Complete the square to re-write the quadratic function in vertex form

Complete The Square To Re-write The Quadratic Function In Vertex Form

Answers

Answer 1

Answer: [tex]y=(x-5)^{2} -23[/tex]

Step-by-step explanation:

Step 1: Subtract 2 from both sides to get [tex]y-2=x^{2} -10x[/tex].

Step 2: Divide B (-10) by 2 to get -5
Step 3: Square your answer to Step 2 to get 25.
Step 4: Use the answer you got to Step 3 as your C value. We get [tex]y-2=x^{2} -10x+25[/tex].
Step 5: Since we added 25 to the right side of the equal sign, we have to add 25 to the left side of the equal sign. We get [tex]y+23=x^{2} -10x+25[/tex].
Step 6: Complete the square, to do this keep the left side of the equal sign the same and change the right side to (x + or - B/2 [depending on if its positive or negative]) squared. In this case it's [tex]y+23=(x-5)^{2}[/tex].

Step 7: We still have to get our K value because our vertex formula is [tex]y=a(x-h)^{2} +k[/tex], but in this case our A value is just 1, so it doesn't have to be replaced. So, to get K we subtract 23 from both sides to get our final answer of [tex]y=(x-5)^{2} -23[/tex].


Related Questions

find the derivaive of y with respect to s y=sec^-1(4s^3 9)

Answers

The derivative of the function y = sec⁻¹(4s³ + 9) is [tex]dy/ds = (12s^2) / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}[/tex].

We have to find the derivative of y with respect to s for the given function y = sec⁻¹(4s³ + 9).

Here are the steps to find the derivative:


1. Identify the function:

y = sec⁻¹(4s³ + 9).


2. Apply the chain rule:

dy/ds = (dy/du) * (du/ds), where u = 4s³ + 9.


3. Find dy/du:

Since y = sec⁻¹(u), the derivative

[tex]dy/du = 1 / (|u| * \sqrt{(u^2 - 1)}).[/tex]


4. Find du/ds:

Since u = 4s³ + 9, the derivative du/ds = 12s².


5. Combine the derivatives:

[tex]dy/ds = (1 / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}) * (12s^2)[/tex].

So, the derivative of y with respect to s for the function y = sec⁻¹(4s³ + 9) is:

[tex]dy/ds = (12s^2) / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}[/tex]

Learn more about derivative:

https://brainly.com/question/23819325

#SPJ11

HELP ME ASAP PLEASEEEE IM SO GROUNDED

Answers

Answer:

x = 40 because parallel lines cut by a transversal form congruent alternate interior angles.

Please help!! It should be easy for you all.
Morgan rode her bike 2 kilometers from her friends house. She rode 600 meters un all going to and back to the library, Then she rode back home. How many meters did she ride in all. (Please show work and steps too)

Answers

The total number of meters that Morgan rode in all would be 4, 600 m .

How to find the distance ?

Morgan rode her bike 2 kilometers to her friend's house and then eventually rode back home so the distance rode was ;

= 2 km + 2 km

= 4 km

In meters, this would be:

= 4 km x 1, 000 meters per km

= 4 km x 1, 000

= 4, 000 m

Then, she rode 600 meters to and from the library for a total of :

= 4, 000 + 600

= 4, 600 m

Find out more on distance at https://brainly.com/question/20297114

#SPJ1

What impact does the reinforcement schedule you follow (e.g., continuous or partial (Fixed Ratio... Varied Ratio.... Fixed Interval...Varied Interval) have on how quickly a response/behavior will be learned and how quickly extinction will occur?

Answers

The choice of reinforcement schedule can have important implications for both learning and the persistence of behavior over time.

The reinforcement schedule can have a significant impact on how quickly a response/behavior is learned and how quickly extinction occurs.

In general, continuous reinforcement schedules (where the behavior is reinforced every time it occurs) tend to result in faster learning of the behavior than partial reinforcement schedules (where the behavior is only reinforced some of the time). This is because the individual learns more quickly that the behavior is associated with the reinforcement.

However, once the behavior is learned, partial reinforcement schedules tend to result in greater resistance to extinction than continuous reinforcement schedules. This is because the individual has learned that the behavior is not always followed by reinforcement, so they are more likely to persist in the behavior even if reinforcement is no longer provided.

Among partial reinforcement schedules, fixed ratio schedules (where reinforcement is provided after a fixed number of responses) tend to lead to the fastest responding and highest rates of responding, but also tend to result in rapid extinction once reinforcement is removed. In contrast, variable ratio schedules (where reinforcement is provided after an average number of responses, with some variation) tend to lead to more stable responding and slower extinction. Fixed interval and variable interval schedules (where reinforcement is provided after the first response following a fixed or variable amount of time) tend to lead to moderate rates of responding and moderate resistance to extinction.

