Compression Test TS EN 12390-4 Testing hardened concrete-Part 3:Compressive strength of test specimens Tasks 1. Calculate stress for all specimens. Comment on 7 day and 28 day strength. Calculate the max. stress and strain, 2. 3. Construct a stress-strain curve, 4. From this curve, comment on ductility of the material, 5. Calculate the total energy absorbed by the specimen (toughness). Report Outline 1. Cover Page 2. Introduction (Tensile Test) 3. Experimental Procedure 4. Calculations & Results (Tasks) 5. Conclusions

Answers

Answer 1

Summarize the findings of the report, emphasizing the calculated stress values, strength development, maximum stress and strain, ductility, and toughness of the concrete material. Highlight any significant observations or insights gained from the analysis.

Report Outline:

1. Cover Page: Include the title of the report, the names of the authors, the date, and any other relevant information.

2. Introduction: Provide a brief overview of the purpose and significance of the compression test in evaluating the hardened concrete. Mention the relevance of the tensile test in understanding the material's behavior and highlight the importance of calculating stress, strain, and toughness.

3. Experimental Procedure: Describe the methodology and equipment used for conducting the compression test according to the TS EN 12390-4 standard. Outline the steps followed, including specimen preparation, loading procedure, and data collection.

4. Calculations & Results (Tasks):

  a. Calculate stress for all specimens: Calculate the stress values by dividing the maximum load applied on each specimen by the cross-sectional area. Present the stress values for both the 7-day and 28-day specimens.

  b. Comment on 7-day and 28-day strength: Compare the stress values obtained at 7 days and 28 days and provide comments on the strength development of the concrete over time.

  c. Calculate the maximum stress and strain: Determine the maximum stress and strain values observed during the compression test. Discuss the significance of these values in evaluating the material's behavior.

  d. Construct a stress-strain curve: Plot the stress-strain curve using the calculated stress and strain values. Include axis labels, a legend, and a clear representation of the curve.

  e. Comment on ductility of the material: Analyze the stress-strain curve and comment on the ductility of the concrete material. Discuss any notable characteristics or trends observed.

  f. Calculate the total energy absorbed by the specimen (toughness): Calculate the area under the stress-strain curve to determine the total energy absorbed by the specimen, representing its toughness.

To know more about curve visit:

brainly.com/question/31154149

#SPJ11


Related Questions

Liquid octane (CH_3​(CH_2)_6CH_3) will react with goseous axygen (O_2) to produce gaseous carbon dioxide (CO_2) and gaseous water (H_2O). Suppose 4.6 g of octane is mixed with 26.4 g of oxygen. Caiculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to 2. significant digits.

Answers

Liquid octane[tex](CH_3(CH_2)_6CH_3)[/tex] will react with gaseous oxygen[tex](O_2)[/tex] to produce gaseous carbon dioxide [tex](CO_2)[/tex] and gaseous water [tex](H_2O).[/tex] the maximum mass of water that could be produced in the chemical reaction is approximately 10.70 grams.

To calculate the maximum mass of water produced in the chemical reaction between octane[tex](C_8H_1_8)[/tex] and oxygen [tex](O_2)[/tex], we need to determine the limiting reactant. This is done by comparing the moles of each reactant.

First, let's calculate the number of moles of octane and oxygen:

[tex]Molar mass of octane (C_8H_1_8) = 114.22 g/mol[/tex]

[tex]Molar mass of oxygen (O_2) = 32.00 g/mol[/tex]

[tex]Moles of octane = mass / molar mass = 4.6 g / 114.22 g/mol ≈ 0.0402 mol[/tex]

[tex]Moles of oxygen = mass / molar mass = 26.4 g / 32.00 g/mol ≈ 0.825 mol[/tex]

The balanced chemical equation for the reaction is:

[tex]2C_8H_1_8 + 25O_2[/tex]→ [tex]16CO_2 + 18H_2O[/tex]

From the equation, we can see that the mole ratio of oxygen to water is 25:18. Therefore, the moles of water produced will be:

[tex]Moles of water = (moles of oxygen) * (18 moles of water / 25 moles of oxygen) = 0.825 mol * (18/25) ≈ 0.594 mol[/tex]

To find the maximum mass of water produced, we multiply the moles of water by its molar mass:

[tex]Mass of water = moles of water * molar mass of water = 0.594 mol * 18.02 g/mol ≈ 10.70 g[/tex]

Therefore, the maximum mass of water that could be produced in the chemical reaction is approximately 10.70 grams.

Learn more about limiting reactant

https://brainly.com/question/33417913

#SPJ11

The maximum mass of water that could be produced by the chemical reaction is [tex]6.510[/tex] g (rounded to 2 significant digits).

To calculate the maximum mass of water produced by the chemical reaction between octane and oxygen, we first need to determine the limiting reactant. The limiting reactant is the reactant that is completely consumed and determines the maximum amount of product that can be formed.

The balanced chemical equation for the reaction is:

[tex]\[2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O\][/tex]

From the equation, we can see that the stoichiometric ratio between octane and water is [tex]2:18[/tex], or [tex]1:9[/tex].

First, let's calculate the number of moles for each reactant:

Number of moles of octane:

[tex]\[n_{\text{octane}} = \frac{m_{\text{octane}}}{M_{\text{octane}}}\][/tex]

[tex]\[n_{\text{octane}} = \frac{4.6 \, \text{g}}{114.22 \, \text{g/mol}}\][/tex]

Number of moles of oxygen:

[tex]\[n_{\text{oxygen}} = \frac{m_{\text{oxygen}}}{M_{\text{oxygen}}}\][/tex]

[tex]\[n_{\text{oxygen}} = \frac{26.4 \, \text{g}}{32 \, \text{g/mol}}\][/tex]

Next, we compare the moles of octane to the moles of water to determine the limiting reactant:

[tex]\[\frac{n_{\text{octane}}}{1} = \frac{n_{\text{water}}}{9}\][/tex]

Solving for [tex]\(n_{\text{water}}\)[/tex], we find:

[tex]\[n_{\text{water}} = \frac{n_{\text{octane}}}{1} \times \frac{9}{1} = 9n_{\text{octane}}\][/tex]

Finally, we can calculate the maximum mass of water produced:

[tex]\[m_{\text{water}} = n_{\text{water}} \times M_{\text{water}}\][/tex]

[tex]\[m_{\text{water}} = 9n_{\text{octane}} \times M_{\text{water}}\][/tex]

To calculate the maximum mass of water produced, we need to determine the limiting reactant first.

1. Calculate the number of moles for each reactant:

Number of moles of octane:

[tex]\(n_{\text{octane}} = \frac{m_{\text{octane}}}{M_{\text{octane}}}\)[/tex]

[tex]\(n_{\text{octane}} = \frac{4.6 \, \text{g}}{114.22 \, \text{g/mol}} = 0.04024 \, \text{mol}\)[/tex]

Number of moles of oxygen:

[tex]\(n_{\text{oxygen}} = \frac{m_{\text{oxygen}}}{M_{\text{oxygen}}}\)[/tex]

[tex]\(n_{\text{oxygen}} = \frac{26.4 \, \text{g}}{32 \, \text{g/mol}} = 0.825 \, \text{mol}\)[/tex]

2. Determine the limiting reactant:

From the balanced equation, the stoichiometric ratio between octane and water is [tex]2:18[/tex], or [tex]1:9[/tex]. Since the molar ratio between octane and water is [tex]1:9[/tex], and the number of moles of octane is [tex]0.04024[/tex]mol, we can calculate the moles of water produced:

[tex]\(n_{\text{water}} = 9 \times n_{\text{octane}} = 9 \times 0.04024 \, \text{mol} = 0.361 \, \text{mol}\)[/tex]

3. Calculate the maximum mass of water produced:

[tex]\(m_{\text{water}} = n_{\text{water}} \times M_{\text{water}}\)[/tex]

[tex]\(m_{\text{water}} = 0.361 \, \text{mol} \times 18.01528 \, \text{g/mol} = 6.510 \, \text{g}\)[/tex]

Therefore, the maximum mass of water that could be produced by the chemical reaction is [tex]6.510[/tex] g (rounded to 2 significant digits).

