Compare the code in Advising.sql
Download Advising.sqlto the description below. Identify three ways the code fails to implement the description. 4 points each item.
• A student can have one or more majors, and a single advisor.
• The date a major is selected must be tracked and must be on or before the current date.
• Student information includes their name and assigned school id number (nine digits); all fields are required.
• Information about majors includes the name of the subject, the department, and advisor(s); multiple students can have the same major.
• Department refers to the 2 to 5 letters identifying each department on campus.
• An advisor can support multiple majors; a major can have one or more advisors.
• Advisor information includes name, office (two digit building and three digit room numbers), and 4 digit phone extension. Each phone extension must begin with the numbers 5, 6, or 7.
CREATE DATABASE studentMajors
GO
USE studentMajors
GO
CREATE TABLE Advisors
(advisorid int identity primary key,
advisorFirstName varchar(25) not null,
advisorLastName varchar(35) not null,
building char(2) not null CHECK (building LIKE '[0-9][0-9]'),
room char(3) not null CHECK (room LIKE '[0-9][0-9][0-9]'),
extension char(4) not null check (extension LIKE '[0-9][0-9][0-9][0-9]'))
GO
CREATE TABLE Majors
(majorid int identity primary key,
major varchar(50) not null,
department varchar(5) not null check (department LIKE '[A-Z][A-Z]' OR
department LIKE '[A-Z][A-Z][A-Z]' OR department LIKE '[A-Z][A-Z][A-Z][A-Z]' OR
department LIKE '[A-Z][A-Z][A-Z][A-Z][A-Z]'))
GO
CREATE TABLE MajorAdvisors
(majorid int NOT NULL references majors,
advisorid int NOT NULL references advisors)
CREATE TABLE Students
(studentFirst varchar(25) NOT NULL,
studentLast varchar(35) NOT NULL,
studentid char(9) NOT NULL PRIMARY KEY
CHECK (studentID like '[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]'))
GO
CREATE TABLE StudentMajors
(studentid char(9) NOT NULL references students,
majorid int NOT NULL references majors,
chooseDate date check (chooseDate <= getdate()),
advisorid int NOT NULL references advisors)

Answers

Answer 1

The provided code fails to implement the description accurately by not accounting for multiple majors for a student, not properly tracking the major selection date, and not fully validating the advisor phone extension.

The provided code attempts to implement a database schema for managing student majors and advising information. However, it fails to fully adhere to the given description in three ways:

Multiple Majors for a Student: The code does not provide a way to associate multiple majors with a single student. The "StudentMajors" table only allows for one major per student. To implement the requirement that a student can have one or more majors, a separate table or relationship should be created to handle this association.

Tracking Major Selection Date: The code includes a "chooseDate" column in the "StudentMajors" table to track the date a major is selected. However, it does not ensure that the "chooseDate" is on or before the current date. To implement this requirement, a check constraint should be added to compare the "chooseDate" with the current date.

Advisor Phone Extension Validation: The code includes a constraint to validate the phone extension in the "Advisors" table, but it only checks that the extension starts with a number between 5 and 7. It does not enforce the 4-digit length of the extension. To implement the requirement that the extension should be 4 digits long, the constraint should be modified to include a length check.

For more information on Compare the code visit: brainly.com/question/33025072

#SPJ11


Related Questions

How is it possible to modify any sorting algorithm based on comparisons so that it has a "good" best-case running time (ie, Θ(n))? Justify!

Answers

By incorporating an initial check for sortedness, we can modify a sorting algorithm to achieve a best-case running time of Θ(n) when the input array is already sorted, which improves the algorithm's efficiency in that particular scenario.

To modify a sorting algorithm based on comparisons to achieve a best-case running time of Θ(n), you can incorporate an additional step that checks if the input array is already sorted. If it is, the algorithm can terminate early without performing any further comparisons or operations.

Here's a general approach:

Start with the original sorting algorithm, such as Quicksort or Mergesort, which typically have an average-case or worst-case running time better than Θ(n^2).

Add an initial check to determine if the input array is already sorted. This can be done by comparing adjacent elements in the array and checking if they are in the correct order.

If the array is already sorted, the algorithm can terminate immediately, as no further comparisons or operations are necessary.

If the array is not sorted, continue with the original sorting algorithm to sort the array using the standard comparison-based operations.

By adding this extra check, the modified sorting algorithm achieves a best-case running time of Θ(n) when the input array is already sorted. In this case, the algorithm avoids any unnecessary comparisons or operations, resulting in optimal efficiency.

