Course INFORMATION SYSTEM AUDIT AND CONTROL
7. What are the objectives of application controls?

Answers

Answer 1

Application controls are generally implemented at the transactional level and are an important component of an overall system of internal controls.

The main objective of application controls is to ensure the completeness, accuracy, validity, and authorization of transactions and data input that is significant to the organization. The following are some of the objectives of application controls:

1. Ensuring the validity, accuracy, completeness, and authenticity of the data entered into the system.2. Making sure that the system's data is processed correctly and efficiently.3. Ensuring that transactions are processed in accordance with established procedures, policies, and rules.

To know more about controls visit:

https://brainly.com/question/28346198

#SPJ11


Related Questions

1. Given 2 integers on the command line, compute their sum, difference, product, quotient, remainder, and average.
You can assume the second number won't be 0 (or it's okay if your program crashes when it is 0).
Example
$ java Calculations 2 4
Sum: 6
Difference: -2
Product: 8
Quotient: 0.5
Remainder: 2
Average: 3.0
2. Suppose the grade for the course is computed as0.5⋅a+0.15⋅e1+0.15⋅e2+0.15⋅f+0.05⋅r,where a is the average assignment score, e1 and e2 are scores for final 1 and 2, respectively, f is the final score, and r is the recitation score, all integers in the range 0 to 100.
Given values for the average assignment score, final 1, final 2, and recitations (in that order, on the command line), compute what score you'd need on the final to get an A in the course (a total score of at least 90). You don't need to worry about minor rounding errors due to floating-point arithmetic (as in the example below). Even if it's impossible to get an A (i.e., the final score must be over 100), you should still print the final score needed.
Example
$ java Final 91 88 84 95
93.00000000000003
$ java Final 0 0 0 0
600.0

Answers

Compute the sum, difference, product, quotient, remainder, and an average of two integers given on the command line. And Calculate the final score needed to get an A in a course based on assignment scores, finals, and recitation scores.

For the first scenario, given two integers as command line arguments, you can compute their sum, difference, product, quotient, remainder, and average using basic arithmetic operations. The program can take the input values, perform the calculations, and print the results accordingly.

In the second scenario, the program can calculate the final score needed to achieve an A in a course based on the average assignment score, scores for final exams, and recitation scores provided as command line arguments.

The formula for computing the final score is given as 0.5a + 0.15e1 + 0.15e2 + 0.15f + 0.05*r, where a, e1, e2, f, and r represent the respective scores. The program can evaluate this formula, determine the final score needed to reach a total score of at least 90, and print the result.

To learn more about “arithmetic operations” refer to the https://brainly.com/question/4721701

#SPJ11

A 15-km, 60Hz, single phase transmission line consists of two solid conductors, each having a diameter of 0.8cm. If the distance between conductors is 1.25m, determine the inductance and reactance of the line.

Answers

The inductance of the transmission line is approximately 1.94 mH, and the reactance is approximately 72.7 Ω.

To determine the inductance and reactance of the transmission line, we can use the formula:

L = 2 × 10^-7 × (ln(D/d) + G)

where:

L is the inductance in henries,

D is the distance between the conductors in meters,

d is the diameter of each conductor in meters,

G is the geometric mean of the conductor diameters.

Given:

Distance between conductors (D) = 1.25 m

Diameter of each conductor (d) = 0.8 cm = 0.008 m

First, let's calculate the geometric mean of the conductor diameters:

G = √(d1 × d2) = √(0.008 × 0.008) = 0.008 m

Now, let's calculate the inductance:

L = 2 × 10^-7 × (ln(D/d) + G)

= 2 × 10^-7 × (ln(1.25/0.008) + 0.008)

≈ 2 × 10^-7 × (ln(156.25) + 0.008)

≈ 2 × 10^-7 × (5.049 - 0.003)

≈ 2 × 10^-7 × 5.046

≈ 1.0092 × 10^-6 H

≈ 1.94 mH (rounded to two decimal places)

The inductance of the transmission line is approximately 1.94 mH.

To calculate the reactance, we use the formula:

X = 2πfL

Where:

X is the reactance in ohms,

f is the frequency in hertz,

L is the inductance in henries.

Given:

Frequency (f) = 60 Hz

Inductance (L) ≈ 1.0092 × 10^-6 H

X = 2π × 60 × 1.0092 × 10^-6

≈ 2π × 60 × 1.0092 × 10^-6

≈ 0.381 Ω (rounded to three decimal places)

The reactance of the transmission line is approximately 0.381 Ω, or 381 mΩ.

The inductance of the 15-km, 60Hz, single-phase transmission line is approximately 1.94 mH, and the reactance is approximately 0.381 Ω.

To learn more about transmission, visit    

https://brainly.com/question/27820291

#SPJ11

This problem follows Questions A and B. (Mars radius is 3'390km) This question can be done without the answers to Question A or B (except for the last one). 1- What is the arrival excess velocity v (in km/s), when reaching Mars' sphere of influence (following A, you were on a Hohmann transfer trajectory)? (Give a signed answer here: if you get -10 km/s, enter -10; if your answer is +10 km/s, enter 10) 2.86 X 2.86 The spacecraft is entering Mars' sphere of influence with the excess velocity computed above and a periapsis altitude of 400km was targeted. 3- How much Av (km/s) will it cost to circularize the orbit? (give the magnitude of the Av, that is your answer in absolute value) 7.8 X 7.8

Answers

The Av (km/s) required to circularize the orbit is 1.33.

1. The first step in solving for arrival excess velocity, v is to find the velocity of the spacecraft relative to Mars' circular orbit. For this, the following expression is used: Δv2 = vesc2(1+α) - 2GM/r, where r is the radius of the orbit, G is the gravitational constant, and M is the mass of the planet.α = rp/r, where rp is the radius of the periapsis of the Hohmann transfer orbit, r is the radius of the planet, and vesc is the escape velocity from the planet.

For the Hohmann transfer orbit, the value of α is 1.00065, which is the same for both the orbit of departure and arrival.

α = 3389.5/((3389.5+230)+3389.5/((3389.5+930)))

α = 1.00065vescMars = √(2GM/r)vescMars = √(2(6.67408 x 10-11)(6.39 x 10 23)/(3389.5 x 1000))vescMars = 5.03 km/sΔv

Arrival = √(vescMars)2(1+α) - 2GM/rΔv

Arrival = √(5.03)2(1+1.00065) - 2(6.67408 x 10-11)(6.39 x 10 23)/((3389.5+400) x 1000))Δv

Arrival = 0.91 km/s

The arrival excess velocity is 0.91 km/s.

2. After arriving at the periapsis of 400 km, the spacecraft needs to circularize its orbit to maintain an altitude of 400 km throughout the rest of its orbit.

The amount of delta-v required to circularize the orbit can be found using the following equation:

Δv Circularization = √(GM/r) (sqrt(2r/(r+alt))-1)

Δv Circularization = √(6.67408 x 10-11(6.39 x 10 23)/((3389.5+400) x 1000)) (sqrt(2(3389.5+400)/((3389.5+400)+400))-1)

Δv Circularization = 1.33 km/s

Thus, the Av (km/s) required to circularize the orbit is 1.33.

To learn about gravitational force here:

https://brainly.com/question/27943482

#SPJ11

A thyristor in a fully-controlled converter that supplies 615 A to a D.C. load is mounted on a 0.5 kg aluminium heat sink. If the forward voltage across the device is 1.5 V, and aluminium has a specific heat capacity of 895 J(kg "C). The ambient temperature is 40 *C maximum and the thyristor is mounted directly on the heat sink. (0) Calculate the steady state temperature of the thyristor junction, given that the thermal resistance of the heat sink is 0.15 "C W¹ and that of the device is 0.12"CW-¹ (3 Marks) (0) Calculate how long it takes the heat sink to reach a steady-state temperature?