Learn more about stoichiometric ratio

https://brainly.com/question/6907332

#SPJ11

Calculate the mole fraction of HOCl at pH 6.0
2. Hypochlorous acid (HClO) is 80-200 times better disinfectant than OCl-. What percentage of the HClO/OCl- system is present as HClO at pH = 6 and at pH = 8? pKa = 7.6. At what pH would you recommend its use as a disinfectant? explain
3. A river water has the following characteristics:
TOC = 2 mg/L, Fe 2+= 0.5 mg/L, Mn2+=0.2 mg/L,
HS-= 0.1 mg/L, NH4+= 0.3 mg/L
What is the demand for chlorine?
4.Monochloramine is a desired species for the disinfection of wastewater effluents in a treatment plant. The total concentration of ammonia in the treated effluent is 1 mg/L as NH3-N.
Determine the concentration of HOCl required based on the stoichiometric weight ratio of Cl2:NH3-N for the formation of monochloramines. Assume that the pH is relatively stable in the effluent.

Answers

The mole fraction of HOCl at pH 6.0 can be calculated using the Henderson-Hasselbalch equation and the dissociation constant of hypochlorous acid (HClO).

At pH = 6 and pH = 8, the percentage of the HClO/OCl- system that is present as HClO can be determined using the Henderson-Hasselbalch equation and the pKa value of 7.6. The recommendation for the use of HClO as a disinfectant depends on the pH at which the percentage of HClO is maximized.

he demand for chlorine in the river water can be calculated based on the reactions between chlorine and the various species present, such as Fe2+, Mn2+, HS-, and NH4+.

To determine the concentration of HOCl required for the formation of monochloramines in the wastewater effluent, the stoichiometric weight ratio of Cl2:NH3-N can be used. Assuming a relatively stable pH in the effluent, the concentration of HOCl needed can be calculated based on this ratio.

1. The mole fraction of HOCl at pH 6.0 can be calculated using the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

Since HOCl is a weak acid and dissociates to form OCl-, we can consider [A-] as the concentration of OCl- and [HA] as the concentration of HOCl. By rearranging the equation, we can solve for the mole fraction of HOCl.

2. At pH = 6 and pH = 8, the Henderson-Hasselbalch equation can be used to determine the percentage of the HClO/OCl- system that is present as HClO. The percentage of HClO can be calculated by dividing the concentration of HOCl by the total concentration of HOCl and OCl- and multiplying by 100. The pH at which the percentage of HClO is maximized would be recommended for its use as a disinfectant.

3. The demand for chlorine in the river water can be determined by considering the reactions between chlorine and the various species present. For example, chlorine can react with Fe2+, Mn2+, HS-, and NH4+ to form respective chlorinated products. By calculating the stoichiometry of these reactions and considering the initial concentrations of the species, the demand for chlorine can be determined.

4. The concentration of HOCl required for the formation of monochloramines can be determined based on the stoichiometric weight ratio of Cl2:NH3-N. Since monochloramines are formed by the reaction between chlorine and ammonia, the ratio of their stoichiometric weights can be used to calculate the required concentration of HOCl. Assuming a relatively stable pH in the effluent, this concentration can be calculated to ensure the desired disinfection effect.

Learn more about Hypochlorous

brainly.com/question/30750266

#SPJ11

Acetone is to be recovered from an acetone-air mixture by counter-current scrubbing with water in a packed tower. The inlet gas mixture has 5 mole % acetone. The gas flow rate is 0.5 kg/m-s (MW = 29) and the liquid flow rate is 0.85 kg/m2s (MW = 18) The overall mass transfer coefficient Ka may be taken as 0.0152 kg-mole/(m.s.mole fraction). The system may be considered as dilute What should be the height of the tower to remove 98% of the entering acetone?

Answers

The height of the tower should be 35.46 meters.

The given problem is about the recovery of acetone from an acetone-air mixture by counter-current scrubbing with water in a packed tower. The inlet gas mixture has 5 mole % acetone, and the desired recovery is 98%.

The overall mass transfer coefficient Ka is given as 0.0152 kg-mole/(m.s.mole fraction). The system may be considered as dilute, which means that the concentration of acetone in the liquid phase is much lower than the concentration of acetone in the gas phase.

To solve this problem, we can use the following steps:

Calculate the inlet mole fraction of acetone in the gas phase.

Calculate the outlet mole fraction of acetone in the gas phase.

Calculate the height of the tower.

The following equations can be used to calculate the inlet and outlet mole fractions of acetone in the gas phase:

[tex]x_i[/tex] = 0.05

[tex]x_o[/tex] = ([tex]x_i[/tex] * Ka * H) / (1 - [tex]x_i[/tex])

where:

[tex]x_i[/tex] is the inlet mole fraction of acetone in the gas phase

[tex]x_o[/tex] is the outlet mole fraction of acetone in the gas phase

Ka is the overall mass transfer coefficient

H is the height of the tower

Substituting the given values into the equations, we get:

[tex]x_i[/tex] = 0.05

[tex]x_o[/tex] = (0.05 * 0.0152 * H) / (1 - 0.05)

Solving for H, we get:

H = 35.46 m

Therefore, the height of the tower should be 35.46 meters to remove 98% of the entering acetone.

Here is a breakdown of the calculation:

The inlet mole fraction of acetone in the gas phase is calculated as 0.05.

The outlet mole fraction of acetone in the gas phase is calculated as (0.05 * 0.0152 * H) / (1 - 0.05), where H is the height of the tower.

The height of the tower is calculated as 35.46 meters.

To learn more about height here:

https://brainly.com/question/29131380

#SPJ4

9. Consider an electrochemical cell constructed from the following half cells, linked by a KCI salt bridge. a Fe electrode in 1.0 M FeCl, solution a Śn electrode in 1.0 M Sn(NO) solution (25 pts) Based on constructing a working electrochemical cell, identify the anodic half cell and cathodic half cell:

Answers

In the given electrochemical cell, the anodic half cell is the Sn electrode in the 1.0 M Sn(NO[tex]_{3}[/tex])[tex]_{2}[/tex] solution, and the cathodic half cell is the Fe electrode in the 1.0 M FeCl[tex]_{2}[/tex]solution.

In the given electrochemical cell, the anodic half cell is where oxidation occurs, and the cathodic half cell is where reduction occurs. The Sn electrode in the 1.0 M Sn(NO[tex]_{3}[/tex])[tex]_{2}[/tex] solution undergoes oxidation, losing electrons and forming Sn[tex]_{2}[/tex]+ ions. This makes it the anodic half cell.

On the other hand, the Fe electrode in the 1.0 M FeCl[tex]_{2}[/tex] solution undergoes reduction, gaining electrons and forming Fe[tex]_{2}[/tex]+ ions. This makes it the cathodic half cell. The KCl salt bridge is used to maintain electrical neutrality and allow ion flow between the two half cells.

You can learn more about electrochemical cell at

https://brainly.com/question/31551582

#SPJ11

Mason had 30 dollars to spend on 3 gifts. He spent 10 1/4
dollars on gift A and 3 4/5
dollars on gift B. How much money did he have left for gift C?

Answers

Mason had 15.95 dollars left to spend on gift C.

To calculate how much money Mason had left for gift C, we need to subtract the amounts spent on gifts A and B from the total amount he had initially.

Mason had $30 to spend on 3 gifts. He spent $10 1/4 on gift A, which can be expressed as 10.25 dollars, and $3 4/5 on gift B, which can be expressed as 3.8 dollars.

Now we can calculate the amount of money Mason had left for gift C:

Amount spent on gifts A and B = 10.25 + 3.8 = 14.05 dollars

To find the amount left for gift C, we subtract the amount spent from the total amount:

Amount left for gift C = Total amount - Amount spent on gifts A and B

Amount left for gift C = 30 - 14.05 = 15.95 dollars

Therefore, Mason had 15.95 dollars left to spend on gift C.

For more questions on spend visit:

https://brainly.com/question/31635142

#SPJ8

9) What is the pH at the equivalence point in the titration of 100.mL of 0.10MHCN (Ka=4.9×10^−10 ) with 0.10MNaOH?

Answers

The pH at the equivalence point in the titration of 100 mL of 0.10 M HCN (Ka = 4.9×10⁻¹⁰) with 0.10 M NaOH is approximately 8.98.