However, it's important to note that in the average case or worst case when the input array is not sorted, the modified algorithm still has the same running time as the original algorithm. Therefore, this modification only improves the best-case scenario.

It's worth mentioning that some sorting algorithms, like Insertion Sort and Bubble Sort, already have a best-case running time of Θ(n) when the input array is nearly sorted or already sorted. In these cases, no further modification is needed.

Know more about algorithm's efficiency here:

https://brainly.com/question/30227411

#SPJ11

4. Consider the statement: If x and y are integers such that x +y > 5, then x > 2 or y > 2. (a) Write the symbolic form of the statement using quantifiers. (b) Prove or disprove the statement. Specify which proof strategy is used.

Answers

(a) Symbolic form of the statement using quantifiers:

∀x∀y [(x,y ∈ Z ∧ x + y > 5) → (x > 2 ∨ y > 2)]

(b) To prove the statement, we can use a direct proof strategy.

Direct proof:

Assume that x and y are integers such that x + y > 5. We want to show that x > 2 or y > 2.

We'll consider two cases:

Case 1: x ≤ 2

If x ≤ 2, then x + y ≤ 2 + y. Since x + y > 5, we have 2 + y > 5, which implies y > 3. Therefore, y > 2.

Case 2: y ≤ 2

If y ≤ 2, then x + y ≤ x + 2. Since x + y > 5, we have x + 2 > 5, which implies x > 3. Therefore, x > 2.

Since we've shown that either x > 2 or y > 2 in both cases, the statement is proved.

Therefore, the statement is true.

Learn more about Symbolic here:

https://brainly.com/question/19425496

#SPJ11

2. (a) An algorithm has the following recurrent complexity. Solve the recurrence using repeated substitution to obtain the closed form. Assume that p is a probability value. A(0) = 1 A(n) = p.n-T(n-1) (b) Based on your result for A(n), determine the Best, B(n) and Worst, W(n) complexities of the same. Explain your answers in simple language.

Answers

The recurrence relation A(n) = p.n - T(n-1)  in an algorithm is solved using repeated substitution to obtain the closed form. The best-case complexity B(n) and worst-case complexity W(n) are determined based on the result.

To solve the recurrence relation A(n) = p.n - T(n-1), we can use repeated substitution to find a pattern. Let's start with some initial values:

A(0) = 1

A(1) = p.1 - T(0) = p - T(0)

A(2) = p.2 - T(1) = 2p - T(1)

A(3) = p.3 - T(2) = 3p - T(2)

We can observe that T(n) is related to A(n-1), so let's substitute A(n-1) into the equation: A(n) = p.n - T(n-1)

= p.n - (n-1)p + T(n-2)

= np - (n-1)p + (n-2)p - T(n-3)

= np - (n-1)p + (n-2)p - (n-3)p + T(n-4)

Continuing this process, we can see that the T terms cancel out:

A(n) = np - (n-1)p + (n-2)p - (n-3)p + ... + (-1)^k(p) - T(n-k-1)

= np - p(1-2+3-4+...+(-1)^(k-1)) - T(n-k-1)

When n-k-1 = 0, we have k = n-1. So the expression becomes:

A(n) = np - p(1-2+3-4+...+(-1)^(n-2)) - T(0)

= np + p((-1)^(n-1) - 1) - T(0)

= np + p((-1)^(n-1) - 1) - 1

Thus, the closed form solution for A(n) is: A(n) = np + p((-1)^(n-1) - 1) - 1

Now, let's analyze the best-case complexity B(n) and worst-case complexity W(n). In this case, p is a probability value, so it remains constant. Thus, the dominant term in the closed form is np.

For the best-case complexity, we can assume p is a very small value close to 0. Therefore, the dominant term np approaches 0, resulting in B(n) = O(1), indicating a constant-time complexity. For the worst-case complexity, we can assume p is a value close to 1. In this scenario, the dominant term np grows with n, so W(n) = O(n), indicating a linear time complexity.

In simple terms, the best-case complexity is constant because the dominant operation has a fixed cost, while the worst-case complexity is linear because the dominant operation scales linearly with the input size.

LEARN MORE ABOUT algorithm here: brainly.com/question/31936515

#SPJ11

in chapter 2, we have learned about rules of identifiers in java, please describe these rules?

