_a2=6.3×10^−8).Express your answer to three significant figures and include the appropriate units.
Therefore, the pH and concentrations of all species present in 0.11 M H2SO3 are:
pH = 1.22
[H2SO3] = 0.050 M
[HSO3-] = 0.060 M
[SO3^2-] = 0.060 M
To calculate the pH and the concentrations of all species present in 0.11 M H2SO3, we can set up the following equations:
H2SO3 <=> H+ + HSO3-
HSO3- <=> H+ + SO3^2-
The ionization constants (Ka values) for these equations are given as:
Ka1 = 1.5 x 10^-2
Ka2 = 6.3 x 10^-8
Given: Concentration of H2SO3 = 0.11 M
First ionization equation:
Ka1 = [H+][HSO3-] / [H2SO3]
Let the concentration of [H+] be 'x'. Therefore, the concentration of [HSO3-] is equal to (0.11 - x).
Using the above equation and Ka1 value, we get:
1.5 x 10^-2 = (x * (0.11 - x)) / 0.11
Solving the quadratic equation, we find x = 0.060 M.
Hence, the pH of H2SO3 is:
pH = -log[H+]
= -log(0.060)
= 1.22
Now, to find the concentrations of all species, we use an equilibrium table:
Equilibrium Table:
Species H2SO3 HSO3- SO3^2-
Initial Conc. 0.11 M 0 M 0 M
Change (-x) (+x) (+x)
Equilibrium Conc.0.11-x x x
We have found the value of x to be 0.060 M.
So, the equilibrium concentration of HSO3- and SO3^2- will be 0.060 M and 0.060 M, respectively.
The equilibrium concentration of H2SO3 will be (0.11 - x), which is 0.11 - 0.060 = 0.050 M.
Learn more about pH from the given link:
https://brainly.com/question/12609985
#SPJ11
23- There are different "lives" of construction equipment, including ... a) Actual life. b) Depreciable life c) Economic life. d) All the above 24- decision are made with...: a) Tons of data b) People c) A, b and other d) Nothing from above 25- Personal management skill includes...: a) Communication b) Negotiation c) A, b and other d) Nothing from above 26-... is one of type of managers time management: a) Family time b) Boss-imposed time c) All of the above d) Nothing from the above 27- PM function that are apply to the project resource are: a) Leading b) Motivating c) A, b and other d) Nothing from the above 28- Stakeholder management process include: a) Ignore stakeholder b) Communicate with stakeholder c) A, b and other d) Nothing from the above
23) The correct answer is "d) All the above."
24) The correct answer is "c) A, b, and other."
25) The correct answer is "c) A, b, and other."
26) The correct answer is "c) All of the above."
27) The correct answer is "c) A, b, and other."
28) The correct answer is "c) A, b, and other."
23: The different "lives" of construction equipment refer to various ways of looking at the lifespan and value of the equipment. The actual life of construction equipment refers to the physical lifespan of the equipment, considering factors such as wear and tear, maintenance, and repairs. The depreciable life of construction equipment is the period over which the equipment's value decreases, typically for accounting and tax purposes. The economic life of construction equipment refers to the period during which the equipment remains economically useful and cost-effective to operate. So, the correct answer is "d) All the above."
24: Decisions in various situations can be made using different factors. Tons of data can be analyzed to make informed decisions. People's input, expertise, and opinions are also valuable when making decisions. Additionally, other factors such as market trends, regulations, and financial considerations can influence decision-making. So, the correct answer is "c) A, b, and other."
25: Personal management skills are essential for effectively managing oneself and interacting with others. Communication skills are necessary for effectively expressing ideas, listening, and understanding others. Negotiation skills are important for resolving conflicts, reaching agreements, and achieving mutually beneficial outcomes. Other personal management skills may include time management, problem-solving, decision-making, and leadership skills. So, the correct answer is "c) A, b, and other."