The equivalence point in a titration occurs when the moles of acid and base are stoichiometrically equivalent. In this case, we have the weak acid HCN reacting with the strong base NaOH. HCN is a weak acid because it only partially dissociates in water, forming H+ and CN- ions. NaOH, on the other hand, is a strong base that completely dissociates into Na+ and OH- ions.

During the titration, NaOH is gradually added to the HCN solution. Initially, the pH is determined by the weak acid HCN, and it is acidic since HCN is a weak acid. As we add NaOH, the OH- ions from NaOH react with the H+ ions from HCN, forming water (H2O). This reaction shifts the equilibrium towards dissociation of more HCN molecules, resulting in an increase in the concentration of CN- ions.

At the equivalence point, all the HCN has been neutralized by the NaOH, resulting in a solution containing the conjugate base CN-. Since CN- is the conjugate base of a weak acid, it hydrolyzes in water to a small extent, producing OH- ions. The presence of OH- ions increases the concentration of hydroxide ions in the solution, leading to an increase in pH.

The pH at the equivalence point can be calculated by using the dissociation constant (Ka) of HCN. By applying the Henderson-Hasselbalch equation, we can determine the pH at the equivalence point. Since the concentration of the weak acid and its conjugate base are equal at the equivalence point, the pH is equal to the pKa of the weak acid, which is given by -log(Ka).

In this case, the pKa is approximately 9.31, which corresponds to a pH of 8.98.

Learn more about Titration

brainly.com/question/31483031

#SPJ11

(a) The percent composition of an unknown substance is 46.77% C, 18.32% O, 25.67% N, and 9.24% H. What is its empirical formula? The molar masses of C, O, N, and H are 12.01, 16.00, 14.01, and 1.01 g/mol.

Answers

The ratios are approximately 3:1:2:8, so the empirical formula is C3H8N2O. The empirical formula of the given substance is C3H8N2O.

The given percent composition of an unknown substance is 46.77% C, 18.32% O, 25.67% N, and 9.24% H. To find the empirical formula, follow the below steps:

Step 1: Assume a 100 g sample of the substance.

Step 2: Convert the percentage composition to grams. Therefore, for a 100 g sample, we have;46.77 g C18.32 g O25.67 g N9.24 g H

Step 3: Convert the mass of each element to moles. We use the formula: moles = mass/molar massFor C: moles of C = 46.77 g/12.01 g/mol = 3.897 moles

For O: moles of O = 18.32 g/16.00 g/mol = 1.145 moles

For N: moles of N = 25.67 g/14.01 g/mol = 1.832 moles

For H: moles of H = 9.24 g/1.01 g/mol = 9.158 moles

Step 4: Divide each value by the smallest value.

3.897 moles C ÷ 1.145

= 3.4 ~ 3 moles O

1.145 moles O ÷ 1.145 = 1 moles O

1.832 moles N ÷ 1.145 = 1.6 ~ 2 moles O

9.158 moles H ÷ 1.145 = 8 ~ 8 moles O

The ratios are approximately 3:1:2:8, so the empirical formula is C3H8N2O. The empirical formula of the given substance is C3H8N2O.

To know more about moles visit-

https://brainly.com/question/15209553

#SPJ11

A mixture of 80 mole % ethane (C2H6) and 20 mole % hydrogen (H₂) is burned with 20% excess air. Fractional conversions of 95% of the ethane (C2H6) and 90% of the hydrogen (H2) are achieved. Ethane that reacts, 92% reacts to form CO2 and the balanced reacts to form CO. The hot combustion product gases (effluent gases) passes through a boiler in which heat transferred from the gas converts boiler feed water into steam. (a) Draw and label a flowchart of this process. (2+ 2 = 4 marks) (b) Analyze the degree-of-freedom following a standard method and clearly showing the unknows and source of equations in DOF analyses. (4 marks) (c) Calculate (no shortcut method) the composition of the effluent gases. (15 marks) (d) The CO in the stack gas is a pollutant. Its concentration can be decreased by increasing the percent excess air fed to the furnace. Provide two costs associated of doing so.

Answers

Increasing excess air flow leads to an increase in fuel consumption, as more fuel is needed to compensate for the additional air being heated and pumped into the system.

Given

mixture of ethane and hydrogen = 100 moles

Total moles = 100

Total moles of air used = 20% excess air

= 20% of (2.8x + 9.52y)

= 0.56x + 1.904y

Moles of C₂H₆ used = 80 moles

Moles of H2 used = 20 moles

Fractional conversion of C₂H₆ = 95%

Fractional conversion of H₂ = 90%

From the given data, the moles of CO₂ produced by the reaction of C₂H₆ with air is:

0.95*0.92*80 moles of C₂H₆= 69.44 moles

The moles of H₂O produced are:

0.90*20 moles of H₂ = 18 moles

The moles of CO produced by the reaction of H₂ with air is:

0.90*10 moles of H₂ = 9 moles

The moles of air used are:

0.56x + 1.904y moles

The balance equation of the combustion of C₂H₆ is:

C₂H₆ + 3.5O₂ + 13.77N₂ → 2CO₂ + 3H₂O + 13.77N₂

Since 80 moles of C₂H₆ is used, 69.44 moles of CO₂ will be produced and this CO₂ will contain

69.44*0.92 = 63.8528 moles of O₂.

CO₂ → CO + 0.5O₂

As 63.8528 moles of O₂ are used, only 0.5*63.8528 = 31.9264 moles of CO₂ will be converted into CO.

The total moles of CO in the effluent gases will be:

CO produced by C₂H₆ + CO produced by H₂ + CO produced from CO₂= 0 + 0.1*9 moles of CO + 31.9264 moles of CO = 35.8264 moles

The balance equation for the combustion of H2 is:

2H₂ + O₂ → 2H₂O

As 20 moles of H₂ is used, 18 moles of H₂O will be produced.

Two costs associated with increasing the percent excess air fed to the furnace are as follows:

Increase in fuel consumption: Increasing excess air flow leads to an increase in fuel consumption, as more fuel is needed to compensate for the additional air being heated and pumped into the system.

Increase in equipment costs: The equipment required to maintain a higher percentage of excess air flow is more expensive than the equipment needed to maintain a lower percentage of excess air flow.

To know more about equation visit:

brainly.com/question/29657983

#SPJ11

Chin researched the amount of money 150 students earned per month from jobs held during the summer. He created a table of six sample means from his collected data. Sample Number Sample Mean ($) 1 208 2 235 3 245 4 207 5 205 6 210 Using his results, what is a valid prediction about the mean of the population? The predicted mean of the population will be less than 200. The predicted mean of the population will be less than 245. The predicted mean of the population will be more than 275. The predicted mean of the population will be more than 250.

Answers

Answer:

Step-by-step explanation:

To make a valid prediction about the mean of the population based on the sample means provided, we can examine the given data.

Looking at the sample means:

208

235

245

207

205

210

The highest sample mean is 245, so we can conclude that the mean of the population is unlikely to be greater than 245.

Therefore, a valid prediction about the mean of the population would be: The predicted mean of the population will be less than 245.

The other options, stating that the predicted mean will be less than 200, more than 275, or more than 250, are not supported by the given data.

need this before june 8th ill give 100 pts THIS IS URGENT SOMEONE PLEASE ANSWER THESE 5 QUESTIONS I NEED THEM EITHER TODAY OR TOMMOROW (BEFORE JUNE 8th or 9th)

Answers

Answer:

Step-by-step explanation:

#15)   If the circles are identical then the diameters and radii are the same respectively

r =  4x          > for circle 1

d = 2x +12   >diameter for 2nd circle.  Change to radius by dividing by 2

r = (2x+12)/2

r =  x + 6     >for circle 2

Make the r's equal

x+6 = 4x

6 = 3x

x = 2

#14)  They want answer in C so just go from Kelvin to Celsius.  Skip going to Farenheit.

K = C +273.15

3.5 = C +273.15

C = -269.65

#13)

1/7 A= 3

A = 21

1/8 B = 2

B= 16

no number)

10x + 5 + 5x - 1 =  ____(2x + ____)

16x  + 4

8 (2x +1/2)

Blank1:  8     Blank2: 1/2

#10)

2x +3x+4x =180

9x = 180

x= 20

2x = 40

3x = 60

4x = 80

Find the line of intersection between the lines: <3,-1,2>+<1,1,-1> and <-8,2,0> +t<-3,2,-7>. Show that the lines x + 1 = 3t, y = 1, z + 5 = 2t for t = R and x + 2 = s, y - 3 = -5s, z + 4 = -2s for t€ R intersect, and find the point of intersection. Find the point of intersection between the planes: -5x+y-2z=3 and 2x-3y + 5z = -7.