Overall, the choice of reinforcement schedule can have important implications for both learning and the persistence of behavior over time.

To learn more about persistence visit:

https://brainly.com/question/30762813

#SPJ11

What’s the mean of 7,8,9,9,11,11,12,14,15,19

Answers

Answer:

11.5

Step-by-step explanation:

Add 7+8+9+9+11+11+12+14+15+19. Divide it all by 10 (the number of values.)

Answer:

11.5

Step-by-step explanation:

Add 7+8+9+9+11+11+12+14+15+19. Divide it all by 10 (the number of values.)

Two teams play a series of games (best of 7) in which each team has a 50% chance of winning any given round (no draws allowed). What is the probability that the series goes to 7 games?

Answers

The probability that the series goes to 7 games is approximately 0.2734, or 27.34%.To find the probability that the series goes to 7 games, we can use the binomial distribution. Let X be the random variable representing the number of games won by one of the teams in a best-of-seven series.

Then, X follows a binomial distribution with parameters n=7 and p=0.5, where n is the number of trials & p is the probability of success in each trial (i.e., winning a game).

Both sides must win three games apiece in the first six games for the series to proceed to seven. The series winner will then be decided in the seventh game.

As a result, the likelihood that the series will go to 7 games is the same as the likelihood that each side will win precisely 3 of the first 6 games, which is:

P(X=3) = (7 choose 3) * (0.5)^3 * (1-0.5)^(7-3) = 35/128 = 0.2734

where (7 choose 3) is the number of ways to choose 3 games out of 7. Therefore, the probability that the series goes to 7 games is approximately 0.2734, or 27.34%.

To know more about probability-

brainly.com/question/30034780

#SPJ4

find the monthly payment needed to amortize a typical $135,000 mortgage loan amortized over 30 years at an annual interest rate of 6.9ompounded monthly. (round your answers to the nearest cent.)

Answers

The monthly payment needed to amortize a typical $135,000 mortgage loan amortized over 30 years at an annual interest rate of 6.9% compounded monthly is $849.06.

To find the monthly payment:

The formula to calculate the monthly payment needed to amortize a mortgage loan is:

M = P [ i(1 + i)^n ] / [ (1 + i)^n – 1]

Where:
M = Monthly payment
P = Loan amount (in this case, $135,000)
i = Interest rate per month (6.9% / 12 = 0.575%)
n = Total number of payments (30 years x 12 months per year = 360)

Substituting the values into the formula, we get:

M = $135,000 [ 0.00575(1 + 0.00575)^360 ] / [ (1 + 0.00575)^360 – 1]
M = $849.06

Therefore, the monthly payment needed to amortize a typical $135,000 mortgage loan amortized over 30 years at an annual interest rate of 6.9% compounded monthly is $849.06.

To know more about Mortgage loan:

https://brainly.com/question/15082835

#SPJ11

which of the following is the height of cylinder, with a radius of 4.5 mm and a volume of 348.3

Answers

Step-by-step explanation:

Volume of a cylinder = pi r^2 h     <=====solve for 'h'

h = volume / (pi r^2)

  = 348.3 mm^3 / ( pi * 4.5^2)             ( I assumed the dimension mm^3 )

h = ~ 5.5 mm

Find all the eigenvalues (real and complex) of the matrixA=[ 3 −4 2 1 ].The eigenvalues are _____. (If there is more than one answer, enter your answers as a comma-separated list.)

Answers

the eigenvalues of the matrix A are:
-0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i
Note that the complex eigenvalues come in conjugate pairs, which reflects the fact that matrix A is real and symmetric.

To find the eigenvalues of matrix A, we need to solve the characteristic equation det(A-λI)=0, where I is the identity matrix and λ is the eigenvalue.

For the given matrix A=[ 3 -4 2 1 ], the characteristic equation is:

det(A-λI) = det([ 3-λ -4 2 1 ][ λ 1 0 0 ][ 0 0 λ 1 ][ 0 0 0 λ ])

= (3-λ) [ (λ-1)(λ-1) + 8 ] + 4 [ (λ-1)(λ-1) - 2λ ] - 2 [ -4(λ-1) + 2λ ]

= λ⁴ - 7λ³+ 12λ² + 19λ - 18

Now, we need to find the roots of this polynomial to get the eigenvalues. We can do this by factoring or by using numerical methods such as Newton's method.