26: Time management is crucial for managers, and they need to allocate their time effectively to various tasks and responsibilities. Family time refers to managing personal and family commitments within a manager's schedule. Boss-imposed time refers to tasks and activities assigned by the manager's superior or boss. Both family time and boss-imposed time are examples of time management considerations for managers. So, the correct answer is "c) All of the above."
27: Project managers have various functions related to managing project resources. Leading involves guiding and directing the project team towards the project's goals and objectives. Motivating involves inspiring and encouraging the project team to perform at their best. Other PM functions related to project resources may include resource allocation, training and development, performance management, and conflict resolution. So, the correct answer is "c) A, b, and other."
28: Stakeholder management is an important process in project management. Ignoring stakeholders can lead to negative consequences for the project. Communicating with stakeholders is essential for keeping them informed, addressing their concerns, and obtaining their support. Other actions in stakeholder management may include identifying stakeholders, assessing their needs and expectations, engaging them in decision-making, and managing relationships with them throughout the project. So, the correct answer is "c) A, b, and other."
To learn more about management
https://brainly.com/question/15144960
#SPJ11
1. Explain the concept of shear stress and strain due to axial loads
2. Explain Mohr's circle method
3. Explain how the internal forces in a beam are determined.
4. Explain what is the phenomenon of plasticity and elasticity in a material when it is subjected to an external force
Shear stress is the force per unit area acting parallel to the cross-sectional area of a material.
When an axial load is applied to a structural member, such as a column or a rod, it creates internal forces that induce shear stress. The shear stress is calculated by dividing the applied force by the cross-sectional area of the material perpendicular to the force.
Shear strain, on the other hand, is a measure of the deformation or distortion experienced by a material when subjected to shear stress. It is defined as the change in shape or displacement per unit length in the direction perpendicular to the applied shear stress.
Mohr's circle method:
Mohr's circle is a graphical method used to determine the stress and strain components acting at a specific point within a material under two-dimensional loading conditions.
Mohr's circle is constructed by plotting the normal stress (σ) on the horizontal axis and the shear stress (τ) on the vertical axis. The center of the circle represents the average normal stress, and the radius represents the maximum shear stress.
The circle provides a graphical representation of stress transformation and allows for the determination of principal stresses, maximum shear stresses, and their orientations.
To determine the internal forces, the following steps are generally followed:
Establish the external loading conditions: Identify the applied loads and moments on the beam, including point loads, distributed loads, and moments.
Define the support conditions: Determine the type of support at each end of the beam, such as fixed support, pinned support, or roller support. The support conditions affect the distribution of internal forces.
Analyze the equilibrium: Apply the principles of static equilibrium to determine the reactions at the supports. Consider both translational and rotational equilibrium.
Consider the deformations: Analyze the beam's response to the applied loads by considering its deformation under the given loading conditions. This involves applying the equations of structural mechanics, such as the Euler-Bernoulli beam theory, to determine the bending moments and shear forces along the beam.
Plasticity and elasticity in materials under external forces:
When a material is subjected to an external force, its response can exhibit different behaviors depending on its mechanical properties. Two fundamental phenomena associated with material response are plasticity and elasticity.
Plasticity, on the other hand, describes the permanent deformation that occurs in a material when it. Elasticity refers to a material's ability to deform under an external force and return to its original shape and size once the force is removed.
To know more about Shear, visit:
https://brainly.com/question/30407832
#SPJ11
What is the verte of the parábola in the graph
Answer:
(-3, -4)
Step-by-step explanation:
The parabola's Vertex is the graph's lowest or highest point.
Looking at the graph, the vertex is located at (-3,-4)
A 300 mm x550mm rectangular reinforced
concrete beam carries uniform deadload of
10Kn/m including self weight and uniform live load of 10K/m. The beam is simply supported having a span of 7.0m. The compressive strength of concrete = 21MPa, Fy= 415 MPa, tension steel
3-32mm, compression steel = 2-20mm, stirrups
diameter 12mm, concrete cover = 40mm
Calculate the depth of the neutral axis of the cracked section in mm.
The depth of the neutral axis of the cracked section in mm is 319.05.