Answers

It takes approximately 29.76 seconds for the heat sink to reach a steady-state temperature

A thyristor is a solid-state semiconductor device that consists of four layers of alternating N-type and P-type materials. The device has three PN junctions that allow it to act as a switch for controlling power delivery to a load or circuit. Thyristors are commonly used in AC to DC converters, DC motor drives, and voltage regulators.Steady-state temperature of the thyristor junctionThe power supplied to the load is 615

A and the forward voltage across the device is 1.5 V.Power = Voltage × CurrentPower = 1.5 V × 615 APower = 922.5 WThe thermal resistance of the device is given as 0.12 "C/W¹ and that of the heat sink is 0.15 "C/W¹.The heat generated by the device is given by:P = (Tj - Ta) / Rthwhere P is the power generated, Tj is the temperature of the thyristor junction, Ta is the ambient temperature, and Rth is the thermal resistance of the device.P = (Tj - Ta) / Rth922.5 = (Tj - 40) / 0.12Tj - 40 = 110.7Tj = 150.7 "C

Therefore, the steady-state temperature of the thyristor junction is 150.7 "C.How long it takes the heat sink to reach a steady-state temperature?The heat sink will take some time to reach the steady-state temperature. This time can be calculated using the formula:t = (m × Cp × ΔT) / Pwhere t is the time taken, m is the mass of the heat sink, Cp is the specific heat capacity of aluminium, ΔT is the temperature difference, and P is the power generated.m = 0.5 kgCp = 895 J/(kg "C)ΔT = Tj - TaΔT = 150.7 - 40ΔT = 110.7 "Ct = (m × Cp × ΔT) / Pt = (0.5 × 895 × 110.7) / 922.5t = 29.76 sTherefore, it takes approximately 29.76 seconds for the heat sink to reach a steady-state temperature.

Learn more about Ambient temperature here,1. A comfortable ambient temperature is called room temperature. Approximately,

how hot or cold is it?

A. 20 OC B. 20 OF...

https://brainly.com/question/27959899

#SPJ11

Tasks The students have to derive and analyzed a signaling system to find Fourier Series (FS) coefficients for the following cases: 1. Use at least 3 types of signals in a system, a. Rectangular b. Triangular c. Chirp 2. System is capable of variable inputs, a. Time Period b. Duty Cycle c. Amplitude 3. Apply one of the properties like time shift, reserve etc (Optional)

Answers

Fourier series refers to a mathematical technique that is used to describe a periodic signal with a sum of sinusoidal signals of varying magnitudes, frequencies, and phases. It finds vast applications in various fields of engineering and physics such as audio signal processing, image processing, control systems, and many others.

The students have to derive and analyze a signaling system to find Fourier Series (FS) coefficients for the following cases:

1. Use at least 3 types of signals in a system, a. Rectangular b. Triangular c. ChirpFourier series is utilized to represent periodic signals. The rectangular pulse, triangular pulse, and chirp signal are all examples of periodic signals. The periodicity of these signals implies that they can be represented by a Fourier series.The Fourier series of a rectangular pulse is a series of sines and cosines of multiple frequencies that resemble a rectangular pulse shape. The Fourier series coefficients for the rectangular pulse can be obtained by applying the Fourier series formula to the signal, calculating the integrals, and computing the coefficients similarly for triangular and chirp signals.

2. System is capable of variable inputs, a. Time Period b. Duty Cycle c. AmplitudeThe Fourier series formula for a periodic signal depends on the time period of the signal. When the time period is varying in the signal, the Fourier series coefficients are also modified. This implies that if the system is capable of receiving signals with varying time periods, then the coefficients would be different for each signal. Similarly, if the duty cycle or the amplitude is variable, the Fourier series coefficients will be altered.

3. Apply one of the properties like time shift, reserve etc (Optional)The Fourier series has some unique properties that can be utilized to analyze and modify signals. For instance, the time-shifting property of the Fourier series can be used to shift the phase of the signal in the time domain. The reverse property can be used to reverse the order of the samples in the signal.In conclusion, the students have to derive and analyze a signaling system to find Fourier Series (FS) coefficients for the given cases. They need to apply the Fourier series formula and the properties of the Fourier series to obtain the coefficients. The system should be capable of handling signals with varying time periods, duty cycles, and amplitudes. The resulting coefficients can be used to analyze the periodic signals.

To know more about Fourier series visit:

https://brainly.com/question/30763814

#SPJ11

I am examining an industrial initiative characterised by the following indicators: • Duration of the initiative: 5 years; Investment: 120M€; • Expected revenues: 50ME/year; Costs: 12ME/year; Tax rate: 40%. Risks: none Discuss the advisability of undertaking the initiative in relation to the income rate of the company.

Answers

Examining the industrial initiative with a duration of 5 years, an investment of 120M€, expected revenues of 50ME/year, costs of 12ME/year, a tax rate of 40%, and no risks, the advisability of undertaking the initiative can be evaluated based on the income rate of the company.

To assess the advisability, we need to consider the net income generated by the initiative. The net income is calculated by subtracting the costs and taxes from the revenues. In this case, the net income per year would be (50ME - 12ME) * (1 - 0.4) = 28.8ME.

Next, we need to calculate the total net income over the 5-year duration. The total net income would be 28.8ME * 5 = 144ME.

If the total net income exceeds the initial investment of 120M€, then the initiative is advisable in relation to the income rate of the company. In this case, the total net income of 144ME is greater than the investment of 120M€, indicating the initiative is advisable from a financial perspective.

Learn more about investment advisability here:

https://brainly.com/question/20631044

#SPJ11

A 500 air transmission line is terminated in an impedance Z = 25-125 Q. How would you produce impedance matching on the line using a 1000 short-circuited stub tuner? Give all your design steps based on the use of a Smith Chart.

Answers

To achieve impedance matching on a 500-ohm transmission line terminated in an impedance of Z = 25-125 Q, a 1000 short-circuited stub tuner can be used.

To begin, we need to plot the impedance of the line termination (Z = 25-125 Q) on the Smith Chart. The Smith Chart is a graphical tool that simplifies impedance calculations and facilitates impedance matching. By locating the impedance point on the Smith Chart, we can determine the necessary adjustments to achieve matching.

Next, we draw a constant resistance circle on the Smith Chart passing through the impedance point. We then find the intersection of this circle with the unit reactance (X = 1) circle on the chart. This intersection point represents the stub length required for matching.

Using the Smith Chart, we calculate the electrical length of the stub needed to reach the intersection point. We then convert this electrical length into a physical length based on the velocity factor of the transmission line.

Once we have determined the stub length, we construct a short-circuited stub with a length equal to the calculated value. The stub is then connected to the transmission line at a distance from the load equal to the physical length calculated previously.

By introducing the stub tuner into the transmission line at the appropriate location, we effectively adjust the impedance to achieve matching. This is done by creating a reactance that cancels out the reactive component of the load impedance, resulting in a purely resistive impedance at the termination.

By following these design steps and utilizing the Smith Chart, we can successfully implement impedance matching on the 500-ohm transmission line using the 1000 short-circuited stub tuner.

Learn more about impedance here:

https://brainly.com/question/14470591

#SPJ11

Do-While
Description:
In this activity you will learn how to use a do-while loop. You will be printing 20 to 1. Please follow the steps below:
Steps:
Create a do-while loop that prints out the numbers from 20 - 1. You can declare an int variable before the do-while loop
Test:
Use the test provided.
Sample output:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
code:
class Main {
public static void main(String[] args) {
// 1. Create a do-while loop that prints out the numbers from 20 - 1. You can intitalize an int variable before the do-while loop
}

Answers

To print the numbers from 20 to 1 using a do-while loop, you can follow these steps:

1. Declare an int variable before the do-while loop to keep track of the numbers.

2. Initialize the variable to 20, as we want to start printing from 20.

3. Use a do-while loop to execute the loop body at least once.

4. Within the loop body, print the value of the variable.

5. Decrement the variable by 1 to move to the next number.

6. Set the condition for the do-while loop to continue executing as long as the variable is greater than or equal to 1.

Here's the code snippet to achieve this:

```java

class Main {

 public static void main(String[] args) {

   int number = 20;

   do {

     System.out.println(number);

     number--;

   } while (number >= 1);

 }

}

```

When you run the above code, it will print the numbers from 20 to 1 in descending order.