Using a calculator or computer, we can find that the roots of the polynomial are approximate:

λ ≈ -0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i

Therefore, the eigenvalues of the matrix A are:

-0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i

Note that the complex eigenvalues come in conjugate pairs, which reflects the fact that the matrix A is real and symmetric.

learn more about eigenvalues

https://brainly.com/question/29749542

#SPJ11

a company makes steel rods shaped like cylinders. each rod has a diameter of 8 centimeters and a height of 30 centimeters. how much steel will the company need to make113 rods?

Answers

The volume of a cylinder is given by the formula V = πr²h, where r is the radius and h is the height. Since the diameter of the rod is 8 cm, the radius is 4 cm.

The given rod has a circular cross-section with a radius of 4 centimeters and a length of 30 centimeters. The volume of this rod can be calculated using the formula for the volume of a cylinder, which is V = πr²h, where r is the radius of the circular base and h is the height or length of the cylinder.

Substituting the given values into the formula, we get:

V = π(4²)(30)

Simplifying the expression, we get:

V = 480π cubic centimeters

This is the volume of one rod. To find the total amount of steel needed to make 113 rods, we simply multiply the volume of one rod by 113, since all rods are of the same size and shape.

total steel needed = 113 × V

total steel needed = 113 × 480π cubic centimeters

total steel needed = 54,240π cubic centimeters

Therefore, the total amount of steel needed to make 113 rods is 54,240π cubic centimeters.

To know more about volume,

https://brainly.com/question/12237641

#SPJ11

can someone help me with this please and thank you!

Answers

Hence the volume of given figure is 4464 [tex]m^{3}[/tex]

What is the cuboid ?

Quadrilaterals make its  faces A cuboid is a six-sided solid shape known as a hexahedron in geometry. . A cuboid is similar to a cube or a Cuboid as like a short cube.  in the  cuboid can become a cube by variation the angles between the faces or the lengths of the edges.

What is the volume?

A measurement of three-Dimensional space is volume. It is frequently expressed quantitatively using US-standard units or SI-derived units, as well as several imperial or Volume and the notion of length are connected.

According to figure ,

The volume of given figure = the volume of upper cuboid +the volume of lower cuboid

we know the the volume of cuboid = l*b*h [tex]m^{3}[/tex]

so, V = [tex](l_1*b_1*h_1)+(l_2*b_2*h_2)\\[/tex]

∴V=(11*(30-(9+9)*12) +(30*12*8)

∴V=(11*(30-18)*12) +(30*12*8)

∴V=(11*12*12) +(30*12*8)

∴V=(11*144) +(30*96)

∴V=1584 +2880

∴V=4464  [tex]m^{3}[/tex]

Learn more about volume Here,

https://brainly.com/question/463363

#SPJ1

Suppose we have a function defined by: f (x) = {x^2– 6 for x < 0, 10-x for x < 0 What values of a give f(x) = 43?

Answers

This solution is not valid because x must be greater than or equal to 0 in this case. Thus, the only value of a that gives f(x) = 43 is x = -7.

To find the values of a that give f(x) = 43, solve the equations x² - 6 = 43 and 10 - x = 43 separately for x. The correct equation to use is x² - 6 = 43.

There is a typo in the question, as both cases are given for x < 0. Assuming the second case should be for x ≥ 0, we have two equations to solve:

1) x² - 6 = 43 for x < 0
2) 10 - x = 43 for x ≥ 0

For the first equation:
x² - 6 = 43
x² = 49
x = ±√49
x = ±7

Since x must be less than 0, the value of x that gives f(x) = 43 is x = -7.

For the second equation:
10 - x = 43
-x = 33
x = -33

To know more about equations  click on below link:

https://brainly.com/question/29657983#

#SPJ11

3 Jackie incorrectly simplified the following expression.
(4 x 10-6) X 3,000
Select each step that shows an error based solely on the previous step.
A Step 1: (4 x 10-6)(3 × 10³)
B Step 2: (4 x 3)(10-6 x 10³)
C
Step 3: 12 × 10-³
D
Step 4: 1.2 × 10-4

Answers

Answer:

Step-by-step explanation: The correct simplification of the expression (4 x 10-6) X 3,000 can be found by multiplying the numerical coefficients and adding the exponents of 10.

4 x 10-6 is equal to 0.000004 in decimal notation.

Multiplying this by 3,000 gives:

(4 x 10-6) X 3,000 = 0.000004 x 3,000 = 12

Therefore, the simplified expression is 12.

Among the given steps, Step 2 is incorrect as it has incorrectly swapped the order of multiplication of the numerical coefficients and the exponents of 10.

Step 2: (4 x 3)(10-6 x 10³)

The correct order of multiplication should be:

Step 2 (Corrected): (4 x 3) x (10-6 x 10³)

This simplifies to:

Step 3: 12 x 10-3

And the final simplified expression is:

Step 4: 1.2 x 10-2

Therefore, the error in Jackie's simplification is in Step 2.

if f(6)=14 f' is continuous and f'(x)dx=18 what is the value of f(7)

Answers

If f(6)=14 f' is continuous and f'(x)dx=18 the value of f(7) is 32.