Answers

Identifiers are the Java program names used for variables, classes, methods, packages, and other elements. They are similar to labels in other programming languages. Each element of a Java program must have a unique identifier.

The rules for writing an identifier in Java are as follows:

The first character must be an alphabet letter (A-Z or a-z) or an underscore (_). An identifier cannot begin with a numeral (0-9). Following the initial character, identifiers in Java can include letters, numbers, or underscores as subsequent characters. Spaces and special characters are not allowed.Identifiers are case sensitive, which means that the identifiers word and Word are distinct in Java.Identifiers cannot be a Java reserved keyword such as int, float, double, while, break, etc.Java identifiers should not exceed 255 characters in length because Java is a high-level language.

To learn more about identifier: https://brainly.com/question/13437427

#SPJ11

(1) As for the odd parity, the check bit of the binary number (1101)2 is _________
(2) The 8421 BCD code of the decimal number (9)10 is _______
(3) Given the logic function F=W.X.Ỹ, the dual function is FD = ____________
(4) Given the logic function F(A,B,C) = ABC + ABC, the sum of minterms is F = sigma M (5) The two's complement of the binary (+1011)2 is ________

Answers

(1) As for the odd parity, the check bit of the binary number (1101)2 is 1.

(2) The 8421 BCD code of the decimal number (9)10 is 1001.8421

(3) Given the logic function F=W.X.Ỹ, the dual function is FD = W+ X + Ỹ.

(4) Given the logic function F(A,B,C) = ABC + ABC, the sum of minterms is F = sigma M(1,2,4).

(5) The two's complement of the binary (+1011)2 is (-1011)2.

1)The parity bit of a binary number is the digit that is appended to make the sum of the digits either even or odd. In the case of odd parity, the total number of 1's in the data bits and the parity bit is an odd number. Thus, to make the number in the question (1101)2 odd, the parity bit is 1. The final binary number becomes (11011)2.

2)BCD Code: The binary-coded decimal (BCD) is a system in which each decimal digit is represented by its binary equivalent. The four bits of the BCD code represents the decimal digits from 0 to 9. For the decimal number 9, the 8421 BCD code is 1001.

3)Dual function of the given function F=W.X.Ỹ can be found by interchanging the AND and OR operation. The dual function is FD = W+ X + Ỹ.

4)The minterms for the given function F(A,B,C) = ABC + ABC can be listed by writing the function in the sum of minterms (SOM) form. The minterms are m1(A=0,B=0,C=1), m2(A=0,B=1,C=0), and m4(A=1,B=0,C=0). Thus, the sum of minterms is F = m1+m2+m4 = ABC + ABC = sigma M(1,2,4).

5)Two's complement of a binary number can be obtained by inverting the bits of the number and adding 1 to the least significant bit. For the binary number (+1011)2, inverting the bits gives (-0100)2. Adding 1 to the least significant bit results in (-0101)2, which is the two's complement of the given binary number (+1011)2.

Learn more about parity bit at

https://brainly.com/question/32872310

#SPJ11

help me pleasez thank you!!​

Answers

We can fill up the blank spaces as follows:

The process of retrieving data is fetching.The process of storing data is Data storageThe event that a database administrator prevents from happening is BreachThe separator between a table and a column name is periodThe process of duplicating data is called redundancyAnother term for delete is remove or dropHow to fill up the blanks

With a basic understanding of data and computer science, we can fill up the blanks with the right words. In programming, another term that is commonly used in place of deletion is dropping or removing.

Also, it is the duty of most database administrators to prevent a breach from occurring. Duplication is also called redundancy.

Learn more about data breaches here:

https://brainly.com/question/27887082

#SPJ1

Artificial Intelligence.
QUESTION 4. a. Define Machine Learning (ML) and classify ML techniques. Explain why ML is impor- tant. b. Explain ML concepts of overfitting, underfitting and just right using diagrams. c. Given the following dataset: sepal length sepal width petal length petal width 5.1 3.8 1.6 0.2 4.6 3.2 1.4 0.2 5.3 3.7 1.5 0.2 5.0 3.3 1.4 0.2 3.2 4.7 1.4 3.2 4.5 1.5 3.1 4.9 1.5 2.3 4.0 1.3 7.0 6.4 6.9 5.5 class label Iris-setosa Iris-setosa Iris-setosa Iris-setosa
Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Find the class label of the data [5.7, 2.8, 4.5, 1.3] using k nearest neighbor algorithm where k = 3.