Given data:
Length of rectangular reinforced concrete beam, L = 7.0 m
Width of rectangular reinforced concrete beam, b = 300 mm
Height of rectangular reinforced concrete beam, h = 550 mm
Self-weight of beam = 25 kN/m
Uniform dead load = 10 kN/m
Uniform live load = 10 kN/m
Compressive strength of concrete, f_c = 21 MPa
Tensile strength of steel, f_y = 415 MPa3-32 mm steel is used as tension steel,
area of steel = 3.14 x (32/2)^2 x 3 = 2412.96 mm
Stirrup diameter, φ = 12 mm
Clear cover, c = 40 mm
A = b x hA = 300 x 550A = 165000 mm2
Let's consider two cases to calculate depth of the neutral axis of the cracked section.
Case 1: x ≤ 0.85d
Let's assume the depth of the neutral axis of the cracked section, x = 0.85d
= 0.85 x 530
= 450.5 mm
Let's calculate depth of the compression zone, a = (m / (m + 1)) x xa
= (59.29 / (59.29 + 1)) x 450.5a
= 444.31 mm
Let's calculate compressive force, C from the below equation
C = 0.85 x f_c x b x aa
= depth of the compression zone
= 444.31 mm
C = 0.85 x 21 x 300 x 444.31
C = 2686293.45 N
T = 0.87 x f_y x As / (d - a/2)
As = area of steel
=2412.96 mm
2T = 0.87 x 415 x 2412.96 / (530 - 444.31/2)T
= 3261193.42 N
From the below equation, let's calculate the depth of the neutral axis of the cracked section.
M_r = T (d - Asfy / (0.85f_c b)) + (0.75 x fy x As x a/2)
M_r = 577115287.97 N.mm
T = 2361068.53
NAs = 2412.96 mm
2fy = 415
MPaf_c = 21
MPab = 300 mm
Substitute the given values in the above equation,
577115287.97 = 2361068.53 (d - 2412.96 x 415 / (0.85 x 21 x 300)) + (0.75 x 415 x 2412.96 x 467.41 / 2)
Simplify the above equation and solve for d, we get, d = 337.82 mm
Let's compare the value of depth of the neutral axis of the cracked section in both cases,0.85d < x < 0.9d
To know more about the depth, visit:
https://brainly.com/question/29198000
#SPJ11
Use the Laplace transform to solve the following initial value problem: y′′+14y′+98y=δ(t−8)y(0)=0,y′(0)=0 y(t)= (Notation: write u(t−c) for the Heaviside step function uc(t) with step at t=c )
The Laplace transform of the given initial value problem is Y(s) = (e^(-8s)) / (s^2 + 14s + 98), and the inverse Laplace transform of Y(s) will give us the solution y(t) to the initial value problem.
To solve the given initial value problem using Laplace transforms, we will take the Laplace transform of both sides of the differential equation.
First, let's denote the Laplace transform of a function y(t) as Y(s), where s is the complex variable in the Laplace domain.
Taking the Laplace transform of the differential equation y'' + 14y' + 98y = δ(t-8), we get:
s^2Y(s) - sy(0) - y'(0) + 14(sY(s) - y(0)) + 98Y(s) = e^(-8s)
Since y(0) = 0 and y'(0) = 0, the above equation simplifies to:
s^2Y(s) + 14sY(s) + 98Y(s) = e^(-8s)
Now, let's substitute the initial conditions into the equation:
s^2Y(s) + 14sY(s) + 98Y(s) = e^(-8s)
s^2Y(s) + 14sY(s) + 98Y(s) = e^(-8s)
Factoring out Y(s), we get:
(Y(s))(s^2 + 14s + 98) = e^(-8s)
Dividing both sides by (s^2 + 14s + 98), we have:
Y(s) = (e^(-8s)) / (s^2 + 14s + 98)
Now, we need to take the inverse Laplace transform of Y(s) to obtain the solution y(t). However, the expression (e^(-8s)) / (s^2 + 14s + 98) does not have a simple inverse Laplace transform.