To find the value of f(7), we need to use the fundamental theorem of calculus, which states that if f is a continuous function and f'(x) is its derivative, then:

∫f'(x)dx = f(x) + C

where C is the constant of integration.

Given that f' is continuous and f'(x)dx=18, we can integrate both sides to obtain:

∫f'(x)dx = ∫18 dx

Using the fundamental theorem of calculus, we get:

f(x) + C = 18x + K

where K is another constant of integration.

Now, we can use the given value of f(6) to solve for C. Since f(6) = 14, we have:

f(6) + C = 18(6) + K

14 + C = 108 + K

C - K = 94

Substituting this value of C into our equation, we get:

f(x) = 18x + K - 94

To find the value of f(7), we substitute x = 7 into this equation:

f(7) = 18(7) + K - 94

Simplifying, we get:

f(7) = 100 + K

Therefore, we need to find the value of K to determine f(7). We can use the given information that f' is continuous to conclude that f is differentiable. Thus, we can differentiate our equation for f(x) to obtain:

f'(x) = 18

Since f'(x) is constant, we know that f(x) is a linear function of x. Therefore, we can use the two given points (6, 14) and (7, f(7)) to solve for K. The slope of the line passing through these points is:

m = (f(7) - 14) / (7 - 6) = f(7) - 14

Solving for f(7), we get:

f(7) - 14 = 18

f(7) = 32

Therefore, the value of f(7) is 32.

To know more about fundamental theorem of calculus refer here:

https://brainly.com/question/30761130

#SPJ11

help pls, i need it pls

Answers

If I’m not wrong it should be b, I’m sorry let me know if I’m wrong

calculate the average rate of change of the given function over the given interval f(x)=2x2 4;[-7,3]

Answers

Answer :- the average rate of change of the function f(x) = 2x^2 over the interval [-7, 3] is -8.

The function is f(x) = 2x^2, and the interval is [-7, 3].

The average rate of change of a function over an interval can be found using the following formula:

Average Rate of Change = (f(b) - f(a)) / (b - a)

Here, 'a' is the initial point in the interval, and 'b' is the final point in the interval. In this case, a = -7 and b = 3.

Step 1: Find f(a) and f(b)
f(a) = f(-7) = 2(-7)^2 = 2(49) = 98
f(b) = f(3) = 2(3)^2 = 2(9) = 18

Step 2: Plug the values into the formula
Average Rate of Change = (f(b) - f(a)) / (b - a)
= (18 - 98) / (3 - (-7))
= (-80) / (10)

Step 3: Calculate the result
Average Rate of Change = -8

So, the average rate of change of the function f(x) = 2x^2 over the interval [-7, 3] is -8.

learn more about "average rate":-https://brainly.com/question/2170564

#SPJ11

Binary integer programming problems can answer which types of questions?a. Should a project be undertaken?b. Should an investment be made?c. Should a plant be located at a particular location?d. All of the above.e. None of the above.

Answers

D. All of the above.binary integer programming problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By setting up the BIP problem and solving it, the best solution to the problem can be determined.

What is a binary integer?

Binary integer programming (BIP) is a type of optimization problem that seeks to find an optimal solution to a decision-making problem, where the decision variables must be restricted to discrete values (i.e. binary values such as 0 or 1).

BIP problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By working out the various parameters associated with the problem, and then solving the BIP problem, the best solution to the problem can be determined.

For example, a company may be faced with deciding which of two potential projects to undertake. To solve this problem, the company could define the decision variables (which project to choose) as binary integers, and then use the BIP problem formulation to determine which project would be the most profitable. This would involve considering all the relevant parameters such as expected revenue, cost, and time frame, and then solving the BIP problem to determine which project would yield the highest overall return.

In conclusion, binary integer programming problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By setting up the BIP problem and solving it, the best solution to the problem can be determined.

To know more about binary integer click-

https://brainly.com/question/17425833

#SPJ1

I NEED HELP ON THIS ASAP!! PLEASE, IT'S DUE TONIGHT!

Answers

Answer:

Step-by-step explanation:

pls help
solve this

Answers

Answer:

Yes, these two figures are congruent. Rotate the figure on the left 90° counterclockwise, and it will look just like the figure on the right.

if Σan and Σbn are both divergent, isΣ (an bn) necessarily divergent? yes no

Answers

No, Σ(an bn) is not necessarily divergent.