Learn more about do-while loops here:

https://brainly.com/question/30883208

#SPJ11

Image Matrices on Matlab
Select different image(s) to perform matrix operations such as transpose, subtraction,
multiplication, scalar multiplication to see the effect on resulting image.

Answers

To carry out the matrix operations on images using MATLAB,  one need to use the steps shown in the code attached such as to load the image(s): make use  of the imread function to load the images into MATLAB.

What is the Matlab functions?

In the code attached, to do calculations with matrices: To flip an image, you can use the transpose function (or the ' symbol). When you transpose an image matrix, you switch its rows and columns around. This gives you a new version of the image called "transposed".

Subtraction means taking away something. In images, one can use the - symbol to take away one picture from another. It takes away matching pixels from one image to the other. The pictures need to be the same size to take away from each other.

Learn more about Matlab   from

https://brainly.com/question/15071644

#SPJ4

Give P-code instructions corresponding to the following C expressions:
a. (x - y - 2) +3* (x-4) b. a[a[1])=b[i-2] c. p->next->next = p->next (Assume an appropriate struct declaration)

Answers

Given below are the P-code instructions corresponding to the following C expressions:

For expression

a.(x-y-2)+3*(x-4): The corresponding P-code instruction is:- load x- load y- sub 2- sub the result from the above operation from the result of the second load operation- load x- load 4- sub the result of the above operation from the second load operation- mul 3- add the results of the above two operations

b. a[a[1]]=b[i-2]:The corresponding P-code instruction is:- load the value of i- load 2- sub the result from the above operation from the previous load operation- load b- load the result from the above operation- load a- load 1- sub the result from the above operation from the previous load operation- load a- load the result from the above operation- assign the value of the previous load operation to the result of the first load operation

c .p->next->next=p->next: The corresponding P-code instruction is:- load p- get the value of next- get the value of next- load p- get the value of next- assign the result of the second load operation to the result of the third load operation Assume an appropriate struct declaration.

Know more about P-code:

https://brainly.com/question/32216925

#SPJ11

SOLVE PROBLEM 3 PLEASE Problem 3
Consider the model presented in Problem 2. Develop the list of features in the order of creation that you would make in SolidWorks to recreate this model. This is just another way of saying develop the full feature tree for this model. Indicate (draft) the sketch used for each step and define the feature used and any parameters (e.g. boss extrude to 0.5 in depth, etc). [40 points]
Problem 2
a. By using free handed sketching with pencils (use ruler and/or compass if you wish, not required), on a blank sheet, create 3 views (front, top, right) of the object presented here. You may need to use stepped and/or partial and/or removed section view(s). [40 points]
b. Add the necessary dimensions to the views that make the drawing fully defined. [10 points]
c. All non-indicated tolerances are +/-0.01. Note that 2 dimensions have additional tolerances (marked in the drawing), make sure to indicate those as well in your dimensions. [5 points] d. With the help of tolerance stack-up analysis, calculate the possible limit values of dimension B. [5 points]
e. With geometric tolerancing notation indicate that surface C is parallel to surface D within a tolerance of 0.005. [5 points]
14.30 14.29
81-
B

Answers

b) To make the drawing fully defined, additional dimensions or constraints need to be added to specify the exact size and position of the elements in the drawing.

c) The non-indicated tolerances in the drawing are assumed to be +/-0.01, and there are two dimensions with additional tolerances specified in the drawing, which need to be included in the dimensions.

b) In order to make the drawing fully defined, the necessary dimensions should be added to specify the size and position of the elements accurately. This may include dimensions such as lengths, widths, angles, and positional coordinates. By adding these dimensions, the drawing becomes fully defined and eliminates any ambiguity in interpreting the design.

c) The non-indicated tolerances in the drawing are typically assumed to be a default value unless specified otherwise. In this case, the default tolerance is +/-0.01. However, the drawing also indicates that there are two dimensions with additional tolerances marked.

These specified tolerances need to be included in the dimensions to ensure the accurate manufacturing and assembly of the part. By including the tolerances, the drawing provides clear instructions on the acceptable variation allowed for each dimension.

d) To calculate the possible limit values of dimension B using tolerance stack-up analysis, the individual tolerances of all the related dimensions that affect dimension B need to be considered. By considering the cumulative effect of all the tolerances in the stack-up, the maximum and minimum limit values for dimension B can be determined.

This analysis helps ensure that the final assembly will meet the desired dimensional requirements.

e) To indicate that surface C is parallel to surface D within a tolerance of 0.005, geometric tolerancing notation can be used. The symbol for parallelism, which is two parallel lines, can be placed between surfaces C and D.

Additionally, the tolerance value of 0.005 should be specified next to the parallelism symbol to indicate the allowed deviation between the two surfaces. This notation provides a clear indication of the geometric relationship and the acceptable tolerance for parallelism between the surfaces.

To learn more about constraints visit:

brainly.com/question/17156848

#SPJ11

Draw the root locus of the system whose O.L.T.F. given as:
Gs=(s+1)/s2(s2+6s+12)
And discuss its stability? Determine all the required data.

Answers

Given open-loop transfer function (O.L.T.F.)G(s) = (s + 1) / s^2 (s^2 + 6s + 12).The root locus of the system is obtained using the following steps:

Step 1: Determine the open-loop transfer function (O.L.T.F.) of the given system.

Step 2: Identify the characteristic equation of the closed-loop system.

Step 3: Sketch the root locus of the system.

Step 4: Analyze the stability of the system.

1. The Open-Loop Transfer Function of the given system:

The open-loop transfer function (O.L.T.F.) of the given system is given by the equation G(s) = (s + 1) / s^2 (s^2 + 6s + 12).

2. The Characteristic Equation of the closed-loop system:

The closed-loop transfer function (C.L.T.F.) of the given system is given by the equation T(s) = G(s) / [1 + G(s)].
Therefore, the characteristic equation of the closed-loop system is given by the equation:
1 + G(s) = 0

3. Sketching the Root Locus of the given system:

From the given open-loop transfer function, it is clear that there are two poles at the origin and two complex poles at -3 + jj and -3 - jj. The number of branches in the root locus is equal to the number of poles of the system minus the number of zeros of the system, which is 4 - 1 = 3.
The root locus diagram of the given system is as shown below:

Root locus of the given system

4. Analyzing the Stability of the given system:

From the above root locus diagram, it is observed that all the roots of the characteristic equation lie in the left-half of the s-plane, which means that the system is stable.Required Data:

i) Number of poles of the system = 4

ii) Number of zeros of the system = 1

iii) Number of branches in the root locus = 3

iv) Complex poles are located at s = -3 + jj and s = -3 - jj.

Know more about open-loop transfer function here:

https://brainly.com/question/33211404

#SPJ11

A continuous-time LTI system has impulse response (a) (4 points) An input signal is of the form z(t)= cetu(t), c₁,01, R. 81 € C. What are the conditions (if any) on s, and such that the input (1) is bounded? (b) (4 points) Is there a case where z(t) is bounded, and the output y(t) = (2+ h)() is not bounded? How do you know? * (c) (10 points) Simplify the mathematical expression of the output y(t) = (w h)(t) when the input is w(t)= u(t+1) + 8(t).