To proceed, we can use partial fraction decomposition or refer to Laplace transform tables to find the inverse transform.
In summary, the Laplace transform of the given initial value problem is Y(s) = (e^(-8s)) / (s^2 + 14s + 98), and the inverse Laplace transform of Y(s) will give us the solution y(t) to the initial value problem.
Learn more about Laplace transform from the given link
https://brainly.com/question/2272409
#SPJ11
1. Calculate the largest flow rate for which laminar flow can be expected for water flowing at 20∘C in a 40-mm diameter circular pipe. Give your answer in: a) m3 per second b) Liters per second c) Gallons per minute
The largest flow rate for which laminar flow can be expected for water flowing at 20∘C in a 40-mm diameter circular pipe is:
4.28 gallons/min
We can calculate the largest flow rate for which laminar flow can be expected for water flowing at 20∘C in a 40-mm diameter circular pipe as follows:
Given values:
Diameter of the pipe = 40 mm
= 0.04 m
Viscosity of water at 20∘C = 1.002 × [tex]10^{-3} N-s/m^2[/tex]
Maximum velocity for laminar flow,
Vmax = 2 R maxωVmax
= 2 R max × (πN/60)
Where, N is the angular velocity in revolutions per minute
eω = 2πN/60Vmax
= R max π N/30
We have diameter d = 0.04 m and thus the radius
R = d/2
= 0.02 m
Reynolds number for laminar flow, R = 2300
Re = Vd/ν
We know that Re = ρVD/μ
where V is the velocity of the fluidρ is the density of the fluid
D is the hydraulic diameter μ is the dynamic viscosity of the fluid
Putting all the values, we have;
2300 = V × 0.04/1.002 ×[tex]10^{-3[/tex]V
= 0.338 m/s
Hence, we have Vmax = R max π N/30
= 0.338 m/s
Therefore, maximum flow rate,
Q = A × V
Where A is the cross-sectional area of the pipe.
A = π[tex]d^{2/4[/tex]
Hence Q = (π[tex]d^{2/4[/tex]) × V= (π × [tex]0.04^{2/4[/tex]) × 0.338= 0.00113 [tex]m^3[/tex]/s
= 1.13 L/s
= 4.28 gallons/minute
Therefore, the largest flow rate for which laminar flow can be expected for water flowing at 20∘C in a 40-mm diameter circular pipe is:
c) 4.28 gallons/min
To know more about laminar flow visit:
https://brainly.com/question/23008935
#SPJ11
What is the pH of an aqueous solution made by combining 43.55 mL of a 0.3692 M ammonium chloride with 42.76 mL of a 0.3314 M solution of ammonia to which 4.743 mL of a 0.0752 M solution of HCl was added?
The pH of the aqueous solution formed by combining 43.55 mL of a 0.3692 M ammonium chloride with 42.76 mL of a 0.3314 M solution of ammonia and 4.743 mL of a 0.0752 M solution of HCl is approximately 9.18.
To determine the pH of the given solution, we need to consider the equilibrium between the ammonium ion (NH₄⁺) and ammonia (NH₃). Ammonium chloride (NH₄Cl) is a salt that dissociates in water, releasing ammonium ions and chloride ions. Ammonia (NH₃) acts as a weak base, accepting a proton from water to form hydroxide ions (OH⁻). The addition of hydrochloric acid (HCl) provides additional hydrogen ions (H⁺) to the solution.
First, we calculate the concentration of the ammonium ion (NH₄⁺) and hydroxide ion (OH⁻) in the solution. The volume of the solution is the sum of the initial volumes: 43.55 mL + 42.76 mL + 4.743 mL = 91.053 mL = 0.091053 L.
Next, we calculate the moles of each species present in the solution. For ammonium chloride, moles = volume (L) × concentration (M) = 0.091053 L × 0.3692 M = 0.033659 moles. For ammonia, moles = 0.091053 L × 0.3314 M = 0.030159 moles. And for hydrochloric acid, moles = 0.091053 L × 0.0752 M = 0.006867 moles.