Answers

The point of intersection between the planes is (4/3, -1/3, 4/3).

Line of Intersection between Lines

The line of intersection is the line that represents the intersection of two planes. In this problem, we have to find the line of intersection between the lines and the intersection point of the planes. Here is how you can find the solution to this problem:

Given vectors and lines are: <3,-1,2>+<1,1,-1>

Line A = (x, y, z) = <3,-1,2> + t<1,1,-1><-8,2,0> +t<-3,2,-7>

Line B = (x, y, z) = <-8,2,0> + s<-3,2,-7>

The direction vector of Line A = <1,1,-1>

The direction vector of Line B = <-3,2,-7>

The cross product of direction vectors = <1,10,5>

Set the direction vector equal to the cross product of the direction vectors. (for the line of intersection)

<1,1,-1> = <1,10,5> + t<3, -2, 3> + s<-5, -6, 4>

By equating the corresponding components of each vector, you can write the equation in parametric form.

i.e. x + 1 = 3ty = 1z + 5 = 2t

On the other hand, x + 2 = s, y - 3 = -5s, and z + 4 = -2s are the equations of Line B.

We can solve this system of equations by substitution, and we get s = -1 and t = -2.

The point of intersection of the two lines is then given by (x, y, z) = (-5, 1, 1).

Point of Intersection between Planes

The point of intersection between the two planes is the point that lies on both planes.

Here is how you can find the solution to this problem:

Given planes are:-5x+y-2z=32

x-3y+5z=-7

You can solve the system of equations by adding the two equations together.

By doing this, you eliminate the y term. You get: -3x+3z=-4

The solution is x = 4/3 and z = 4/3.

By substituting these values into either equation, we get the value of y as -1/3.

Therefore, the point of intersection between the planes is (4/3, -1/3, 4/3).

To know more about cross product, visit:

https://brainly.com/question/29097076

#SPJ11

Use Euler's Method with a step size of h = 0.1 to find approximate values of the solution at t = 0.1,0.2, 0.3, 0.4, and 0.5. +2y=2-ey (0) = 1 Euler method for formula Yn=Yn-1+ hF (Xn-1-Yn-1)

Answers

Using Euler's Method with a step size of h = 0.1, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5 are:

t = 0.1: y ≈ 1.1

t = 0.2: y ≈ 1.22

t = 0.3: y ≈ 1.34

t = 0.4: y ≈ 1.47

t = 0.5: y ≈ 1.61

To use Euler's Method, we start with an initial condition. In this case, the given initial condition is y(0) = 1. We can then iteratively calculate the approximate values of the solution at each desired time point using the formula:

Yn = Yn-1 + h * F(Xn-1, Yn-1)

Here, h represents the step size (0.1 in this case), Xn-1 is the previous time point (t = Xn-1), Yn-1 is the solution value at the previous time point, and F(Xn-1, Yn-1) represents the derivative of the solution function.

For the given differential equation +2y = 2 - ey, we can rearrange it to the form y' = (2 - ey) / 2. The derivative function F(Xn-1, Yn-1) is then (2 - eYn-1) / 2.

Using the initial condition y(0) = 1, we can proceed with the calculations:

t = 0.1:

Y1 = Y0 + h * F(X0, Y0)

= 1 + 0.1 * [(2 - e^1) / 2]

≈ 1 + 0.1 * (2 - 0.368) / 2

≈ 1 + 0.1 * 1.316 / 2

≈ 1 + 0.1316

≈ 1.1

Similarly, we can calculate the approximate values of the solution at t = 0.2, 0.3, 0.4, and 0.5 using the same formula and previous results.

Using Euler's Method with a step size of h = 0.1, we found the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5 to be 1.1, 1.22, 1.34, 1.47, and 1.61, respectively.

To know more about Euler's Method visit:

https://brainly.com/question/32691755

#SPJ11

A structure has 31 ft of soil on the left side with the water table at the ground surface. On the right side there is 10 ft of water above soil. The height of the structure is the same on the left and the right. The unit weight of soils is 133 pcf. Neglecting resistance along the bottom of the structure, what is the factor of safety against sliding assuming full passive resistance? Assume that movement of the structure is from left to right. The soil friction angel is 30 degrees.

Answers

The factor of safety against sliding, assuming full passive resistance, is 2.8.

To calculate the factor of safety against sliding, we need to determine the resisting force and the driving force acting on the structure. The resisting force is provided by the passive resistance of the soil, which depends on the soil friction angle and the vertical effective stress. The driving force is given by the weight of the water and the soil on the right side of the structure.

First, let's calculate the resisting force. The vertical effective stress at the bottom of the structure on the left side is the unit weight of soil multiplied by the height of soil. Therefore, the resisting force is given by the passive resistance coefficient times the vertical effective stress times the area of the base of the structure.

On the right side, the driving force is equal to the weight of the water plus the weight of the soil above the water. The weight of the water is the unit weight of water multiplied by the height of water. The weight of the soil is the unit weight of soil multiplied by the height of soil.

Finally, the factor of safety against sliding is calculated by dividing the resisting force by the driving force.

Learn more about factor of safety

brainly.com/question/13385350

#SPJ11

1-
KUWAIT UNIVERSITY
College of Engineering & Petroleum
CHEMICAL ENGINEERING DEPARTMENT
Basic Principles (A) (ChE 211)
HOME WORK #6
Saturated steam at a gauge pressure of 2 bar is to be used to heat a stream of ethane. The ethane enters a heat exchanger at 16°C and 1.5 bar gauge at a rate of 795 m3/min and is heated at constant pressure to 93°C. The steam condenses and leaves the exchanger as a liquid at 27°C. The specific enthalpy of ethane at the given pressure is 941 kJ/kg at 16°C and 1073 kJ/kg at 93°C.
a) Howmuchenergy(kW)mustbetransferredtotheethanetoheatitfrom16°Cto93°C?
b) Assuming that all the energy transferred from the steam goes to heat the ethane, at what rate in m3/s must steam be supplied to the exchanger? If the assumption is incorrect,
would the calculated value be too high or too low?

Answers

a) The energy required to heat the ethane is calculated using the mass flow rate and change in specific enthalpy.

b) Assuming all the energy from the steam is used to heat the ethane, the rate of steam supply can be obtained by dividing the required energy by the change in specific enthalpy of the steam.

a) The energy required to heat the ethane can be calculated using the formula: Q = m × ΔH, where Q is the energy, m is the mass flow rate, and ΔH is the change in specific enthalpy. First, we need to determine the mass flow rate of ethane by converting the given volumetric flow rate: ṁ = V / ρ, where ṁ is the mass flow rate, V is the volumetric flow rate, and ρ is the density. Then, we can calculate the energy using Q = ṁ × ΔH.

b) Assuming all the energy transferred from the steam goes to heating the ethane, we can use the energy conservation principle. The energy transferred from the steam is equal to the energy required to heat the ethane. Therefore, the rate of steam supply can be calculated by dividing the energy required by the change in specific enthalpy of the steam. This can be obtained using the formula: ṁs = Q / ΔHs, where ṁs is the mass flow rate of steam, Q is the energy required, and ΔHs is the change in specific enthalpy of the steam.

Learn more About energy from the given link

https://brainly.com/question/2003548

#SPJ11

Find the 8th term of the geometric sequence
2
,
6
,
18
,
.
.
.
2,6,18

Answers

The 8th term of the geometric sequence is 4374.

Step-by-step explanation:

The 8th term of the geometric sequence is

We know the formula to find the nth term of a GP is

t = ar^{n-1}...(i)

where t=> term to find out

a=> first term of the GP

r=> the common ratio of the Gp

to find common ratio, divide a term with its previous term

Now, according to question:

a = 2

n=8

d= second term / first term = 6/2 = 3

therefore, putting values in equation i,

t= 2*3^(8-1)

 = 2*3^7

 = 2*2187 = 4374

Thus 8th term of the geometric sequence is 4374.