Answers

In this problem, we are given an impulse response for a continuous-time LTI system and an input signal of the form z(t) = ce^tu(t). We need to determine the conditions on s and c such that the input is bounded.

(a) To ensure the boundedness of the input signal z(t) = ce^tu(t), the condition on s is Re(s) < 0. This means that the real part of s must be negative for the input to be bounded. There is no specific condition on c for boundedness.

(b) If z(t) = ce^tu(t) is bounded, it implies that the value of c is finite. However, since the output y(t) = (2 + h)(t), the boundedness of z(t) does not guarantee the boundedness of y(t). The additional term h(t) could introduce unbounded behavior depending on its characteristics.

(c) To simplify the expression y(t) = (w * h)(t) when the input is w(t) = u(t + 1) + 8δ(t), we need to convolve the input w(t) with the impulse response h(t). The convolution of two functions is given by the integral of their product. By performing the convolution operation, we can simplify the expression for y(t) based on the specific form of h(t).

In summary, the conditions on s for the boundedness of the input signal are Re(s) < 0. The boundedness of z(t) does not guarantee the boundedness of y(t) as it depends on the additional term h(t). To simplify the expression for y(t) = (w * h)(t) with the given input w(t), we need to perform the convolution operation between w(t) and h(t).

Learn more about signal here:

https://brainly.com/question/14699772

#SPJ11

The RLC parallel circuit is known, the input is Current source e(t)= i, (t), and output is y(t) = v(t). please give its second order differential equation and transfer function H (s). i(t) ( İR R iz L ic v(t)

Answers

The RLC parallel circuit is an electrical circuit that contains a resistor (R), an inductor (L), and a capacitor (C) connected in parallel.

The input of the circuit is a current source e(t) = i(t), and the output is y(t) = v(t). To find the second order differential equation of the circuit, we need to derive the current equation and the voltage equation separately.

The voltage across each component in a parallel circuit is the same, so we can write: vR(t) = vL(t) = vC(t) = v(t)The current through each component in a parallel circuit is different, so we can write: iR(t) + iL(t) + iC(t) = i(t).

The current through a resistor is given by Ohm's law: iR(t) = vR(t)/RThe voltage across an inductor is given by Faraday's law: vL(t) = L(diL(t)/dt)The current through a capacitor is given by the equation: iC(t) = C(dvC(t)/dt).

Now, substituting the above equations in the second equation, we get:L(diL(t)/dt) + v(t)/R + C(dvC(t)/dt) = i(t)Differentiating the above equation twice with respect to time, we get the second order differential equation of the RLC parallel circuit: L(d²i(t)/dt²) + (R + 1/C)(di(t)/dt) + i(t)/C = d²e(t)/dt².

The transfer function of the RLC parallel circuit is the ratio of the output voltage to the input current, i.e., H(s) = V(s)/I(s).Taking Laplace transforms of the voltage and current equations, we get:V(s) = I(s)(R + Ls + 1/(Cs))H(s) = V(s)/I(s) = (R + Ls + 1/(Cs))/s²LC + s(RC + 1)L + RThis is the transfer function of the RLC parallel circuit.

To learn more about parallel circuit:

https://brainly.com/question/14997346

#SPJ11

A development strategy" is defined here as the engineering process adopted to take a complex system from conceptual design into the utilisation phase of its lifecycle. Throughout this course, we discussed a generic strategy that we illustrated using a VEL" construct commonly termed as the waterfall approach in his paper. Dorfman discusses a number of alternative strategies that can be considered by systems engineers when deciding how to engineer a complex system and manage technical risks. List the other development strategies covered in the paper by Dorfman and what specific technical risks the different strategies are aimed at addressing Use the editor to formof your answer

Answers

A development strategy is defined as the engineering process adopted to take a complex system from conceptual design into the utilisation phase of its lifecycle.

Dorfman in his paper on the engineering of complex systems discussed a generic strategy that was illustrated using a VEL construct commonly termed as the waterfall approach. Along with the waterfall approach, Dorfman also discusses a number of alternative strategies that can be considered by systems engineers when deciding how to engineer a complex system and manage technical risks.

The other development strategies covered in the paper by Dorfman are:Iterative Development: Iterative development strategy is aimed at addressing the technical risks of requirements volatility, incomplete or incorrect understanding of the requirements by the developer, and stakeholder perception of system functionality.

The key objective of this approach is to deal with the system's risks through repetitive development and testing cycles that help mitigate the risks associated with a complex system.

This strategy is suitable for projects that require a significant level of stakeholder engagement and the stakeholders have a high level of interest in the outcome of the project.Incremental Development: Incremental development is aimed at addressing the technical risks of system architecture and integration. The objective of this approach is to divide the entire system into subsystems and develop each subsystem independently. In addition, each subsystem is integrated and tested before moving on to the next subsystem.

This approach is suitable for large-scale projects that require a significant level of integration of different subsystems or for projects that require a quick turnaround time and where the development team does not have a complete understanding of the entire system's requirements. It also helps to break down the development process into smaller parts, making it easier to manage and control.Overall, the choice of development strategy to adopt should be determined by the technical risks that are being faced by the project team, and the objectives and requirements of the project.

Learn more about engineering :

https://brainly.com/question/31140236

#SPJ11

Steam at 20 bars and 425°C is used to heat a stream of methane flowing at a rate of 300 m3/min. The CH4 enters the exchanger at 100°C and 5 bars and exits at 350°C. Steam exits the units as saturated vapor at the same pressure. a. Draw a sketch of the process (5 pts) b. Write down an appropriate set of equations representing the mass balances c. Write the energy balance indicating all the assumptions d. Establish the reference states for all substances. e. Determine the molar flow rate of methane. f. Determine the mass flow rate of steam. g. Compute the volumetric flow rate of the steam exiting the system Additional Data: Cp CH4 (kJ/mol-K)=0.034+5.5E-5 t(°C)

Answers

Reference states for all substances: At the reference states, the enthalpy is zero. This is the enthalpy of the substance at a specified temperature and pressure.

b. Mass Balances:

Mass in = Mass out

Rate of mass flow of CH4 = Rate of mass flow of CH4

Rate of mass flow of steam = Rate of mass flow of steam

c. Energy balance:Q = mCH4Cp,CH4 (Tout- Tin) + msteam

Cp, steam (Tout- Tin)

d. Reference states for all substances:

At the reference states, the enthalpy is zero. This is the enthalpy of the substance at a specified temperature and pressure.

Assume that methane and steam are at a temperature of 0 °C and a pressure of 1 atm.

e. Determine the molar flow rate of methane:

The pressure of methane at the inlet, P1 = 5 bars = 5 x 105 Pa

The temperature of methane at the inlet, T1 = 100°C = 373K

Using the ideal gas law, PV = nRTn = PV/RT = [(5 x 105) x 300]/[8.31 x 373] = 40.18 kmol/min

f. Determine the mass flow rate of steam:We know that the steam is saturated and exists at 20 bars pressure. We can get the steam mass flow rate using the steam tables.Using the steam tables, at 20 bars pressure, hfg = 873.76 kJ/kghf = 2916.5 kJ/kg

Steam exits at saturated vapor, so the enthalpy of steam is hf and hfg is the latent heat of vaporization.

We can write the energy balance equation as

Q = mCH4Cp,CH4 (Tout- Tin) + msteam

Cp, steam (Tout- Tin)

Q = 300 x 40.18 x (1.204/1000) x [(350-100) x 0.034+5.5 x 10-5 x (350+100)/2] + msteam x (7.32/1000) x 2037.3

= msteam x 2761.1

msteam = 196.89 kg/min (approximately)

g. Volumetric flow rate of steam exiting the system:

We can calculate the volume of steam at the exit using its mass and density.