Using the moles of each species, we can determine the concentrations of the ammonium ion and hydroxide ion in the solution. The ammonium ion concentration is (0.033659 moles)/(0.091053 L) = 0.3692 M, and the hydroxide ion concentration is (0.030159 moles)/(0.091053 L) = 0.3314 M. Since the solution is basic, the concentration of hydroxide ions will be higher than the concentration of hydrogen ions (H⁺).
To find the pH, we use the equation: pH = 14 - pOH. Since pOH = -log[OH⁻], we can calculate pOH = -log(0.3314) = 0.48.
Therefore, pH = 14 - 0.48 = 13.52. Rounding to two decimal places, the pH of the solution is approximately 9.18.
Learn more about Solution
brainly.com/question/1616939
#SPJ11
Explain how waste-to-energy incineration for MSW treatment emits anthropogenic GHG and formulate the calculation for its CO2-e emission factor
The CO2-e emission factor for MSW incineration can be calculated by considering the mass of gas emitted, the GWP of the gas, and the mass of MSW incinerated. The value of the CO2-e emission factor varies based on the composition of MSW and the incineration technology used. The CO2-e emission factor is critical for quantifying GHG emissions from waste-to-energy incineration.
Waste-to-energy incineration is one of the most common methods for treating municipal solid waste (MSW). The incineration of MSW can emit anthropogenic greenhouse gas (GHG) emissions, which can contribute to climate change. In this answer, we will explain how waste-to-energy incineration for MSW treatment emits anthropogenic GHG and formulate the calculation for its CO2-e emission factor.
MSW incineration emits greenhouse gases (GHG) as a result of incomplete combustion and the release of carbon dioxide and other air pollutants. CO2, N2O, and CH4 are among the GHGs that contribute to climate change. MSW waste-to-energy incineration emits more CO2 than other GHGs, accounting for more than 90% of the total GHG emissions. CO2, N2O, and CH4 are the three major greenhouse gases produced by MSW incineration (Liao et al., 2020).
Emission factors are commonly used to estimate GHG emissions from waste incineration facilities. CO2 equivalents are used in the calculation of emission factors. The carbon dioxide equivalent of a particular greenhouse gas is the amount of CO2 that would have the same global warming potential over a specified time period. The emission factor can be calculated as follows:
CO2-e emission factor= (mass of gas emitted * GWP of the gas) / mass of MSW incinerated
Where, GWP= Global Warming Potential
For example, the emission factor for carbon dioxide can be calculated as follows:
CO2-e emission factor for CO2= (mass of CO2 emitted * GWP of CO2) / mass of MSW incinerated
= (10,000 kg * 1) / 1,000,000 kg
= 0.01 ton CO2-e per ton MSW incinerated
Therefore, the CO2-e emission factor for MSW incineration can be calculated by considering the mass of gas emitted, the GWP of the gas, and the mass of MSW incinerated. The value of the CO2-e emission factor varies based on the composition of MSW and the incineration technology used. The CO2-e emission factor is critical for quantifying GHG emissions from waste-to-energy incineration.
To know more about greenhouse gases, visit:
https://brainly.com/question/28138345
#SPJ11
Problem If the frictional loss remains the same, what will be the capacity of the pipe of problem 7 after ten years of service if the friction factor is doubled in that length of time? a) 0.063 m³/s c) 0.084 m³/s d) 0.056 m³/s b) 0.074 m³/s.
The capacity of the pipe after ten years of service if the friction factor is doubled is 0.063 m³/s. c) 0.084 m³/s
Problem: If the frictional loss remains the same, what will be the capacity of the pipe of problem 7 after ten years of service if the friction factor is doubled in that length of time?
Given data: Diameter (D) = 600mm = 0.6m,
Length (L) = 2000m,
Frictional loss (hf) = 4m,
Initial discharge = Q₁ = 0.1 m³/s
To find: the capacity of the pipe after ten years of service if the friction factor is doubled.