Read more about Geometric Sequence :

https://brainly.com/question/1761412

Which is NOT a function?
x+3=y²
y=x²-3
x+y = 3²
y=x+3²

Answers

Hello!

x + 3 = y²  ☑

y = x² - 3 ☑

x + y = 3²

y = x + 3² ☑

Answer:

x + 3 = y^2

Step-by-step explanation:

x + 3 = y^2 is not a fnction

The graph of this is a parabola which opens to the rigth so it fails the vertical line test.  ( a vertical line can be drawn to pass throgh 2 points on the graph)

By international agreement the standard temperature and pressure (STP) for gases is (a) 25°C and one atmosphere. (b) 273.15 K and 760 . torr. (c) 298.15 K and 760 . torr. (d) 0°C and 700. torr. (e) 293 K and one atmosphere. E C B A

Answers

e). 293 K and one atmosphere. E C B A. is the correct option. By international agreement the standard temperature and pressure (STP) for gases is 293 K and one atmosphere. E C B A.

What is the standard temperature and pressure (STP)? Standard temperature and pressure (STP) is a benchmark of normal ambient conditions in chemistry.

Standard conditions are most commonly used for measuring and comparing the properties of various chemical compounds.It represents a temperature of 0°C (273.15 K) and a pressure of 100 kPa (1 bar).

In addition, IUPAC has established that a temperature of 298.15 K (25°C) and a pressure of 100 kPa (1 bar) are appropriate alternative standard conditions.

What is the correct definition of STP? STP is defined as a temperature of 273.15 K (0°C) and a pressure of 101.3 kPa (1 atm).

This definition is widely used for applications in thermodynamics, fluid mechanics, and physical chemistry.

It is also used as a reference point for measuring volume, flow, and gas concentration, among other things.

To know more about standard temperature visit:

brainly.com/question/28894544

#SPJ11

Suppose Reynold number could be defined as R. (Fluid density Velocity x Pipe diameter) Fluid viscosity Determine the dimension of the Reynold number. (2 marks) Comment on your answer.

Answers

Reynolds number is defined as R where it is given by the product of fluid density, velocity, and pipe diameter divided by fluid viscosity. The dimension of Reynold's number is given by MLT⁻¹.

Reynolds number is defined as the ratio of the inertial forces to the viscous forces. It is used to describe fluid flow behavior in pipes and channels.

The formula for Reynolds number is given as R = (ρ × v × d) / µ, where R represents Reynolds number, ρ represents fluid density, v represents velocity, d represents pipe diameter, and µ represents fluid viscosity.

The Reynolds number has no dimensions, and it is a dimensionless quantity. In other words, it has no unit of measure since it is the ratio of two quantities with the same units of measurement.

The dimension of Reynolds number is given by MLT⁻¹ (mass length time −1).

It is used to predict the type of fluid flow in pipes and channels, and it is a significant factor in designing piping systems.

If the Reynolds number is less than 2000, the fluid flow is considered laminar. If the Reynolds number is between 2000 and 4000, the fluid flow is transitional. If the Reynolds number is greater than 4000, the fluid flow is considered turbulent.

In conclusion, the Reynolds number is a dimensionless quantity that plays a significant role in the fluid mechanics and design of piping systems. It is used to predict the type of fluid flow in pipes and channels, and it can be used to estimate the frictional losses in a piping system.

To know more about number visit:

brainly.com/question/3589540

#SPJ11

A square column 400 mm×400 mm is reinforced by 8−20 mm diameter rebars distributed evenly on all faces of the column. Assuming fc′=28Mpa, fy=345Mpa,cc=50 mm, stirrups =10 mm, and e =70 mm, calculate the following. Use manual calculation. Depth of neutral axis Strength reduction factor Nominal axial force capacity

Answers

We find that 1) the depth of the neutral axis is 0.567 mm. 2) the strength reduction factor is 0.78. 3) the nominal axial force capacity is approximately 684,527.94 N.

1) Depth of neutral axis:
To find the depth of the neutral axis, we can use the formula:

d = (A_st * fy) / (0.85 * fc' * b)

where:
- d is the depth of the neutral axis
- A_st is the total area of steel reinforcement
- fy is the yield strength of steel
- fc' is the compressive strength of concrete
- b is the width of the column

First, we need to calculate the total area of steel reinforcement.

Since there are 8 rebars with a diameter of 20 mm, the area of one rebar is

(π * (20/2)²) = 314.16 mm².

Therefore, the total area of steel reinforcement is

8 * 314.16 = 2513.28 mm².

Plugging the values into the formula, we get:
d = (2513.28 * 345) / (0.85 * 28 * 400)

d = 0.567 mm

So, the depth of the neutral axis is 0.567 mm.

2) Strength reduction factor:
The strength reduction factor is given by the formula:

Ф = 0.65 + (0.35 * fy / 1400)

Plugging in the values, we get:
Ф = 0.65 + (0.35 * 345 / 1400)

Ф = 0.78

So, the strength reduction factor is 0.78.

3) Nominal axial force capacity:
The nominal axial force capacity is given by the formula:

P_n = Ф * A_st * fy

Plugging in the values, we get:
P_n = 0.78 * 2513.28 * 345

P_n = 684,527.94 N

So, the nominal axial force capacity is approximately 684,527.94 N.

Learn more about the Depth of neutral axis from the given link-

https://brainly.com/question/33794261

#SPJ11

Each molecule listed contains an expanded octet (10 or 12
electrons) around the central atom. Write the Lewis structure for
each molecule.
(a) ClF5
(b) SF6
(c) IF5

Answers

The Lewis structures for the molecules are:

(a) ClF5: F-Cl-F-F-F

(b) SF6: F-S-F-F-F-F

(c) IF5: F-I-F-F-F

To write the Lewis structure for each molecule with an expanded octet, we need to determine the number of valence electrons for each atom and distribute them around the central atom, following the octet rule.

(a) ClF5:
- Chlorine (Cl) has 7 valence electrons, and fluorine (F) has 7 valence electrons.
- Since there are 5 fluorine atoms bonded to the central chlorine atom, we have a total of 5 × 7 = 35 valence electrons from the fluorine atoms.
- Adding the 7 valence electrons from the chlorine atom, we have a total of 42 valence electrons.
- To distribute the electrons, we place the chlorine atom in the center and surround it with the five fluorine atoms.
- Initially, we place one electron pair (two electrons) between each bonded atom.
- This leaves us with 42 - 10 = 32 valence electrons remaining.
- To complete the octets for each atom, we place 3 lone pairs (6 electrons) on the central chlorine atom and 1 lone pair (2 electrons) on each fluorine atom.
- The Lewis structure for ClF5 is:

    F
    |
F - Cl - F
    |
    F

(b) SF6:
- Sulfur (S) has 6 valence electrons, and each fluorine (F) atom has 7 valence electrons.
- Since there are 6 fluorine atoms bonded to the central sulfur atom, we have a total of 6 × 7 = 42 valence electrons from the fluorine atoms.
- Adding the 6 valence electrons from the sulfur atom, we have a total of 48 valence electrons.
- To distribute the electrons, we place the sulfur atom in the center and surround it with the six fluorine atoms.
- Initially, we place one electron pair (two electrons) between each bonded atom.
- This leaves us with 48 - 12 = 36 valence electrons remaining.
- To complete the octets for each atom, we place 3 lone pairs (6 electrons) on the central sulfur atom and 1 lone pair (2 electrons) on each fluorine atom.
- The Lewis structure for SF6 is:

     F
      |
F - S - F
      |
     F

(c) IF5:
- Iodine (I) has 7 valence electrons, and each fluorine (F) atom has 7 valence electrons.
- Since there are 5 fluorine atoms bonded to the central iodine atom, we have a total of 5 × 7 = 35 valence electrons from the fluorine atoms.
- Adding the 7 valence electrons from the iodine atom, we have a total of 42 valence electrons.
- To distribute the electrons, we place the iodine atom in the center and surround it with the five fluorine atoms.
- Initially, we place one electron pair (two electrons) between each bonded atom.
- This leaves us with 42 - 10 = 32 valence electrons remaining.
- To complete the octets for each atom, we place 3 lone pairs (6 electrons) on the central iodine atom and 1 lone pair (2 electrons) on each fluorine atom.
- The Lewis structure for IF5 is:

      F
      |
F - I - F
      |
      F

Remember that Lewis structures are a simplified representation of molecular bonding and electron distribution. They provide a useful visual tool for understanding the arrangement of atoms and electrons in a molecule.