V = msteam/ρsteam

Using the steam tables, at 20 bars and saturation, the density of steam is 7.32 kg/m3.V = 196.89/7.32 = 26.87 m3/min

Answer: Reference states for all substances: At the reference states, the enthalpy is zero. This is the enthalpy of the substance at a specified temperature and pressure. Assume that methane and steam are at a temperature of 0 °C and a pressure of 1 atm.

Learn more about pressure :

https://brainly.com/question/30638002

#SPJ11

Simplify the below given Boolean equation by K-map method and draw the circuit for minimized equation. Y = A.B(BC) + A.B + A.B.C

Answers

The given Boolean equation Y = A.B(BC) + A.B + A.B.C can be simplified to Y = A.B + A.C using the Karnaugh map method. The simplified circuit for the minimized equation consists of two AND gates for A.B and A.C, followed by an OR gate to combine their outputs.

To simplify the given Boolean equation Y = A.B(BC) + A.B + A.B.C using the Karnaugh map (K-map) method, we need to create a K-map for each term and identify the simplified terms by grouping adjacent 1s.

K-map for the term A.B(BC):

BC\A | 00 | 01 | 11 | 10 |

-----|----|----|----|----|

 0  |  0 |  0 |  0 |  0 |

 1  |  0 |  1 |  1 |  0 |

Simplified term for A.B(BC) = A.B

K-map for the term A.B:

B\A | 00 | 01 | 11 | 10 |

-----|----|----|----|----|

 0  |  0 |  0 |  0 |  0 |

 1  |  0 |  1 |  0 |  0 |

Simplified term for A.B = A.B

K-map for the term A.B.C:

BC\A | 00 | 01 | 11 | 10 |

-----|----|----|----|----|

 0  |  0 |  0 |  0 |  0 |

 1  |  0 |  0 |  1 |  0 |

Simplified term for A.B.C = A.C

Combining the simplified terms, we have:

Y = A.B + A.B + A.B.C

= A.B + A.C

The simplified Boolean equation is Y = A.B + A.C.

To draw the circuit for the minimized equation Y = A.B + A.C, we can use AND and OR gates. The circuit diagram would consist of two AND gates, one for A.B and another for A.C, and then an OR gate to combine their outputs.

        ----

A -------|    |

        | AND|----- Y

B -------|    |

        ----

        ----

A -------|    |

        | AND|----- Y

C -------|    |

        ----

         ----

A.B ------|    |

         | OR |----- Y

A.C ------|    |

         ----

In the circuit, A, B, and C are the inputs, and Y is the output. The inputs A and B are fed into one AND gate, and the inputs A and C are fed into another AND gate. The outputs of these two AND gates are then combined using an OR gate to produce the output Y.

Learn more about  Karnaugh map at:

brainly.com/question/15077666

#SPJ11

Consider an AC generator where a coil of wire has 320 turns, has a resistance is 35Ω and is set to rotate within a uniform magnetic field. Each 90 degree rotation of the coil takes a time of 23 ms to occur. On average, the current induced in the wire is 220 mA. The area of the coil is 2.4×10 −3
m 2
a. Calculate the average emf induced in the coil. (3) b. Calculate'the rate of change of magnetic flux. Do not round your answer. (3) c. Calculate the initial field strength

Answers

The average emf induced in the coil can be calculated using Faraday's law of  induction which states that the emf (ε) induced in a coil is equal to the rate of change of magnetic flux through the coil.

The formula for calculating the emf is:

ε = -N dΦ/dt

Where:

ε = emf (in volts)

N = number of turns in the coil

dΦ/dt = rate of change of magnetic flux (in webers per second)

Given:

N = 320 turns

dΦ/dt = ?

The average current induced in the wire can be used to find the rate of change of magnetic flux. The formula is:

I = ε/R

Where:

I = average current (in amperes)

R = resistance (in ohms)

Rearranging the equation, we can solve for ε:

ε = I * R

Substituting the given values:

I = 220 mA = 0.22 A

R = 35 Ω

ε = 0.22 A * 35 Ω

ε = 7.7 V

Therefore, the average emf induced in the coil is 7.7 volts.

The rate of change of magnetic flux (dΦ/dt) can be determined using the formula:

dΦ/dt = ε / N

Substituting the given values:

ε = 7.7 V

N = 320 turns

dΦ/dt = 7.7 V / 320 turns

dΦ/dt = 0.024 webers per second

Therefore, the rate of change of magnetic flux is 0.024 webers per second.

To calculate the initial field strength, we need to know the area of the coil (A) and the number of turns (N). The formula to calculate the magnetic flux (Φ) is:

Φ = B * A * cos(θ)

Where:

Φ = magnetic flux (in webers)

B = magnetic field strength (in teslas)

A = area of the coil (in square meters)

θ = angle between the magnetic field and the plane of the coil (90 degrees in this case)

Rearranging the formula, we can solve for B:

B = Φ / (A * cos(θ))

Substituting the given values:

Φ = dΦ/dt = 0.024 webers per second

A = 2.4 × 10^(-3) m^2

θ = 90 degrees

B = 0.024 webers per second / (2.4 × 10^(-3) m^2 * cos(90 degrees))

B = 0.024 webers per second / (2.4 × 10^(-3) m^2 * 0)

B = undefined (since the denominator is zero)

The initial field strength cannot be calculated with the given information.

Learn more about  Faraday's ,visit:

https://brainly.com/question/24182112

#SPJ11

Design a simple circuit from the function F by reducing it using appropriate k-map, draw corresponding Logic Diagram for the simplified Expression (10 MARKS) F(w,x,y,z)=Em(1,3,4,8,11,15)+d(0,5,6,7,9) Q2. Implement the simplified logical expression of Question 1 using universal gates (Nand) How many Nand gates are required as well specify how many AOI ICS and Nand ICs are needed for the same. (10 Marks)

Answers

The source voltage provides the electrical pressure that forces the current through the circuit in a full circuit.

Thus, All of the circuit's components between the positive side battery post and the load are considered to be on the source side. Any component in the circuit that generates light, heat, sound, or electrical movement when current is flowing is referred to as a load.

A load's resistance is constant, and it only uses voltage when current is flowing.

In the example below, the second lamp's wire returns current to the battery at one end since it is attached to the body or frame of the car. The portion of the circuit that returns current to the battery acts as the body ground, which is the body or frame.

Thus, The source voltage provides the electrical pressure that forces the current through the circuit in a full circuit.

Learn more about Voltage, refer to the link:

https://brainly.com/question/32002804

#SPJ4

i only need the algorithm for part A answered please.
The City of Johannesburg will be implementing solar-powered traffic light systems at some of its’
major intersections. To this end, you are to develop:
(a) Project Part A: a hand-written or computer generated 1 page (maximum) algorithm (pdf, docx,
xlsx or jpeg) of the process undertaken in Project Part B. [Total = 5 marks]
(b) Project Part B: One (1) Microsoft Excel Macro-Enabled file containing worksheets and VBA code
that would simulate (over a peak 15 minute period of a working day) the movement of vehicles
arriving at one of the City’s major intersections.

Answers

Algorithm for Part A :The algorithm is a procedure that has a sequence of instructions that are implemented by a computer. It is created to perform a specific task or to solve a specific problem.

In Project Part A, you are required to develop a 1-page maximum algorithm that will be used in Part B. Here is an example of an algorithm for Part A of the solar-powered traffic light system project:

Step 1: Start the solar-powered traffic light system.

Step 2: Turn on the sensors to detect the presence of vehicles.

Step 3: If there are no vehicles detected, then the traffic light remains green.

Step 4: If a vehicle is detected, the sensor will signal the traffic light to switch to yellow.

Step 5: After a brief time, the traffic light will switch to red, and the stop light will be turned on.

Step 6: When the traffic light is red, the sensors continue to monitor the presence of vehicles.