Answers

Machine Learning can be supervised learning, unsupervised learning, and reinforcement learning. ML is important because it allows computers to automatically analyze and interpret complex data, discover patterns.

b. Overfitting, underfitting, and the just-right fit are concepts in ML that describe the performance of a model on training and test data. Overfitting occurs when a model learns the training data too well but fails to generalize to new data. Underfitting happens when a model is too simple to capture the underlying patterns in the data. A just-right fit occurs when a model achieves a balance between capturing the patterns and generalizing to new data. These concepts can be explained using diagrams that illustrate the relationship between model complexity and error rates.

c. To determine the class label of the data [5.7, 2.8, 4.5, 1.3] using the k-nearest neighbor (KNN) algorithm with k = 3, we measure the distances between the new data point and the existing data points in the dataset. Then, we select the k nearest neighbors based on the shortest distances. In this case, the three nearest neighbors are [5.3, 3.7, 1.5, 0.2], [5.0, 3.3, 1.4, 0.2], and [4.6, 3.2, 1.4, 0.2]. Among these neighbors, two belong to the class label "Iris-setosa" and one belongs to the class label "Iris-versicolor." Therefore, the class label of the data [5.7, 2.8, 4.5, 1.3] using the KNN algorithm with k = 3 is "Iris-setosa."

To learn more about Machine Learning click here : brainly.com/question/31908143

#SPJ11

Consider the following sorting algorithm on an list A of n real numbers. def sort (arr): if len(arr) == 0: return [] small = [] large [] = mid arr [0] 7 for num in arr[1:]: 8 if num < mid: 9 small.append (num) 10 else: 11 large.append (num) 12 return sort (small) + [mid] + sort (large) (a) Explain why the best-case time complexity of sort (A) is O(n logn). (b) Explain why the worst-case time complexity of sort (A) is O(n²). [6] [6] (c) Discuss the possibility that there exists a comparison-based sorting algorithm that sorts n real numbers with a worst-case time complexity of O(n). [8] 1 2 3 4 5 6

Answers

(a) In the best case, the list A is divided into two sub-lists of equal or nearly-equal size at each recursive step. This means that the height of the recursion tree will be log2(n), and each level of the recursion will take O(n) time to process all elements in the list. Therefore, the best-case time complexity of sort(A) is O(n logn).

(b) In the worst case, the pivot element selected at each stage of the recursion is either the smallest or the largest element in the list. This means that one sub-list will contain all the remaining n-1 elements while the other sub-list will be empty. As a result, the recursion tree will have n levels, and each level will take O(n) time to process all the elements in the list. Therefore, the worst-case time complexity of sort(A) is O(n²).

(c) According to the decision tree model for comparison-based sorting algorithms, there are at least n! possible permutations of n elements in a list, and each comparison-based sorting algorithm corresponds to a binary decision tree with n! leaves. The worst-case time complexity of a comparison-based sorting algorithm is lower-bounded by the height of the decision tree, which is log2(n!) in the best case.

Using Stirling's approximation for factorials, log2(n!) = Ω(n logn). Therefore, it is unlikely that there exists a comparison-based sorting algorithm that sorts n real numbers with a worst-case time complexity of O(n). However, non-comparison based sorting algorithms like Counting Sort and Radix Sort can achieve worst-case time complexities of O(n).

Learn more about sort here:

https://brainly.com/question/30673483

#SPJ11

I need full answer in details.
Question- Find Nominal, Ordinal and Ratio values from the given hypothetical scenario:
Scott and Gayle decided to take part in 15th annual Tennis tournament in 2012 held at NC State, which ranks 41nd in the nation for getting over or around 3250 execrators for the tournament every year. Gayle played at the spot for player 1801 and Scott played at 1167, they both played singles and doubles and in singles Scott lost with 6 sets losing to the opponent 3254 with 3sets. Gayle did win her singles by 7 to 5 against 4261.
In the double, they both played against players Simon 3254 and Amanda 4261, and they won 6 sets with 2 loses consecutively.

Answers

Nominal, Ordinal, and Ratio values from the given scenario Nominal values are values that cannot be ordered or measured quantitatively.

For instance, in the given scenario, the nominal values are Scott, Gayle, singles, doubles, Simon, and Amanda.Ordinal values are values that are ordered in a specific manner. For example, in the given scenario, ordinal values are Gayle's winning (7 to 5) and Scott's losing (6 to 3).Ratio values are quantitative values with a non-arbitrary zero point, allowing for ratios between two values to be determined. The given scenario doesn't have any ratio values.