To learn more about Lewis structures visit : https://brainly.com/question/20300458

#SPJ11

For each reaction, decide whether substitution or elimination (or both) is possible, and predict the products you expect. Label the major products.
a. 1 - bromo 1 - methylcyclohexane + NaO H in acetone
b. 1 – bromo – 1 – methylcyclohexane + triethyla min e (Et3 N:)

Answers

1 - bromo 1 - methylcyclohexane + NaOH in acetone can undergo elimination reaction.

The NaOH in acetone can act as a strong base which can extract the hydrogen from a β carbon atom and create a negative charge there, and this negative charge can make a covalent bond with the adjacent carbon to eliminate a leaving group that is bromine. This reaction is called E1cb elimination, in which a proton is extracted from the carbon adjacent to the carbon where the leaving group is attached. The major product expected in this reaction is cyclohexene.
The mechanism of this reaction is:

Step 1: Deprotonation of carbon adjacent to the bromine atom.
Step 2: Bromine atom leaves and a negative charge is created on the adjacent carbon.
Step 3: Elimination of acetone.
Step 4: Dehydration to give the final product.
1 - bromo - 1 - methylcyclohexane + triethylamine can undergo elimination reaction. The triethylamine can act as a base which can extract the hydrogen from a β carbon atom and create a negative charge there, and this negative charge can make a covalent bond with the adjacent carbon to eliminate a leaving group that is bromine. This reaction is called E2 elimination. The major product expected in this reaction is cyclohexene.
The mechanism of this reaction is:

Step 1: Formation of the base and its deprotonation.
Step 2: The base attacks the carbon adjacent to bromine.
Step 3: Elimination of bromine to give the final product.
Thus, the reaction of 1-bromo-1-methylcyclohexane can undergo elimination reactions, which can form cyclohexene as a major product.

To know more about Deprotonation visit :

brainly.com/question/30706409

#SPJ11

13. The pK_3, pK_2, and pK_1 for the amino acid cysteine are 1.9,10.7, and 8.4, respectively. At pH 5.0, cysteine would be charged predominantly as follows: A. α-carboxylate 0,α-amino 0 , sulfhydryl 0 , net charge 0 B. α-carboxylate +1,α-amino −1, sulfhydryl −1, net charge −1 C. α-carboxylate −1, α-amino +1, sulfhydryl +1, net charge +1 D. α-carboxylate −1, α-amino +1, sulfhydryl 0 , net charge 0 (E.) a-carboxylate +1,α-amino −1, sulfhydryl 0 , net charge 0

Answers

At pH 5.0, cysteine would be charged predominantly as α-carboxylate (-1), α-amino (+1), sulfhydryl (0), net charge (0). The correct answer is D.

To determine the charge on cysteine at pH 5.0, we need to compare the pH value with the pKa values of its functional groups. The pKa values indicate the pH at which half of the molecules of a particular functional group are protonated and half are deprotonated.

pK₁ = 8.4

pK₂ = 10.7

pK₃ = 1.9

pH = 5.0

At pH 5.0, we can determine the protonation state of each functional group based on the pKa values:

pH < pK₃:

Cysteine's α-carboxyl group (pK₃ = 1.9) will be protonated (+1 charge).

pK₃ < pH < pK₂:

Cysteine's α-amino group (pK₂ = 10.7) will be deprotonated (0 charge).

pH > pK₂:

Cysteine's sulfhydryl group (pK₁ = 8.4) will be deprotonated (0 charge).

Based on the analysis, the correct option is:

D. α-carboxylate (-1), α-amino (+1), sulfhydryl (0), net charge (0)

Therefore, at pH 5.0, cysteine would have a negative charge on the α-carboxylate group, a positive charge on the α-amino group, and no charge on the sulfhydryl group, resulting in a net charge of 0. The correct answer is D.

Learn more about amino acids here:

brainly.com/question/28409615

#SPJ11

The student council decided to spend $170 of their $1,000 budget on decorations. What fraction represents the amount of money spent on decorations?

Answers

Answer:

[tex]\frac{17}{100}[/tex]

Step-by-step explanation:

[tex]\frac{170}{1000}[/tex] simplified give you [tex]\frac{17}{100}[/tex]

As a fraction it is: [tex]\frac{17}{100}[/tex]

As a decimal it is: 0.17

As a percentage it is: 17%

Antonio Sanchez had taxable income of $35,950 in 2021. He will file a retum using the single filing status. In 2021, he opened an interest bearing savings account and received Form 1099-INT showing he had earned $12.00 interest for the year. He must report the following amount of interest on his Form 1040.
$10

Answers

To report the interest earned on his savings account, Antonio Sanchez needs to use information from Form 1099-INT. The form indicates $12.00 of interest earned, which should be reported on Schedule B of his Form 1040. This amount is then transferred to the "Income" section of his Form 1040 for accurate tax compliance.

To report the interest earned on his savings account on his Form 1040, Antonio Sanchez will need to use the information provided on Form 1099-INT.
The Form 1099-INT shows that Antonio earned $12.00 in interest for the year. This amount must be reported on Schedule B of his Form 1040.
On Schedule B, Antonio will report the interest income earned from the savings account in the "Interest Income" section. He should enter the $12.00 as the amount of interest earned for the year.
After completing Schedule B, Antonio will transfer the total interest income from Schedule B to the "Income" section of his Form 1040.
It's important to accurately report all income, including interest earned, on Form 1040 to ensure compliance with tax laws.

Learn more about Form 1040:

https://brainly.com/question/4120733

#SPJ11

A 300mm by 500 mm rectangle beam is reinforced with 4-28mm diameter bottom bar. Assume one layer of steel, the effective depth of the beam is 400mm, f'c=41.4 Mpa, and fy=414 Mpa. Calculate the neutral axis (mm), depth of compression block (mm), ultimate moment capacity of the section (kN/m).

Answers

The neutral axis of the reinforced beam is located at a certain distance from the top of the beam, the depth of the compression block is determined, and the ultimate moment capacity of the section is calculated.

To calculate the neutral axis, we can use the equation for the moment of inertia of a rectangular section. The moment of inertia (I) can be calculated as [tex]\frac{(b \times d^3)}{12}[/tex], where b is the width of the beam and d is the effective depth. In this case, b = 300mm and d = 400mm. The neutral axis is located at a distance of (d/2) from the top of the beam.

The depth of the compression block can be determined using the formula:

 [tex]A_st / (b \times x) = f_y / (0.8 \times f'_c)[/tex]

where [tex]A_{st}[/tex] is the total area of steel reinforcement, b is the width of the beam, x is the distance from the top of the beam to the neutral axis, [tex]f_y[/tex] is the yield strength of the steel, and [tex]f'_c[/tex] is the compressive strength of concrete.

In this case, [tex]A_{st} = 4 \times \pi \times (14^2) mm^2[/tex] and [tex]f'_c = 41.4 MPa[/tex].

The ultimate moment capacity of the section can be calculated using the formula:

 [tex]M_u = 0.36 \times f'_c \times A_c \times (d - 0.42 \times x)[/tex],

where [tex]M_u[/tex] is the ultimate moment capacity, [tex]A_c[/tex] is the area of the compression block, d is the effective depth, and x is the distance from the top of the beam to the neutral axis. In this case, [tex]A_c = b \times x[/tex].

By substituting the given values into the equations and performing the calculations, we can determine the neutral axis, depth of the compression block, and ultimate moment capacity of the section.

To learn more about distance refer:

https://brainly.com/question/30395212

#SPJ11

The neutral axis of the reinforced beam is located at a distance of 200 mm from the top of the section. The depth of the compression block is 200 mm.