The product of two divergent series can converge, as long as their terms cancel each other out to some degree. For example, if an = 1/n and bn = n, then Σan and Σbn are both divergent, but Σ(an bn) = Σ1 is a convergent series.

A series is a convergent (or converges) if the sequence

[tex]{\displaystyle (S_{1},S_{2},S_{3},\dots )}[/tex]of its partial sums tends to a limit; that means that, when adding one

a{k} after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number

 such that for every arbitrarily small positive number

there is a (sufficiently large) integer

N such that for all

n>= N,

learn more about convergent series.

https://brainly.com/question/15415793

#SPJ11

Solve the equation by using the Quadratic Formula. Round to the nearest tenth, if necessary. Write your solutions from least to greatest.
separated by a comma, if necessary. If there are no real solutions, write no solutions.
x² + 4x = -1

Answers

Answer:

x = -2 - sqrt(3), -2 + sqrt(3) 

Step-by-step explanation:

We can rewrite the equation as

x² + 4x + 1 = 0

Now we can use the quadratic equation.

x = (-b ± sqrt(b² - 4ac)) / 2a

where a = 1, b = 4, c = 1. Substituting these values ​​gives:

x = (-4 ± sqrt(4² - 4(1)(1))) / 2(1)

x = (-4 ± sqrt(16 - 4)) / 2

x = (-4 ± sqrt(12)) / 2

x = (-4 ± 2sqrt(3)) / 2

x = -2 ± sqrt(3)

So, from min to max, the solution is:

x = -2 - sqrt(3), -2 + sqrt(3) 

Hope this helps!

5. Select all the polynomials that are equivalent to each other.
A. (x³ - 2x + 1) - x(x - 2)
B. x(x²-4) - (x - 2)²
C. x³-(x - 1)(x + 1)
D. x(x - 2)2 + 3x(x - 1)
E. -(2x2 + 3) + (x³ + x) + (3x² - x + 2)​

Answers

A and B are equivalent since they both simplify to x³ - x² + 4. Therefore, the answer is A and B.

How to solve the polynomials

To determine which polynomials are equivalent, we need to simplify each polynomial first. The simplified forms of the given polynomials are:

A. (x³ - 2x + 1) - x(x - 2) = x³ - x² + 2x - 1

B. x(x²-4) - (x - 2)² = x³ - x² + 4

C. x³-(x - 1)(x + 1) = x³ - (x² - 1) = x³ - x² + 1

D. x(x - 2)² + 3x(x - 1) = x³ - x² + 5x

E. -(2x² + 3) + (x³ + x) + (3x² - x + 2) = x³ + x² - x - 1

From the simplified forms, we can see that polynomials A and B are equivalent since they both simplify to x³ - x² + 4. Therefore, the answer is A and B.

Read more on polynomials here:https://brainly.com/question/4142886

#SPJ1

Typically, K-means algorithm need multiple iterations to generate desirable results. Under what condition, the K-means algorithm will coverage or end? Choose all that apply.
A.
All the data points have their own cluster.
B.
No centroids need to move their location.
C.
No data points need to change their cluster.
D.
All clusters have sufficient data points.
E.
The clustering yields the desirable number of clusters.

Answers

The conditions under which the K-means algorithm will coverage or end are: A. All the data points have their own cluster; B. No centroids need to move their location; C. No data points need to change their cluster; D. All clusters have sufficient data points; E. The clustering yields the desirable number of clusters.

K-means algorithm need multiple iterations to generate desirable results.

The conditions under which the K-means algorithm will coverage or end are s follows:

A - If all data points have their own cluster, the algorithm has covered all data points and there is no need for further iterations.
B - If no centroids need to move their location, it means that they have already converged to the optimal position and further iterations are not necessary.
C - If no data points need to change their cluster, it means that the clusters have already been formed optimally and further iterations are not needed.
E - If the algorithm has generated the desirable number of clusters, there is no need for further iterations.

Know more about K-means algorithm here:

https://brainly.com/question/30461929

#SPJ11

I need help with both questions. I can't figure out which one is the independent variable and which one is the dependent variable.

Answers

The independent variable grade level with a scale range of 7 to 12 should be placed on the horizontal axis. While the dependent variable math score with a scale of 0% to 100% should be placed on the vertical axis.

What are independent and dependent variables on a line graph

On a line graph, the independent variable is typically represented on the x-axis and the dependent variable on the y-axis. The independent variable is the variable that is controlled or manipulated, while the dependent variable is the variable that is being measured or observed and is affected by changes in the independent variable.

From the question, the independent variables are: 7, 8, 9, 10, 11, and 12.

While the dependent variables are: 72, 75, 81, 80, 83, and 91

Therefore, the independent variable grade level with a scale range of 7 to 12 should be placed on the horizontal axis. While the dependent variable math score with a scale of 0% to 100% should be placed on the vertical axis.