To know more aboutNominal visit:

brainly.com/question/32545840

#SPJ11

3. Explain the back-propagation algorithm, in detail, on a two-layer perceptron structure.

Answers

The back-propagation algorithm is a widely used method for training artificial neural networks, specifically multi-layer perceptrons (MLPs). It is an iterative algorithm that adjusts the weights and biases of the network based on the difference between the predicted output and the actual output, with the goal of minimizing the error.

Detailed explanation of the back-propagation algorithm on a two-layer perceptron structure is:

1.

Forward Propagation:

Initialize the weights and biases of the network randomly or using some predetermined values.Take an input vector and propagate it forward through the network.Compute the weighted sum of the inputs for each neuron in the hidden layer and pass it through an activation function to obtain the hidden layer activations.Compute the weighted sum of the hidden layer activations for each neuron in the output layer and pass it through an activation function to obtain the output layer activations.

2.

Error Calculation:

Calculate the error between the predicted output and the actual output using a suitable error metric, such as mean squared error (MSE).The error quantifies how well the network is performing and provides a measure of the discrepancy between the predicted and actual outputs.

3.

Backward Propagation:

Compute the gradient of the error with respect to the weights and biases of the output layer.Update the weights and biases of the output layer by taking a step proportional to the negative gradient, thereby minimizing the error.

4.

Update Hidden Layer Weights:

Compute the gradient of the error with respect to the weights and biases of the hidden layer.Update the weights and biases of the hidden layer using a similar approach as in the output layer.

5.

Repeat Steps 1-4:

Repeat steps 1 to 4 for a specified number of iterations or until the desired level of convergence is achieved.During each iteration, the forward propagation calculates the output of the network, the error is calculated, and the weights and biases are updated using the backward propagation step.

6.

Termination:

The algorithm terminates when the network has learned the underlying patterns in the training data sufficiently well, or when it has reached the specified number of iterations.

By iteratively adjusting the weights and biases through forward and backward propagation, the back-propagation algorithm enables the network to learn from its mistakes and improve its performance.

This process of iteratively updating the weights and biases based on the error gradients is what allows the network to converge towards a set of weights that minimize the overall error.

To learn more about perceptron: https://brainly.com/question/29669975

#SPJ11

Consider a disk with block size B=512 bytes. A block pointer is P=6 bytes long, and a record pointer is P R =7 bytes long. A file has r=3000 EMPLOYEE records of fixed-length. Each record has the following fields: NAME (30 bytes), SSN (10 bytes), DEPARTMENTCODE (10 bytes), ADDRESS (30 bytes), PHONE (10 bytes), BIRTHDATE (10 bytes), GENDER (1 byte), JOBCODE (4 bytes), SALARY (4 bytes, real number). An additional byte is used as a deletion marker. (f) Suppose the file is ordered by the non-key field DEPARTMENTCODE and we want to construct a clustering index on DEPARTMENTCODE that uses block anchors (every new value of DEPARTMENTCODE starts at the beginning of a new block). Assume there are 100 distinct values of DEPARTMENTCODE, and that the EMPLOYEE records are evenly distributed among these values. Calculate: (i) the index blocking factor bfr i; (ii) the number of first-level index entries and the number of first-level index blocks; (iii) the number of levels needed if we make it a multi-level index; (iv) the total number of blocks required by the multi-level index; and (v) the number of block accesses needed to search for and retrieve all records in the file having a specific DEPARTMENTCODE value using the clustering index (assume that multiple blocks in a cluster are either contiguous or linked by pointers).

Answers

(i) The index blocking factor bfr is determined by dividing the block size B by the record pointer length P R , i.e., bfr = B/P R .

(ii) The number of first-level index entries can be calculated as the number of distinct values of DEPARTMENTCODE, i.e., 100 in this case. The number of first-level index blocks will be equal to the number of first-level index entries, as each entry corresponds to a separate block.

(iii) The number of levels needed for a multi-level index can be determined by taking the logarithm base bfr of the total number of blocks in the file, i.e., levels = log(base bfr)(total number of blocks).

(iv) The total number of blocks required by the multi-level index can be calculated by summing up the blocks at each level, including the first-level index blocks and the data blocks.

(v) The number of block accesses needed to search for and retrieve all records in the file having a specific DEPARTMENTCODE value using the clustering index will depend on the depth of the multi-level index. Each level of the index will require one block access until reaching the leaf level, where the data blocks are located. Thus, the number of block accesses will be equal to the number of levels in the multi-level index.