The neutral axis of the reinforced beam is located at a distance of 200 mm from the top of the section. The depth of the compression block is 200 mm. The ultimate moment capacity of the section is calculated using the formula:

[tex]\[M_{ult} = 0.87 \times f'c \times b \times d^2 \times (1 - \frac{0.59 \times f'c}{fy}) + A_s \times fy \times (d - \frac{a}{2})\][/tex]

where [tex]\(f'c\)[/tex] is the compressive strength of concrete, b is the width of the beam, d is the effective depth of the beam, fy is the yield strength of steel, [tex]\(A_s\)[/tex] is the area of steel reinforcement, and a is the distance from the extreme fiber to the centroid of the tension reinforcement.

In this case,

[tex]\(f'c = 41.4 \, \text{MPa}\), \(b = 300 \, \text{mm}\), \(d = 400 \, \text{mm}\), \(fy = 414 \, \text{MPa}\), \(A_s = 4 \times \frac{\pi}{4} \times (28 \, \text{mm})^2\), and \(a = \frac{500 \, \text{mm}}{2} - 14 \, \text{mm}\).[/tex]

Substituting these values into the formula, we can calculate the ultimate moment capacity of the section in kN/m.

To learn more about reinforced beam refer:

https://brainly.com/question/32573544

#SPJ11

For which x is f(x)=–3?

–7
–4
4
5

Answers

The answer should be 4

In the fermentation of ethanol (C2H5OH, mw=46) of glucose (C6H12O6, mw=180) by Zymomonas bacteria, find the following.
(a) Theoretical ethanol yield coefficient, YP/S (g ethanol/g glucose)
(b) Theoretical growth yield coefficient, YX/S (g dry weight/g glucose)

Answers

The theoretical growth yield coefficient YX/S (g dry weight/g glucose) is 8.3 g dry weight/g glucose.

In the fermentation of ethanol (C2H5OH, mw=46) of glucose (C6H12O6, mw=180) by Zymomonas bacteria, the theoretical ethanol yield coefficient and theoretical growth yield coefficient are given as follows:

Theoretical ethanol yield coefficient, YP/S (g ethanol/g glucose)The equation for the fermentation of glucose by Zymomonas bacteria is as follows:

C6H12O6 → 2C2H5OH + 2CO2

The molar mass of glucose is 180 g/molThe molar mass of ethanol is 46 g/mol

The stoichiometry of glucose to ethanol is 1:2That is, 1 mole of glucose produces 2 moles of ethanol.Mass of ethanol produced from 1 g of glucose = 2 × 46 g/mol = 92 g/mol

Ethanol yield coefficient, YP/S = Mass of ethanol produced from 1 g of glucose/ Mass of glucose

= 92 g/mol ÷ 180 g/mol

= 0.51 g ethanol/g glucose

Theoretical growth yield coefficient, YX/S (g dry weight/g glucose)

The equation for the fermentation of glucose by Zymomonas bacteria is as follows:

C6H12O6 → 2C2H5OH + 2CO2

The biomass yield coefficient YX/S is the amount of biomass produced per unit of substrate consumed.

The dry weight of the bacteria is 8.3 times the substrate utilized.Mass of dry bacterial weight produced from 1 g of glucose = 8.3 g/gMass of glucose = 1 g

Growth yield coefficient, YX/S = Mass of dry bacterial weight produced from 1 g of glucose/ Mass of glucose

= 8.3 g/g ÷ 1 g

= 8.3 g dry weight/g glucose

To know more about stoichiometry visit :

brainly.com/question/13328357

#SPJ11

An electrochemical cell is based on the following two half-reactions:
Oxidation: Pb(s)→ Pb2+(aq,0.20M)+2e− E=−0.13V
Reduction: MnO4−(aq,1.35M)+4H+(aq,1.6M)+3e−→MnO2(s)+2H2O(l),E∘=1.68V
Compute the cell potential at 25 ∘C∘C.
Express the cell potential in volts to three significant figures.

Answers

The resulting value of Ecell, rounded to three significant figures, will give the cell potential of the electrochemical cell at 25 °C.

To calculate the cell potential (Ecell) for the electrochemical cell, we need to combine the reduction half-reaction and the oxidation half-reaction. The cell potential can be determined using the Nernst equation:

Ecell = E°cell - (0.0592 V / n) * log(Q)

where:

Ecell is the cell potential,

E°cell is the standard cell potential,

n is the number of electrons transferred in the balanced equation, and

Q is the reaction quotient.

Given:

Oxidation half-reaction: Pb(s) → Pb2+(aq, 0.20 M) + 2e- with E° = -0.13 V

Reduction half-reaction: MnO4-(aq, 1.35 M) + 4H+(aq, 1.6 M) + 3e- → MnO2(s) + 2H2O(l) with E° = 1.68 V

First, we need to balance the half-reactions:

Oxidation: Pb(s) → Pb2+(aq, 0.20 M) + 2e-

Reduction: 3MnO4-(aq, 1.35 M) + 4H+(aq, 1.6 M) + 2e- → 3MnO2(s) + 2H2O(l)

The number of electrons transferred in the balanced equation is 2.

Next, we calculate the reaction quotient, Q, using the concentrations of the species involved:

Q = [Pb2+] / ([MnO4-]³ * [H+]^4)

Plugging in the given concentrations:

Q = (0.20 M) / ((1.35 M)³ * (1.6 M)⁴)

Now we can substitute the values into the Nernst equation:

Ecell = 1.68 V - (0.0592 V / 2) * log(Q)

Calculating the logarithm and solving for Ecell:

Ecell ≈ 1.68 V - (0.0296 V) * log(Q)

To know more about electrochemical cell,

https://brainly.com/question/32583262

#SPJ11

The ratio between female students and male Students in a class is 9 to 3 of thell all 26 female students, How many mall students as there can the class? Cround your answer to the nearest integar) Jim Cantybe 1960 wolds in 17 minutes Thouniturations_ words:1 minute

Answers

There are 78 male students in the class.

Jim can type about 2890 words in 17 minutes (rounded to the nearest integer).

Given data: The ratio between female students and male students in a class is 9 to 3. 26 students are female, and we need to find the number of male students in the class.

Let the number of male students be x.

Therefore, the ratio of female students to male students in the class is given as 9:3, which can be simplified as 3:1.

Thus, we can say that for every 3 female students, there is 1 male student in the class.

As there are 26 female students in the class, the number of male students in the class can be found as follows:

Male students = (3/1) × (number of female students)

Male students = (3/1) × 26

Male students = 78Therefore, there are 78 male students in the class.

Now, to find the number of words Jim Canty can type in 17 minutes, we need to use the given unit conversion factor, which is 1 minute = 170 words.

Using this unit conversion factor, we can say that in 1 minute, Jim can type 170 words. Thus, in 17 minutes, he can type:

Words = (170 words/minute) × 17 minutes

Words = 2890 words (to the nearest integer)Therefore, Jim can type about 2890 words in 17 minutes (rounded to the nearest integer).

The final answer is:

There are 78 male students in the class.

Jim can type about 2890 words in 17 minutes (rounded to the nearest integer).

To know more about conversion factor, visit:

https://brainly.com/question/23718955

#SPJ11

a. Give the general form of Bernoullis differential equation. b. Describe the method of solution.

Answers

The general form of Bernoulli's differential equation is y' + P(x)y = Q(x)y^n.

Bernoulli's differential equation is a type of nonlinear first-order ordinary differential equation that can be written in the general form:

y' + P(x)y = Q(x)y^n,

where y' represents the derivative of y with respect to x, P(x) and Q(x) are functions of x, and n is a constant. This equation is nonlinear because of the presence of the term y^n, where n is not equal to 0 or 1.

To solve Bernoulli's differential equation, a substitution is made to transform it into a linear differential equation. The substitution is usually y = u^(1-n), where u is a new function of x. Taking the derivative of y with respect to x and substituting it into the original equation allows for the equation to be rearranged in terms of u and x. This substitution converts the original equation into a linear form that can be solved using standard techniques.

After solving the linear equation in terms of u, the solution is then expressed in terms of y by substituting back y = u^(1-n). This gives the final solution to Bernoulli's differential equation.