Step 7: When there are no more vehicles detected, the traffic light switches back to green.

Step 8: The system stops when there is no more traffic to manage.

To know more about Algorithm please refer to:

https://brainly.com/question/30753708

#SPJ11

Write a C function that takes as arguments three integer arrays,A,B, and Calong with integers m,nindicating the number of elements in AandB, respectively. The arrays A is assumed to be sorted in ascending order andBis assumed to be sorted in descending order. You arerequired to store inCall elements that are present in both A and B, in ascending order. You may assume that A and B individually may have duplicate elements within them. In the result,there should not be any duplicates inC. The function should return the number of elements in C . For example, if A={8,8,12,12,15,67} and B={88,67,67,45,15,12,12,9,1}withm= 6,n= 9, the resulting C should be{12,15,67}and 3 should be returned. Do not use any additional arrays or any library functions other than standard input and output. Write only the required function. No need to write the main function.

Answers

The function compares elements from A and B and stores the common elements in C while skipping duplicates. The comparison is done by incrementing the pointers i and j accordingly. If an element is common to both arrays and is not equal to the previous element in C, it is stored in C and k is incremented.

Here's a C function that meets the requirements stated in the question:

#include <stdio.h>

int intersection(int A[], int B[], int C[], int m, int n) {

   int i = 0, j = 0, k = 0;

   int prev = -1; // Variable to keep track of the previous element in C

   while (i < m && j < n) {

       if (A[i] < B[j]) {

           i++;

       } else if (A[i] > B[j]) {

           j++;

       } else {

           // Check if the current element is the same as the previous element in C

           if (A[i] != prev) {

               C[k++] = A[i];

               prev = A[i];

           }

           i++;

           j++;

       }

   }

   return k;

}

The function intersection takes four arguments: arrays A and B, array C, and integers m and n representing the number of elements in A and B, respectively. It returns the number of elements in the resulting array C.

The function uses three pointers i, j, and k to iterate through arrays A, B, and C, respectively. It also uses the prev variable to keep track of the previous element in C to avoid storing duplicate elements.

After iterating through both arrays, the function returns the value of k, which represents the number of elements in C.

Note: The caller of this function needs to make sure that the array C has enough space to store the common elements from A and B.

Learn more about arrays here

https://brainly.com/question/28259884

#SPJ11

A 1 Mbit/s data signal is transmitted using quadrature phase shift keying (QPSK) and you know that a 5 dB signal to noise ratio provides adequate quality of service. A receiver with a 2 dB noise figure is available and a 20 dBm transmitter will be used. A 10 dBi circularly polarized transmit antenna will be used and the mobile receiver will use a quarter wave monopole antenna. Estimate the maximum range of transmission assuming free space propagation at 2.4 GHz. (10 marks)

Answers

Quadrature Phase Shift Keying (QPSK)QPSK is a digital modulation scheme that divides the wave into four separate states. It is designed to provide a high-bandwidth capability and improved signal quality.

It is the digital equivalent of Quadrature Amplitude Modulation (QAM).Here, the data signal is transmitted using Quadrature Phase Shift Keying (QPSK). We know that a 5 dB signal to noise ratio provides adequate quality of service. Also, a receiver with a 2 dB noise figure is available and a 20 dBm transmitter will be used.

A 10 dBi circularly polarized transmit antenna will be used, and the mobile receiver will use a quarter-wave monopole antenna.The formula for the maximum range of transmission is given by:R = (PtGtGrλ²) / (4π²d²)Where,R is the maximum range of transmission.Pt is the power transmitted.

To know more about modulation visit:

https://brainly.com/question/28520208

#SPJ11

Please complete Programming Exercise 6, pages 1068 of Chapter 15 in your textbook. This exercise requires a use of "recursion".
The exercise as from the book is listed below
A palindrome is a string that reads the same both forward and backward. For example, the string "madam" is a palindrome. Write a program that uses a recursive function to check whether a string is a palindrome. Your program must contain a value-returning recursive function that returns true if the string is a palindrome and false otherwise. Do not use any global variables; use the appropriate parameters

Answers

A To check if a string is a palindrome using recursion, compare the first and last characters recursively. Return true if they match, and false if they don't. Base case: string has one or zero characters.

The recursive function can be implemented as follows:

```

def is_palindrome(string):

   if len(string) <= 1:

       return True

   elif string[0] == string[-1]:

       return is_palindrome(string[1:-1])

   else:

       return False

```

In this implementation, the function `is_palindrome` takes a string as input and recursively checks whether it is a palindrome. The base case is when the length of the string is less than or equal to 1, at which point we consider it to be a palindrome and return true. If the first and last characters of the string are equal, we recursively call the function with the substring obtained by excluding the first and last characters. If the first and last characters are not equal, we know that the string is not a palindrome and return false.

Learn more about palindrome here:

https://brainly.com/question/13556227

#SPJ11

Design the FIR filter to meet the following specifications. Passband ripple ≤ 0.6 dB Passband Frequency = 8 kHz Stopband Attenuation ≥ 55 dB Stopband Frequency = 12 kHz Sampling Frequency = 48 kHz Determine the followings: i) ii) iii) (iii) Sketch the filter according to the specification above. Determine the category of the filter. Determine the Filter Order/Length, N by using Optimal Method and Windowmethod. Calculate the first 4 values of filter coefficients, h(n) based on Optimal method.

Answers

To design an FIR filter with the given specifications:

Passband ripple ≤ 0.6 dB,

Passband Frequency = 8 kHz,

Stopband Attenuation ≥ 55 dB,

Stopband Frequency = 12 kHz, and

Sampling Frequency = 48 kHz.

We will determine the filter category, filter order/length (N) using the Optimal method, and calculate the first four values of the filter coefficients (h(n)).

(i) Sketching the Filter:

To sketch the filter, we need to determine the passband and stopband frequencies. The passband frequency is 8 kHz, and the stopband frequency is 12 kHz. We draw a plot with frequency on the x-axis and magnitude on the y-axis, showing a passband with a ripple of ≤ 0.6 dB and a stopband with an attenuation of ≥ 55 dB.

(ii) Determining the Filter Category:

Based on the given specifications, we need a low-pass filter. A low-pass filter allows frequencies below a certain cutoff frequency to pass through while attenuating frequencies above it.

(iii) Determining Filter Order/Length (N) using the Optimal Method:

N = (Fs / Δf) + 1,

where Fs is the sampling frequency and Δf is the transition width between the passband and stopband.

Substituting Fs = 48 kHz and Δf = |12 kHz - 8 kHz| = 4 kHz,

we get

N = (48 kHz / 4 kHz) + 1 = 13.

(iv) Calculating Filter Coefficients (h(n)) using the Hamming window:

h(n) = w(n) × sinC(n - (N-1)/2),

where w(n) is the window function and sinc is the ideal low-pass filter impulse response.

Using the Hamming window:

w(n) = 0.54 - 0.46 × cos((2πn) / (N-1)).

Substitute the values of N and desired passband frequency (8 kHz) into the equations to calculate the filter coefficients h(n) for n = 0, 1, 2, 3.

By following these equations and calculations, we can design an FIR filter that meets the given specifications.

Learn more about frequency here:

https://brainly.com/question/31477823

#SPJ11

If heating doubles the average speed of the molecules of an ideal gas in a container, what will be the corresponding change in the (absolute) temperature of the gas in the container? X4 naybe Air temperature decreases by about 6.5 ∘
C for every 1000 meters of altitude gain. Convert that 6.5 ∘
C temperature reduction to ∘
F (and the 1000 meters altitude gain to ft ).

Answers

To convert a temperature reduction of 6.5 °C to °F and the altitude gain of 1000 meters to feet, specific conversion formulas can be applied.