(i) The index blocking factor bfr is calculated by dividing the block size B (512 bytes) by the record pointer length P R (7 bytes), resulting in bfr = 512/7 = 73.

(ii) Since there are 100 distinct values of DEPARTMENTCODE, the number of first-level index entries will also be 100. As each entry corresponds to a separate block, the number of first-level index blocks will also be 100.

(iii) The number of levels needed for a multi-level index can be determined by taking the logarithm base bfr of the total number of blocks in the file. However, the total number of blocks is not provided in the question, so this calculation cannot be performed.

(iv) Similarly, the total number of blocks required by the multi-level index cannot be determined without knowing the total number of blocks in the file.

(v) The number of block accesses needed to search for and retrieve all records in the file having a specific DEPARTMENTCODE value using the clustering index will depend on the depth of the multi-level index. Since the number of levels cannot be determined without additional information, the exact number of block accesses cannot be calculated at this point.

To learn more about DEPARTMENTCODE

brainly.com/question/32292022

#SPJ11

•Create a market list operation in python program. The program
must ask the user to add products (name, price, quantity). When the
user wants to quit the program should show the total facture.

Answers

By implementing these enhancements, the market list operation program can become a more robust and feature-rich tool for managing and calculating expenses while shopping.

To create a market list operation in a Python program, you can follow the following steps:

Initialize an empty list to store the products, and set the total facture variable to 0.

Start a loop that allows the user to add products. Inside the loop, prompt the user to enter the product's name, price, and quantity. You can use the input() function to get the user's input, and convert the price and quantity to float or integer, depending on your preference.

Calculate the total cost for the current product by multiplying the price by the quantity. Add this cost to the total facture variable.

Create a dictionary to store the product details (name, price, quantity, and cost). Append this dictionary to the list of products.

Ask the user if they want to add more products or quit. If the user chooses to quit, break out of the loop.

Finally, display the total facture to the user, which represents the sum of the costs for all the products added.

By following these steps, you can create a market list operation that allows the user to add products and shows the total facture at the end.

You can expand on the code by adding error handling and input validation to ensure that the user enters valid values for the price and quantity, and handles any exceptions that may occur during the execution of the program. You can also enhance the program by including options to remove or update products from the list, calculate discounts or taxes, and provide a more user-friendly interface with proper formatting and messages.

Additionally, you can consider storing the market list in a database or file for persistence, allowing the user to retrieve or modify the list at a later time. This can be achieved by using database libraries or file I/O operations in Python.

To learn more about  database click here:

brainly.com/question/6447559

#SPJ11

INSTRUCTIONS:
Using C#, MODIFY the following program to include one method CalPrice() in ClassifiedAd.
The method:
1) does not have a return
2) takes one parameter: the number of words of the ad,
3) calculates the ad price, and then modifies the property Price in the method
PROGRAM TO BE MODIFIED:
using System;
namespace AdApp2
{
class ClassifiedAd
{
public string Category { get; set; }
public int Words { get; set; }
public double Price { get; set; }
public ClassifiedAd(string category, int words, double price)
{
Category = category;
Words = words;
Price = price;
}
}
class AdApp
{
static void Main()
{
string firstAd = "", secondAd = "";
int words1 = 0, words2 = 0;
Console.Write("What is the category of the first advertisement? ");
firstAd = Console.ReadLine();
Console.Write("How many words does it have? ");
words1 = int.Parse(Console.ReadLine());
Console.Write("What is the category of the second advertisement? ");
secondAd = Console.ReadLine();
Console.Write("How many words does it have? ");
words2 = int.Parse(Console.ReadLine());
ClassifiedAd classifiedAd1 = new ClassifiedAd(firstAd, words1, 0.09);
ClassifiedAd classifiedAd2 = new ClassifiedAd(secondAd, words2, 0.09);
Console.WriteLine("The classified ad with " + classifiedAd1.Words + " words in category " + classifiedAd1.Category + " costs $" + string.Format("{0:F2}", classifiedAd1.Price * classifiedAd1.Words));
Console.WriteLine("The classified ad with " + classifiedAd2.Words + " words in category " + classifiedAd2.Category + " costs $" + string.Format("{0:F2}", classifiedAd2.Price * classifiedAd2.Words));
}
}
}
The rest of the program remains the same. Name the program AdApp3.
What is the category of the first advertisement? Painting How many words does it have? 120 What is the category of the second advertisement? Moving How many words does it have? 150 The classified ad with 120 words in category Painting costs $10.80 The classified ad with 150 words in category Moving costs $13.50 Press any key to continue

Answers

The modified C# program, named AdApp3, includes a method called CalPrice() in the ClassifiedAd class. This method does not have a return value and takes the number of words of the ad as a parameter. The program prompts the user to enter the category and number of words for two advertisements.