Read more about variables here:https://brainly.com/question/3764906

#SPJ1

Test the hypothesis that the average flow rate of a particular pump is 10 liters/sec if the performance of a random sample of 10 pumps resulted in the following: 10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, and 9.8 liters/sec. Use a 0.01 level of significance and assume that the distribution of contents is normal.

Answers

The null hypothesis that the pump's average flow rate is 10 liters/sec cannot be ruled out at the 0.01 level of significance.

A one-sample t-test can be used to determine whether a specific pump's average flow rate is 10 litres per second.

The alternative hypothesis is that the population mean flow rate is not 10 liters/sec, contrary to the null hypothesis that it is.

The test statistic, where the hypothesised mean is 10 liters/sec, is calculated as follows: t = (sample mean - hypothesised mean) / (sample standard deviation / sqrt(sample size)).

First, we must determine the sample mean and sample standard deviation: sample mean = (10.05 liters/sec) sample standard deviation =

10.05 litres per second is the sample mean (10.2 + 9.7 + 10.1 + 10.3 + 10.1 + 9.8 + 9.9 + 10.4 + 10.3 + 9.8)/10.

0.23 litres per second.

The formula for t is given as follows after substituting these values: t = (10.05 - 10) / (0.23 / [tex]\sqrt{10}[/tex]) = 1.3

For this test, n - 1 = 9 represents the degrees of freedom.

The crucial t-value is found to be 3.250 using a t-distribution table with 9 degrees of freedom and a significance threshold of 0.01 (two-tailed).

We are unable to reject the null hypothesis since the calculated t-value (1.3) is less than the crucial t-value (3.250).

Therefore, we lack sufficient data to draw the conclusion that the pump's average flow rate deviates from 10 liters/sec at the 0.01 level of significance.

For similar question on hypothesis.

https://brainly.com/question/12416923

#SPJ11

Hank put $850 in an account for his daughter when she was born. When he withdrew the money 18 years later there was a total of $1,370.20 in an account. What was the simple interest rate.

Answers

so the formula is…
prt

so…

520.2 ( the amount of money made) =850*18*interest rate in decimal form
520.2 = 15300*interest rate in decimal form,
520.2/15300= interest rate
thus, this simplifies to
0.034.

transfer the decimal place two over for the percentage —> 3.4%
To calculate the simple interest rate, we can use the formula:

Simple Interest = Principal x Rate x Time

Where "Principal" is the initial amount invested, "Rate" is the interest rate, and "Time" is the number of years.

We know that the principal (P) is $850, the final amount (A) is $1,370.20, and the time (T) is 18 years. We can rearrange the formula to solve for the rate (R):

R = (A/P - 1) / T

Plugging in the values, we get:

R = ($1,370.20/$850 - 1) / 18
R = 0.004235

Multiplying by 100 to convert to a percentage, we get:

R = 0.4235%

Therefore, the simple interest rate is 0.4235% per year.

An investor invested a total of $1,200 in two mutual funds. One fund earned a 5% profit while the other earned a 2% profit. If the investor’s total profit was $39, how much was invested in each mutual fund?

Answers

Answer:

So $700 was invested in the mutual fund that earned a 2% profit, and $500 was invested in the mutual fund that earned a 5% profit.

Step-by-step explanation:

Let x be the amount invested in the mutual fund that earned a 5% profit, and let y be the amount invested in the mutual fund that earned a 2% profit. We know that the total investment was $1,200, so:

x + y = 1200

We also know that the total profit was $39, which can be expressed as a decimal as 0.39 (since profit is calculated as a percentage of the initial investment). The amount of profit earned on the first fund is 5% of x, or 0.05x, and the amount of profit earned on the second fund is 2% of y, or 0.02y. So:

0.05x + 0.02y = 0.39

We now have two equations with two variables:

x + y = 1200

0.05x + 0.02y = 0.39

We can solve for one variable in terms of the other in the first equation, and substitute into the second equation:

x = 1200 - y

0.05(1200 - y) + 0.02y = 0.39

Simplifying and solving for y:

60 - 0.05y + 0.02y = 0.39

0.03y = 0.39 - 60

0.03y = -59.61

y = -59.61 / 0.03

y = 1987

This tells us that $1,987 was invested in the mutual fund that earned a 2% profit. To find the amount invested in the mutual fund that earned a 5% profit, we can substitute into the first equation:

x + y = 1200

x + 1987 = 1200

x = 1200 - 1987

x = -787

This doesn't make sense, since we can't have a negative investment amount. It means that we made a mistake somewhere. Checking our work, we can see that the equation 0.05x + 0.02y = 0.39 should actually be:

0.05x + 0.02y = 39

(without the decimal point). With this correction, we can solve as before:

x + y = 1200

0.05x + 0.02y = 39

x = 1200 - y

0.05(1200 - y) + 0.02y = 39

60 - 0.05y + 0.02y = 39

0.03y = 21

y = 700

So $700 was invested in the mutual fund that earned a 2% profit, and $500 was invested in the mutual fund that earned a 5% profit.