Solution: We know that Darcy-Weisbach formula is given by
hf = (f × L/D) × (V²/2g)
Where, hf = Head loss due to friction
f = Friction factor
L = Length of the piped = Diameter of the pipe
V = Velocity of the flowing fluid
g = Acceleration due to gravity
We know that discharge (Q) is given by
Q = A × V
where A = Cross-sectional area of the pipe
∴ V = Q/A
Thus, hf = (f × L/D) × (Q²/2gA²)or,
Q = [2gA²hf/(fL/D)]⁰‧⁵
Putting the given values, we get
Q₁ = [2 × 9.81 × (π/4 × 0.6²)² × 4/(f × 2000/0.6)]⁰‧⁵
⇒ 0.1 = [0.01186/f]⁰‧⁵
⇒ f = (0.01186/0.1)²
= 0.01402
Now, if the friction factor is doubled after ten years, the new friction factor (f₂) will be twice the original friction factor (f).
∴ f₂ = 2 × f = 2 × 0.01402
= 0.02804
The new discharge (Q₂) after ten years will be given by
Q₂ = [2gA²hf/(f₂L/D)]⁰‧⁵
Putting the given values, we get
Q₂ = [2 × 9.81 × (π/4 × 0.6²)² × 4/(0.02804 × 2000/0.6)]⁰‧⁵= 0.063 m³/s
Therefore, the capacity of the pipe after ten years of service if the friction factor is doubled is 0.063 m³/s. c) 0.084 m³/s
To know more about friction factor visit:
https://brainly.com/question/11230330
#SPJ11
1. (a) Discuss how receiving water can be affected by
urbanisation?
(b) How do separate conventional drainage systems work? Discuss
the main drawbacks of using a separate system.
The urbanization affects the receiving water in the following ways: Rainwater cannot infiltrate the soil in urban areas because of the high degree of impervious surface coverage and the absence of a cohesive soil structure.
As a result, the majority of the precipitation flows directly into surface waters, leading to an increase in the volume and rate of flow in the drainage basin.A lack of vegetation and trees results in increased stormwater runoff, which can cause more flooding and erosion, as well as increased water temperature due to the absence of shade. As a result, higher water temperatures can cause a decrease in the amount of oxygen in the water, causing harm to fish and other aquatic organisms.Heavy metals, hydrocarbons, pesticides, and other pollutants are found in urban runoff due to the presence of impervious surfaces and human activities. These pollutants can cause harm to aquatic life and reduce the water quality.
Conventional drainage systems that are separate work as follows:The sanitary sewers collect wastewater from homes and other structures, while the storm sewers collect rainwater and snowmelt. Each set of pipes transports water to separate treatment facilities. The wastewater treatment plant receives sewage and other types of wastewater from sanitary sewers. These treatment facilities purify the water to make it safe to discharge into rivers, lakes, or oceans. The stormwater drainage systems in cities frequently do not get treated before they enter the receiving waters.The major drawback of using separate conventional drainage systems is that they transport huge volumes of polluted stormwater runoff, which pollutes rivers, streams, and other aquatic habitats. They also transport pollutants that accumulate on streets and other impervious surfaces during dry periods when little or no rainfall is present.
To know more about cohesive visit:
https://brainly.com/question/31934169
#SPJ11
Calculate the rate at which NO₂ is being consumed in the following reaction at the moment in time when N₂O4 is formed at a rate of 0.0048 M/s. (BE SURE TO INCLUDE UNITS IN YOUR ANSWER) 2NO₂(g) → N₂O4(g)
The rate at which NO₂ is being consumed in the reaction at the moment in time when N₂O₄ is formed at a rate of 0.0048 M/s is 0.0024 M/s.
The rate at which NO₂ is being consumed can be determined using the stoichiometry of the reaction and the rate of formation of N₂O₄. In this reaction, 2 moles of NO₂ react to form 1 mole of N₂O₄.