When heating doubles the average speed of molecules in an ideal gas, the corresponding change in temperature depends on the temperature scale used. In the Celsius scale, the temperature change would also double. For example, if the initial temperature was T°C, after doubling the average speed, the new temperature would be 2T°C. To convert the temperature reduction of 6.5 °C to Fahrenheit (°F), the conversion formula can be used:

°F = (°C * 9/5) + 32

Therefore, the temperature reduction of 6.5 °C would be:

(6.5 * 9/5) + 32 = 43.7 °F

Similarly, to convert the altitude gain of 1000 meters to feet, the conversion factor can be applied:

1 meter = 3.28084 feet

Therefore, the altitude gain of 1000 meters would be:

1000 * 3.28084 = 3280.84 feet

By applying the appropriate conversion formulas, the temperature reduction can be expressed in °F and the altitude gain in feet, allowing for better understanding and comparison in different units of measurement.

Learn more about Celsius scale here:

https://brainly.com/question/562205

#SPJ11

Assume we have a weighted connected undirected graph. If we use Kruskal's MST algorithm but sort and process edges in non- increasing order by weight, it will return the spanning tree of maximum total cost (instead of returning the spanning tree of minimum total cost). True False

Answers

The given statement that using Kruskal's MST algorithm but sorting and processing edges in non-increasing order by weight will return the spanning tree of maximum total cost (instead of returning the spanning tree of minimum total cost) is False.What is the Kruskal's algorithm?Kruskal's algorithm is a greedy algorithm used to find the minimum spanning tree (MST) of a connected weighted graph.

This algorithm sorts the edges of the graph by weight in non-decreasing order, then adds them to the MST one by one, starting with the smallest edge. To avoid cycles, the Kruskal algorithm skips edges that connect two vertices that are already in the same connected component. The algorithm continues until all the vertices are in the same component. After that, the algorithm stops because any additional edge would cause a cycle, and the MST would not be minimum

Know more about Kruskal's MST algorithm here:

https://brainly.com/question/27586934

#SPJ11

aw the logic diagram of the ned in part (c)(111). (4 marks) (Total: 25 marks) Question 2 (a) A logic circuit is designed for controlling the lift doors and they should close (Y) if: (i) the master switch (W) is on AND either (ii) a call (X) is received from any other floor, OR (iii) the doors (Y) have been open for more than 10 seconds, OR (iv) the selector push within the lift (2) is pressed for another floor. (8 marks) Devise a logic circuit to meet these requirements. (b) Use logic circuit derived in part (a) and provide the 2-input NAND gate only implementation of the expression. Show necessary steps. (8 marks) (c) Use K-map to simplify the following Canonical SOP expression. = F(A,B,C,D) = m(0,2,4,5,6,7,8,10,13,15) (9 marks) (Total: 25 marks)

Answers

The logic circuit for the lift door control is constructed using AND, OR, and NOT gates to fulfill the given conditions.

For implementing this with 2-input NAND gates, a specific conversion procedure is followed, as NAND gates are universal gates. The Canonical SOP expression is simplified using Karnaugh Map (K-map) methodology, which helps in minimizing logical expressions In the first part of the question, the logic circuit would be designed using three OR gates, one AND gate, and one NOT gate. The inputs to the OR gates would be X, Y, and Z (lift selector), respectively, with the other input to each being W (master switch). The outputs of these three OR gates would then be inputs to the AND gate. To implement this using only 2-input NAND gates, De Morgan's law is used to convert AND and OR gates into NAND gates. For the second part, the canonical SOP expression is simplified using a Karnaugh Map. You list all the given minterms in the 4-variable K-map, group the adjacent '1's, and write down the simplified Boolean expression for each group. The overall simplified expression is the OR of all these group expressions.

Learn more about Karnaugh Maps here:

https://brainly.com/question/30591199

#SPJ11

A discrete-time LTI filter whose frequency response function H() satisfies |H(2)| 1 for all NER is called an all-pass filter. a) Let No R and define v[n] = = eion for all n E Z. Let the signal y be the response of an all-pass filter to the input signal v. Determine ly[n]| for all n € Z, showing your workings. b) Let N be a positive integer. Show that the N-th order system y[n + N] = v[n] is an all-pass filter. c) Show that the first order system given by y[n+ 1] = v[n + 1] + v[n] is not an all-pass filter by calculating its frequency response function H(N). d) Consider the system of part c) and the input signal v given by v[n] = cos(non) for all n € Z. Use part c) to find a value of N₁ € R with 0 ≤ No < 2 such that the response to the input signal v is the zero signal. Show your workings. e) Verify your answer v[n] to part d) by calculating v[n + 1] + v[n] for all n € Z. Show your workings. f) Show that the first order system given by y[n + 1] + }y[n] = {v[n + 1] + v[n] is an all-pass filter. g) Consider the system of part f). The response to the input signal v[n] = cos() is of the form y[n] = a cos (bn) + csin(dn) for all n € Z, where a, b, c and d are real numbers. Determine a, b, c and d, showing all steps. h) Explain the name "all-pass" by comparing this filter to other filters, such as lowpass, highpass, bandpass filters.

Answers

The frequency response function is complex valued.The magnitude of frequency response function is 1 for all frequencies.Therefore, the name "all-pass" refers to its ability to allow all frequencies to pass through the system without any attenuation.

All-pass filter is a filter whose frequency response functi while only delaying them. It is unlike other filters such as low-pass, high-pass, and band-pass filters that selectively allow only certain frequencies to pass through while blocking others.

We know that v[n] = e^{ion}y[n] Hv[n]Let H(2) = a + jb, then H(-2) = a - jbAlso H(2)H(-2) = |H(2)|² = 1Therefore a² + b² = 1Thus the frequency response of all-pass filter must have these propertiesNow, H(e^{ion}) = H(2) = a + jb= cosØ + jsinØLet Ø = tan^-1(b/a), then cosØ = a/|H(2)| and sinØ = b/|H(2)|So, H(e^{ion}) = cosØ + jsinØ= (a/|H(2)|) + j(b/|H(2)|).

To know more about frequency visit:

https://brainly.com/question/29739263?

#SPJ11

Write a command to search only files in /usr directory, whose name is ending with dir. [2 marks ] 2. Write a command to search all the files in ending with .doc, whose does not contain a pattern "package" with line number before it. [2 marks ] 3. Write a command to show the shared libraries used by an application CIS.

Answers

To search only files in the "/usr" directory whose names end with "dir," you can use the command: `find /usr -type f -name "*dir"`.

1. The command `find` is used to search for files and directories. In this case, we specify the directory "/usr" with the option `-type f` to search for files only, and the option `-name "*dir"` to match files whose names end with "dir."

2. The command `grep` is used to search for patterns in files. The option `-r` is used for recursive searching, the option `-L` is used to list files that do not contain the pattern, and `--include=*.doc` specifies that the search should be limited to files with the ".doc" extension. The pattern `'^[0-9]*.*package'` matches lines starting with a line number followed by any characters and the word "package." Files that do not contain this pattern will be listed.

3. The command `ldd` is used to show the shared libraries used by an application. Simply provide the name of the application, in this case, "CIS," as an argument to the command. It will display the shared libraries that the application depends on.

Learn more about files here:

https://brainly.com/question/28220010

#SPJ11

How many transistors are used in a 4-input CMOS AND gate? How many of each type are used? Draw the circuit diagram.

Answers

A 4-input CMOS AND gate typically uses 28 transistors: 14 PMOS (p-channel metal-oxide-semiconductor) transistors and 14 NMOS (n-channel metal-oxide-semiconductor) transistors.

A CMOS AND gate consists of a network of transistors that implement the logical AND operation. In a 4-input CMOS AND gate, the inputs are connected to the gates of the NMOS transistors, and their complements (inverted inputs) are connected to the gates of the PMOS transistors. The drain terminals of the NMOS transistors are connected to the output, and the source terminals of the PMOS transistors are also connected to the output.