If the volume of a sphere is 28.73 cubic inches, how much space will be on either side if it is placed on the center of a pedestal 9 inches across?

Answers

There will be approximately 2.098 inches of space on either side of the sphere if it is placed on the center of a pedestal 9 inches across.

What is volume of a sphere ?

V = 4/3 π r³,where V is the volume and r is the radius, is the formula for a sphere's volume. A sphere's radius is equal to half of its diameter.

To solve this problem, we first need to find the radius of the sphere:

The volume of a sphere is given by the formula V = (4/3)πr³, where r is the radius of the sphere.

So we have:

28.73 = (4/3)πr³

Multiplying both sides by 3/4π, we get:

r³ = (28.73 × 3/4π)

r³ ≈ 7.177

Taking the cube root of both sides, we get:

r ≈ 1.952 inches

Now we can find the amount of space on either side of the sphere by subtracting the diameter of the sphere (which is twice the radius) from the width of the pedestal, and then dividing by two:

Space on either side = (9 - 2 × 1.952) / 2

Space on either side ≈ 2.098 inches

Therefore, there will be approximately 2.098 inches of space on either side of the sphere if it is placed on the center of a pedestal 9 inches across.

To know more volume of a sphere visit,

brainly.com/question/22807400

#SPJ1

How do you implement the following function using one 8x1 multiplexer, Integer F (A, B, C, D) = A'C'B+AB'C’+B’C'D+ABCD'?

Answers

To implement the given function using one 8x1 multiplexer, we first need to identify the inputs and outputs. The inputs are A, B, C, and D, and the output is F.

We can use the 8x1 multiplexer as a logic function generator by using the select inputs to choose which input is passed to the output.

To implement the given function, we can use the following steps:

1. Connect A and D to the select inputs of the multiplexer.
2. Connect B and C to the remaining two inputs of the multiplexer.
3. Set the outputs of the multiplexer as follows:
- Connect output 0 to VCC.
- Connect output 1 to B.
- Connect output 2 to A.
- Connect output 3 to BC'.
- Connect output 4 to AB.
- Connect output 5 to AC.
- Connect output 6 to B'CD.
- Connect output 7 to ABCD'.

4. Connect the multiplexer outputs to a logical OR gate to generate the final output F.

By setting the select inputs appropriately, the multiplexer will output the required terms of the function, which are then combined using the OR gate to produce the final output F.
Hi! To implement the given function F(A, B, C, D) = A'C'B + AB'C' + B'C'D + ABCD' using one 8x1 multiplexer, follow these steps:

1. Identify the input and control lines: Since it is an 8x1 multiplexer, we need three control lines. Choose A, B, and C as the control lines. The input lines will be connected based on the function.

2. Map the function to the input lines: For an 8x1 multiplexer, the inputs are connected as follows:
 - I0 = A'B'C'D'
 - I1 = A'B'C'D
 - I2 = A'B'CD'
 - I3 = A'B'CD
 - I4 = AB'C'D'
 - I5 = AB'C'D
 - I6 = ABCD'
 - I7 = ABCD

3. Connect the corresponding function terms to the input lines:
 - I0 = 0 (A'B'C'D' does not appear in the function)
 - I1 = A'C'B (A'B'C'D matches the first term)
 - I2 = 0 (A'B'CD' does not appear in the function)
 - I3 = B'C'D (A'B'CD matches the third term)
 - I4 = AB'C' (AB'C'D' matches the second term)
 - I5 = 0 (AB'C'D does not appear in the function)
 - I6 = ABCD' (ABCD' matches the fourth term)
 - I7 = 0 (ABCD does not appear in the function)

By connecting the input lines according to the function terms and using A, B, and C as the control lines, you can implement the given function F(A, B, C, D) using one 8x1 multiplexer.