1. It creates two ClassifiedAd objects with the provided information and a fixed price per word. Finally, it displays the details and costs of both classified ads.

2. To modify the program, we add a new method called CalPrice() inside the ClassifiedAd class. This method takes an integer parameter representing the number of words in the ad. Within the method, we calculate the price of the ad by multiplying the word count with the price per word. We then assign the calculated price to the Price property of the ClassifiedAd object.

3. In the Main() method, we collect input from the user for the category and word count of two advertisements. We create two ClassifiedAd objects, passing the category, word count, and a fixed price per word (0.09 in this case). Next, we display the details of each ad, including the word count, category, and the calculated cost, which is obtained by multiplying the word count with the price per word. The cost is formatted to display two decimal places.

4. With these modifications, the program now includes the CalPrice() method in the ClassifiedAd class, which allows for easy calculation and modification of the ad prices.

Learn more about object here: brainly.com/question/31323112

#SPJ11

3) Draw a full-adder using two half-adders, and one more simple gate only.
4) Construct a full-adder using exactly one half-adder, one half-subtractor, and one more gate only.

Answers

A full-adder circuit can be created by combining two half-adders and one OR gate to add three one-bit numbers, or by combining one half-adder, one half-subtractor, and one more gate.

Drawing a full adder using two half-adders and one simple gate only:

In computing, a full-adder is a digital circuit that implements addition. A full-adder circuit can be constructed from two half-adders by performing two stages of calculations, as shown below: Here, the full-adder circuit is produced by combining two half-adders and one OR gate to add three one-bit numbers.

The first half-adder (HA1) receives two input bits and produces a partial sum and a carry bit. The second half-adder (HA2) receives the previous carry as one input and the partial sum from HA1 as the other input, and then produces another partial sum and carry bit.

Finally, an OR gate accepts the carry-out from HA2 and the carry-in, resulting in a final carry-out.4) Constructing a full-adder using exactly one half-adder, one half-subtractor, and one more gate only:

In computing, a full-adder can be created by using exactly one half-adder, one half-subtractor, and one more gate. The half-subtractor is used to produce a complement and a borrow, which can then be added to the inputs using a half-adder.

Finally, the third gate (usually an OR gate) is used to combine the carry-out from the half-adder and the borrow from the half-subtractor, as shown below:Here, the full-adder circuit is created by combining a half-adder and a half-subtractor, as well as an OR gate. The half-adder accepts two input bits and produces a partial sum and a carry bit, while the half-subtractor receives the same two input bits and generates a complement and a borrow. Finally, an OR gate accepts the carry-out from the half-adder and the borrow from the half-subtractor, resulting in a final carry-out.

To know more about full-adder circuit Visit:

https://brainly.com/question/17964340

#SPJ11

Its pattern printing time! Ask the user for a positive number n that is greater than 4. Reject it otherwise. Then print an infinity symbol of height and width both equal to n. Your output should look like this: n: 9 You may run grader.exe to look at a few test cases. Specifications: 1. Note that, for n = 9, there are a total of 9 characters across both height and width. This condition NEEDS to be satisfied. 2. The code provided to you is not a valid solution What the grader expects (optional): 1. The grader will look for a "OUTPUT: "phrase in a single line of your output. 2. It will then expect the shape to begin in the next line immediately. 3. Refer to the invalid example already present in the code

Answers

This code will ask the user to input a positive number greater than 4, and it will reject any other input.  Here's the code:

while True:

   n = int(input("Please enter a positive number greater than 4: "))

   if n > 4:

       break

print("OUTPUT:")

for i in range(n):

   for j in range(n):

       if i == n//2 or j == n//2 or i+j == n-1:

           print("*", end="")

       else:

           print(" ", end="")

   print()

This code will ask the user to input a positive number greater than 4, and it will reject any other input. Once the valid input is received, it will print an infinity symbol of height and width both equal to n.