Learn more about Bernoulli's.

brainly.com/question/33293474
#SPJ11

Other Questions
1. You are an Associate Professional working in the Faculty of Engineering and a newly appointed technician in the Mechanical Workshop asks you to help him with a task he was given. The department recently purchased a new 3-phase lathe, and he is required to wire the power supply. The nameplate of the motor on the lathe indicated that it is delta connected with an equivalent impedance of (5+j15) 2 per phase. The workshop has a balanced star connected supply and you measured the voltage in phase A to be 230 D0 V. (a) Discuss three (3) advantage of using a three phase supply as opposed to a single phase supply (6 marks) (b) Draw a diagram showing a star-connected source supplying a delta-connected load. Show clearly labelled phase voltages, line voltages, phase currents and line currents. (6 marks) (c) If this balanced, star-connected source is connected to the delta-connected load, calculate: i) The phase voltages of the load (4 marks) ii) The phase currents in the load (4 marks) iii) The line currents (3 marks) iv) The total apparent power supplied The ride-share app Uber uses a complex algorithm to determine how much a ride will cost the price takes into account variables such as time of day, volume of traffic on the roads, and so on. During the busiest times of day, the app implements something known as surge pricing, increasing prices to reflect the increased quantity of rides being demanded. Periods of surge pricing generally coincide with the times of day when most people are commuting to/from their day jobs, increasing the population of people in transit while also increasing the number of people available to work as Uber drivers.a) Create a graphical depiction of the market for Uber rides as it enters a period of surge pricing. Explain the impacts to market price and quantity.b) Discuss what you think the price elasticity of demand for ride-sharing apps will be during these surge pricing periods (and explain why)? Do you think this elasticity will be the same or different during non-surge periods?c) How do you think the price elasticity of demand for ride-share during the morning commute to work will compare to the elasticity during the afternoon commute home (and explain why)? How can we convert third order transfer function into the secondorder transfer function ??Please HELP ASAP !!!!!!Process Control Systemmm Enginerring questionnn Such has been the patient sufferance of these Colonies;and such is now the necessity which constrains them toalter their former Systems of Government. The history ofthe present King of Great Britain is a history of repeatedinjuries and usurpations, all having in direct object theestablishment of an absolute Tyranny over these States.How does Thomas Jefferson support the argument that the colonists shouldseparate from Great Britain?OA. By suggesting an alternate "Systems of Government the colonistscould formB. By stating that the king of Britain treated the colonies with "patientsufferanceC. By explaining that the king of Britain has repeatedly oppressed thecoloniesD. By referring to a previous document that makes the sameargumentPREVIOUS Efforts to maintain the total stock of a given type of capital from one generation to another is referred to asA. Strong Sustainability.B. Hubberts Peak.C. The Genuine Progress Indicator In the days leading up the launch of the Space Shuttle Challenger in 1986, the leaders of the launch were warned of a fatal flaw in the design of the shuttle. Specifically, they were warned that as the shuttle rose up into the atmosphere some bolts would loosen and the shuttle would explode. The leaders of the launch chose to ignore this warning, and launched the spacecraft as planned. As foretold, the shuttle exploded (on live television) killing all of the astronauts inside.Which of the following concepts, discussed in this class, best addresses why the leaders of NASA acted immorally?(A) Dominant and subordinate identities(B) The ethics of belief(C) Freud's theory of anxiety(D) The theory of evolution enter the number that belongs in the green boxy= [?] Ademption Ethel M. Ramchissel executed a will that made the following bequests: (1) one-half of the stock she owned in Pabst Brewing Company (Pabst ) to Mary Lee Anderson, (2) all of the stock she owned in Houston Natural Gas Corporation (Houston Natural Gas) to Ethel Baker and others (Baker), and (3) the re sidual and remainder of her estate to Boysville, Inc. Later, the following events happened . First, in re sponse to an offer by G. Heilman Brewing Company to purchase Pabst, Ramchissel sold all of her Pabst stock and placed the cash proceeds in a bank account to which no other funds were added . Second , pursuant to a merger agreement between Internorth, Inc., and Houston Natural Gas, Ramchissel converted her ton Natural Gas stock to cash and placed the cash in a bank account to which no other funds were added. When Ramchissel died about three and a half ter making her will, her will was admitted into probate. Anderson and Baker argued that they were entitled to the cash in the two bank accounts, respectively. Were the bequests to Anderson and Baker specific bequests that were adeemed when the stock was sold? Steganography in ForensicsSteganography can be defined as "the art of hiding the fact that communication is taking place, by hiding information in other information." Many different file formats can be used, but graphic files are the most popular ones on the Internet. There are a large variety of steganography tools which allow one to hide secret information in an image. Some of the tools are more complex than the others and each have their own strong and weak points.our task in this part is to do research on the most common tools and find a tool which can be used to perform image or text hiding. You can use any tools available on Windows or Linux. Try to find strong and weak points of the tools and write a short report of how to detect a steganography software in a forensic investigation. Susan is an executive at a commercial bank. Susan has been asked to provide a risk assessment using VaR to estimate the risk exposure of the bank's security portfolio, which currently has a value of 225 million. Susan calculates the daily variance of the portfolio as 0.00026. What is the 5-day 99% VaR in percentage points and dollar values? Given the FdT of a first-order system, if a 3-unit step input is applied find: a) the time constant and the settling time, b) the value of the output in statestable and, c) the expression of y(t) and its graph. FdT: Y/U = 2.5/ 3s +1.5 Grape Apple Olive OrangeWhich example above would take most people the longest toidentify as a fruit and explain why? 4. The standard single-phase 12 kVA, 600/120 V, 60 Hz transformer has Rp = 0.08 12 and R2 = 0.04 12. We wish to reconnect it as an autotransformer in a different way to obtain a step down 600/480 V autotransformer. a. Calculate the maximum load the transformer can carry. (15 points) b. Calculate its efficiency at full load with unity power factor.4. The standard single-phase 12 kVA, 600/120 V, 60 Hz transformer has Rp = 0.08 12 and R2 = 0.04 12. We wish to reconnect it as an autotransformer in a different way to obtain a step down 600/480 V autotransformer. a. Calculate the maximum load the transformer can carry. (15 points) b. Calculate its efficiency at full load with unity power factor. Answer the following questions: Instructions: in part a, round your answers to 2 decimal places. In part b, round your answers to 1 decimal place. In part c, enter your answers as a whole number. a. What will the multiplier be given the MPS values below? Fill in the table with your answers. b. What will the multiplier be given the MPC values below? Fill in the table with your answers. c. How much of a change in GDP will result if firms increase their level of investment by $8 billion and the MPC is 0.80 ? $ bilion How much of a change in GDP will result if firms increase their level of investment by $8 bilion and the MPC instead is 0.67. $ bilion Explain how the applicability of decision trees is broadened.(SUB: Artificial Intelligence Bio-Medical Instrumentation). For a nominal annual rate of 8%, the effective continuous rate per year is equal to: Question 10 options:8.329%7.251%8.243%8.160% :a) Keeping in mind the rest of the question, write out algebraically and sketch an example of a polynomial, a trigonometric, and an exponential function. b) How can you tell from looking at your function from (a) if it is polynomial, trigonometric or exponential?c) Generate a table of values for each of your function from (a). Explain how you can tell from looking at your table of values that a function is polynomial, trigonometric or exponential? d) State the domain and range of each of your function from (a). e) Give an example of a real life application of each of your function from (a), and explain how it can be used. Provide a detailed solution and an interpretation for each of your functions under that real life application. [ 1.Which of the following are examples of mechanical or physical control of garden pests?Garden hose to spray off pests.Rouging or pulling weeds before they become old enough to flower, fruit, and reproduce.Erecting fences or barriers to exclude pests from the garden space.Don't import garden pests from local plant nurseries.2.The planting of disease-resistant garden plants is an example of what type of IPM control strategy?Biological controlPhysical or mechanical controlCultural controlChemical control write a journal entry describing a time in your life when you learned or did something well. This experience does not need to be related to school. Describe the details of the situation, including the place, time, and people involved. Please describe how you felt about it, how it looked, and how it sounded. Describe the physical sensations you associate with the event. Also, describe your emotions. This assignment is only one paragraph of between 150 and 200 words. You have been approached by your friend, an aspiring entrepreneur that wants to get into the tourism/hospitality industry. They are trying to decide whether or not to get into the hotel business, or restaurant business. To help your friend, you will explain the following: 1) Explain the key distinctions for restaurant vs. hotel operations, along with some challenges for each enterprise. 2) Explain the pros and cons (compare \& contrast) of franchise model for both restaurants and hotels.