Visit here to learn more about multiplexer brainly.com/question/15052768

#SPJ11

if a certain star emits radiation that has a peak wavelength of 670 nm, the temperature of the star is

Answers

The temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

To get the temperature of a star with a peak wavelength of 670 nm, you can use Wien's Law, which states: T = b / λ_max where T is the temperature of the star, b is Wien's constant (approximately 2.898 x 10^6 nm K), and λ_max is the peak wavelength.
In this case, the peak wavelength (λ_max) is 670 nm. To calculate the temperature (T) of the star, follow these steps:
Step:1. Plug in the values into Wien's Law equation: T = (2.898 x 10^6 nm K) / (670 nm)
Step:2. Divide the constant by the peak wavelength: T ≈ (2.898 x 10^6) / 670
Step:3. Perform the calculation: T ≈ 4325.37 K
So, the temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

Learn more about wavelength and temperature here, https://brainly.com/question/29651142

#SPJ11

The temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

To get the temperature of a star with a peak wavelength of 670 nm, you can use Wien's Law, which states: T = b / λ_max where T is the temperature of the star, b is Wien's constant (approximately 2.898 x 10^6 nm K), and λ_max is the peak wavelength.
In this case, the peak wavelength (λ_max) is 670 nm. To calculate the temperature (T) of the star, follow these steps:
Step:1. Plug in the values into Wien's Law equation: T = (2.898 x 10^6 nm K) / (670 nm)
Step:2. Divide the constant by the peak wavelength: T ≈ (2.898 x 10^6) / 670
Step:3. Perform the calculation: T ≈ 4325.37 K
So, the temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

Learn more about wavelength and temperature here, https://brainly.com/question/29651142

#SPJ11

Other Questions
can can you please solve it and tell me how you did thank you the distribution of blood types for 100 americans is listed in the table. if one donor is selected at random, find the probability of not selecting a person with blood type ba. 0.01b. 0.10c. 0.99d. 0.05 the g of vaporization for butane at 298 k and 1.00 atm is -2.125 kj/mol. calculate the pressure, in atm, of butane vapor in equilibrium with butane liquid at 298 k. Which of the following measurements is most precise?which one is the most accurate?Please explain A4.00 mmB4.00 cmC4.00 mD40.00 m 62. Erving Goffman used the language of theater to describe how people present themselves in everyday social life. This is known as:a. sui generis b. dramaturgical theory c. functionalism d. stage theory SEE THE ATTACHED DOCUMENTS AND ANSWER pls help! im in desperate need Many physical education classes have been cut in an effort to save money and to allow more time for other core classes, but PE can be the key to ensuring children's emotional well-being as well as positive levels of self-esteem. Do you agree or disagree with cutting PE, why or why not? A balloon has a volume of 145 mL at room temperature (25C = 298K). Alyssa decides to place the balloon in the freezer to see what happens. After being in the freezer for an hour, the balloon has a new volume of 35mL. What is the temperature inside the freezer? 1. Discuss the initial challenges that Akyem faced with regards to raising people to administer those large territories. What is the complementary sequence of DNA that would basepair to the following sequence: 5-ATCCAGGT-3? Remember that the complementary sequence should be anti-parallel.A. 5-TGGACCTA-3B. 5-ACCTGGAT3C. 5-ATCCAGGT-3D. 5-TAGGTCCA-3 Two children, Jason and Betsy, ride on the same merry-go-round. Jason is a distance R from the axis of rotation; Betsy is a distance 2R from the axis.A). What is the ratio of Jason's angular speed to Betsy's angular speed?B). What is the ratio of Jason's linear speed to Betsy's linear speed?C). What is the ratio of Jason's centripetal acceleration to Betsy's centripetal acceleration? 3 A system of two linear equations is graphed on a coordinate plane. If the system ofequations has infinitely many solutions, which statement must be true?a. On the graph, there are no points (x, y) that satisfy both equations.b. On the graph, there is exactly one point (x, y) that satisfies both equations.c. On the graph, any point (x, y) that satisfies one of the equations cannot satisfy theother equation.d.On the graph, any point (x, y) that satisfies one of the equations must also satisfythe other equation. Identify the formula for the margin of error for the estimate of a population mean when the population standard deviation is unknown. Choose the correct answer below. A. E=x+t/2 s/n OB. E= s/n OC. E=x-t/2 s/n OD. E=t/2 s/n what is the purpose of technology assessment in the biomimetic design process? The difference between shape and form is that shapes are 2-dimensional (L x W) and forms are 3-dimensional (L x W x H).Question 3 options: True False what is the value of the expression shown below 2 3/5 - 1 3/5 ^ ^TWO THREE-FIFTHS MINUS ONE THREE-FIFTHSTHE NUMBERS ARE MIXED FRACTIONS To test someone's hearing an audiologist plays a variety of tones to identify the faintest tone that someone can hear with 50% accuracy. This kind of test assesses a person's a. minimum b. maximum c. relatived. absolute Juan catches 80% of the passes thrown to him in football. If the quarterback throws to him 15 times during a game, what is the probability he will catch atleast 10 of them? in how many years the profit of 10,000 Willbe tk 7500 in 12% rate of profit