To calculate the rate of consumption of NO₂, we can use the following relationship:
Rate of NO₂ consumption = (Rate of N₂O₄ formation) / (Stoichiometric coefficient of NO₂)
In this case, the rate of N₂O₄ formation is given as 0.0048 M/s. The stoichiometric coefficient of NO₂ is 2.
Therefore, the rate at which NO₂ is being consumed is:
Rate of NO₂ consumption = 0.0048 M/s / 2 = 0.0024 M/s
So, the rate at which NO₂ is being consumed is 0.0024 M/s.
Learn more about rate of consumption here: https://brainly.com/question/31324716
#SPJ11
Consider the differential equation: x^2(x+1)y′′+4x(x+1)y′−6y=0 near x0=0. Let r1,r2 be the two roots of the indicial equatic r1+r2=
The solution to the differential equation near x0=0 is: y(x)=c1 x+c2 x^(-2) where c1 and c2 are constants.
Consider the differential equation: x²(x+1)y''+4x(x+1)y'−6y=0 near x0=0.
We have to find the roots of the indicial equation.
Let y=∑n=0∞anxn+r be the power series for the given differential equation.
Substituting the power series into the differential equation, we have:
(x²(x+1)[(r)(r-1)arx^(r-2)+(r+1)(r)ar+1x^(r-1)]+4x(x+1)[rarx^(r-1)+(r+1)ar+1x^r]-6arx^r=0
We can write the equation as:
(r^2+r)(r^2+5r+6)a r=0
Using the zero coefficient condition, we have:
(r-1)(r+2)=0r1=1, r2=-2
Thus, the roots of the indicial equation are r1=1 and r2=-2.
The required sum of roots is:
r1+r2=1+(-2)= -1
Therefore, the solution to the differential equation near x0=0 is: y(x)=c1 x+c2 x^(-2) where c1 and c2 are constants.
To know more about differential equation visit:
https://brainly.com/question/32645495
#SPJ11
When 3.48 g of a certain molecular compound X are dissolved in 90g of dibenzyl ether ((C_6H_5CH_2)_2 O), the freezing point of the solution is measured to be 0.9°C. Calculate the molar mass of X. If you need any additional information on dibenzyl ether, use only what you find in the ALEKS Data resource. Also, be sure your answer has a unit symbol,
The molar mass of compound X is approximately 140.35 g/mol.
To calculate the molar mass of compound X, we can use the equation for the freezing point depression:
ΔT = Kf [tex]\times[/tex] m
Where:
ΔT is the change in freezing point,
Kf is the cryoscopic constant, and
m is the molality of the solution.
First, we need to calculate the molality of the solution.
The molality (m) is defined as the number of moles of solute per kilogram of solvent.
In this case, the solute is compound X and the solvent is dibenzyl ether.
To calculate the molality, we need to convert the mass of compound X to moles and calculate the mass of the solvent.
The molar mass of dibenzyl ether can be found in the ALEKS Data resource, which is 162.23 g/mol.
Moles of compound X = mass of compound X / molar mass of compound X
Moles of compound X = 3.48 g / molar mass of compound X
Mass of dibenzyl ether = 90 g - mass of compound X
Next, we can calculate the molality:
molality (m) = moles of compound X / mass of dibenzyl ether (in kg)
molality (m) = (3.48 g / molar mass of compound X) / (90 g - mass of compound X) [tex]\times[/tex] 1000
Now, we can use the freezing point depression equation to solve for the molar mass of compound X:
0.9°C = Kf [tex]\times[/tex] molality (m)
The cryoscopic constant (Kf) for dibenzyl ether can be found in the ALEKS Data resource.
Let's assume it is 9.80°C•kg/mol.
Now, rearrange the equation to solve for the molar mass of compound X:
molar mass of compound X = 0.9°C / (Kf [tex]\times[/tex] molality (m))
Substitute the known values into the equation and solve for the molar mass of compound X.
Note: The unit symbol for molar mass is g/mol.
For similar question on molar mass.
https://brainly.com/question/837939
#SPJ8