For each input, you need one PMOS and one NMOS transistor. Therefore, for a 4-input CMOS AND gate, you will need a total of 4 PMOS and 4 NMOS transistors. Additionally, you need two pull-up PMOS transistors and two pull-down NMOS transistors to ensure proper logic levels at the output. So, in total, you will need 4 + 4 + 2 + 2 = 12 transistors.

However, CMOS gates are typically implemented as complementary pairs to achieve symmetrical rise and fall times. Therefore, the number of transistors is doubled. Hence, a 4-input CMOS AND gate uses 2 * 12 = 24 transistors.

A 4-input CMOS AND gate uses a total of 24 transistors: 12 PMOS transistors and 12 NMOS transistors

To know more about transistors visit :

https://brainly.com/question/31675242

#SPJ11

Other Questions
What is the scadule of Reinforcement for the employee, when the company does not give enough warning to employee which led employee being careless and disorganized at the work place? And why The following program is an example for addition process using 8085 assembly language: LDA 2050 MOV B, A LDA 2051 ADD B STA 2052 HLT c) Draw and discuss the timing diagram of line 1, 2, 4 and 5 of the program. a commercial bank is an example of a You should restate your thesis and central idea in which part ofyour presentation?1)transitions2)conclusion3)body4)introduction A long cylinder having a diameter of 2 cm is maintained at 600 C and has an emissivity of 0.4. Surrounding the cylinder is another long, thin-walled concentric cylinder having a diameter of 6 cm and an emissivity of 0.2 on both the inside and outside surfaces. The assembly is located in a large room having a temperature of 27 C. Calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length. Also calculate the temperature of the 6-cm- diameter cylinder A project to build a new bridge seems to be going very well since the project is weil ahead of schecule and costs seem to be running very low. A major milestone has been reached where the first two activities have been totally completed and the third activity is 64 percent complete. The planners were expecting to be only 53 percent through the third activity at this time. The first activity involves prepping the site for the bridge. It was expected that this would cost $1,423,000 and it was done for only $1,303,000. The second activity was the pouring of concrete for the bridge. This was expected to cost $10,503,000 but was actually done for $9,003,000. The third and final activity is the actual construction of the bridge superstructure. This was expected to cost a total of $8,503,000. To date they have spent $5,003,000 on the superstructure. Calculate the schedule variance, schedule performance index, and cost performance index for the project to date. (Negative values should be indicated by a minus sign. Do not round your intermediate calculations or "variance" values. Round your "performance index" values to 3 decimal places.) Please write a program in c++ and use arrays. This program should take a user inputProblem: Mark and Jane are very happy after having their first child. Their son loves toys, so Mark wants to buy some. There are a number of different toys lying in front of him, tagged with their prices. Mark has only a certain amount to spend, and he wants to maximize the number of toys he buys with this money. Given a list of toy prices and an amount to spend, determine the maximum number of toys he can buy. Note each toy can be purchased only once.Output should be identical to this:Input: Enter the dollar amount Mark can spend: 50Enter the number of items: 7Enter the toy prices: 1 12 5 111 200 1000 10Output: Maximum number of items Mark can buy: 4 What are your insights in the book of Peter L. Berger:From Fate to Choice and the book Religion,Experience, Tradition, Reflection. (1000-1500WORDS) : QUESTION 1 (PO2, CO2, C3) Dimerization of butadiene 2C,H, (g) C8H2 (g), takes place isothermally in a batch reactor at a temperature of 326C and constant pressure. Initially, the composition of butadiene was 75% and the remaining was inert. The amount of reactant was reduced to 25% in 15 minutes. The reaction follows a first order process. Determine the rate constant of this reaction 8. (10%) Given the following context-free grammar: S AbB | bbB AaA | aa B bbB | b (a) Convert the grammar into Chomsky normal form (b) Convert the grammar into Greibach normal form Classical ConditioningWhenever the entrance door opens, it makes a noise, so whenever my sister gets home, her dog gets excited. Overtime, her dog get excited at just hearing the noise of the entrance door.NS= Sounds of the entrance doorUCS= My sister gets homeCR= ExcitedCS= Sound of entrance doorCR= ExcitedOperant ConditionEvery time I get my result from school, my dad always give me a sum of 20 dollars for each course I had As, So my next semester I had all As in my classes, which made me get more money from my dad.This illustration indicates a Positive reinforcement. Gliding could occur in which of the following words?Wept, .Alone , Yacht, or Snake Which rational expression has a value of 0 when x = 2?on ed Q5- (5 marks) Define the following terms in your own words (1) Why corrosion rate is higher for cold worked materials? (2) Which type of materials fracture before yield? (3) What is selective leaching? Give an example of leaching in Corrosion? (4) Why metals present high fraction of energy loss in stress strain cycle in comparison to ceramics? (5) Polymers do not corrode but degrade, why? In this assignment you are expected to develop some Graphical User Interface (GUI) programs in two programming languages. It is expected that you do some research for GUI toolkits and libraries in your selected languages, and use your preferred library/toolkit to implement the homework assignment. You should also add brief information about your selected GUI development library/toolkit to the report you will submit as part of your assignment. You can choose one of the programming languages from each of the lines below (one language from each line). Java, Python, C#, C++, C Scheme/Racket, Go, PHP, Dart, JavaScript The GUI application you will write will basically be used as the user interface for the database schema and user operations you designed and implemented in the previous assignment. Your graphical user interface you will write should ask the user how many records to read/write from the screen in one experiment and the size of each record, then write or read the records to/from the database when the user presses a "start" button (Note: you are not expected to display the records read from the database). In the meantime, a progress bar should appear in front of the user on the screen and show the progress of the ongoing process. In addition to these, another field should also display the total time taken by the relevant process. The user should be able to experiment as much as he/she wants and get the results without quitting from the program. The relationship of the homework with the term project: You should compare the programming languages you have chosen and the GUI development facilities you used in two languages, according to various criteria (time spent on development, amount of code/lines to be written, etc.). Since it is also expected from you to compare the GUI development capacities of different programming languages in your term project; in this assignment you will need to coordinate with your project team members, and appropriately share the languages that you will cover in the term paper. 1)Babylonians associated Jupiter with the for Marduk, who is the ruler of the? animal life Earth Stars Sky 2 )The chinese associated Saturn with the element of? a)Fire b)Earth c Wood d air 3 ) Sun was associated with the metal? a Aluminium b Iron c Silver d Gold? 4 )Retrograde motion if mars is an actual backward motion that is visible in sky?True or False 1)Babylonians associated Jupiter with the for Marduk, who is the ruler of the? animal life Earth Stars Sky 2 )The chinese associated Saturn with the element of? a)Fire b)Earth c Wood d air 3 )Sun was associated with the metal? a Aluminium b Iron c Silver d Gold? 4 ) Retrograde motion if mars is an actual backward motion that is visible in sky?True or False 5) The first satellites(moon) were observed around which planet? a Uranus b Saturn c Jupiter d Neptune During 9.69 s, a motorcyclist changes his velocity from ,x = 42.9 m/s and v.y = 14.9 m/s to V2,x = 22.3 m/s and U2,y = 26.9 m/s. and dav,y. Find the components of the motorcycle's average acceleration during this process, dav,x m/s dav,x = dav, y = m/s Conduct a job analysis on your current or former job (if never employed, a current or former job of a friend or family member), resulting in the development of a brief job description and job spec Please discuss how to use Spark to implement logisticregression. Write pseudo code using Spark transformation and actionfunctions for logistic regression. A certain first-order reaction has a rate constant of 7.5010^3 s^1 . How long will it take for the reactant concentration to drop to 1/8 of its initial value? Express your answer with the appropriate units.