Here's how the output would look like for n=9:

Please enter a positive number greater than 4: 9

OUTPUT:

*********

**   **

 ** **

  ***

 ** **

**   **

*********

Learn more about code here:

https://brainly.com/question/31228987

#SPJ11

A network topology specifies how computers, printers, and other devices are connected over a network. The figure below illustrates three common topologies of networks: the ring, the star, and the fully connected mesh. You are given a boolean matrix A[0..n − 1, 0..n − 1], where n > 3, which is supposed to be the adjacency matrix of a graph modeling a network with one of these topologies. Your task is to determine which of these three topologies, if any, the matrix represents. Design the brute-force algorithms listed below for this task and indicate its time efficiency class.
Please write in pseudocode in numbers, variables, and symbols! Not words. Thank you so much!
1 a. Design pseudocode algorithm to detect ring
1 b. Design pseudocode algorithm to detect star
1 c. Design pseudocode algorithm to detect a fu

Answers

a. Pseudocode algorithm to detect ring topology:

is_ring(A):

 n = length(A)

 for i from 0 to n-1:

   count = 0

   for j from 0 to n-1:

     if A[i,j] == 1:

       count += 1

   if count != 2:

     return false

 return true

Time complexity: O(n^2)

b. Pseudocode algorithm to detect star topology:

is_star(A):

 n = length(A)

 center = -1

 for i from 0 to n-1:

   count = 0

   for j from 0 to n-1:

     if A[i,j] == 1:

       count += 1

   if count == n-1:

     center = i

     break

 if center == -1:

   return false

 for i from 0 to n-1:

   if i != center and (A[i,center] != 1 or A[center,i] != 1):

     return false

 return true

Time complexity: O(n^2)

c. Pseudocode algorithm to detect fully connected mesh topology:

is_fully_connected_mesh(A):

 n = length(A)

 for i from 0 to n-1:

   count = 0

   for j from 0 to n-1:

     if A[i,j] == 1:

       count += 1

   if count != n-1:

     return false

 return true

Time complexity: O(n^2)

Learn more about Pseudocode algorithm here:

https://brainly.com/question/31980689

#SPJ11

1. Make the 3-D Clustered Column chart in the range B17:H31 easier to interpret as follows:
a. Change the chart type to a Clustered Bar chart.
b. Use Actual Project Hours as the chart title.
c. Add a primary horizontal axis title to the chart, using Hours as the axis title text.
d. Add data labels in the center of each bar.

Answers

To make the 3-D Clustered Column chart in the given range easier to interpret, you can change the chart type to a Clustered Bar chart, use Actual Project Hours as the chart title, add a primary horizontal axis title.

Using Hours as the axis title text, and add data labels in the center of each bar.

Here are the steps to achieve the desired modifications:

Select the 3-D Clustered Column chart in the range B17:H31.

Right-click on the chart and choose the "Change Chart Type" option.

In the "Change Chart Type" dialog, select the Clustered Bar chart from the list of available chart types. Make sure the desired subtype is selected.

Click on the "OK" button to apply the changes and convert the chart to a Clustered Bar chart.

Double-click on the chart title, delete the existing title, and enter "Actual Project Hours" as the new chart title.

Right-click on the horizontal axis (the bottom axis) and select the "Add Axis Title" option.

In the axis title dialog, enter "Hours" as the axis title text and click on the "OK" button to add the title to the chart.

Click on any of the bars in the chart to select the series.

Right-click on the selected series and choose the "Add Data Labels" option.

Data labels will be added to the center of each bar in the chart, displaying the values of the data points.

Adjust the formatting and appearance of the chart as desired to further enhance readability and visual clarity.

Review the modified Clustered Bar chart to ensure that it is now easier to interpret, with the appropriate title, axis title, and data labels in the center of each bar.

By following these steps, you should be able to make the 3-D Clustered Column chart easier to interpret by converting it to a Clustered Bar chart, adding the required titles, and including data labels in the center of each bar.

To learn more about data labels click here:

brainly.com/question/29379129

#SPJ11

a) Design a interface Base that contains methods setText to set the text of question, setAnswer to set the answer of question, checkAnswer to check a given response for correctness, and display to display the text of question. Save it as Base.java.

Answers

We can use an approach that involves generating prime numbers up to X using a prime number generator algorithm such as the Sieve of Eratosthenes. Once we have the prime numbers, we can iterate through all conditions provided.

The prime sum of the nth power refers to the sum of prime numbers raised to the power of n. For a given input X, we need to find all numbers A with Z digits (between 0 and X) that can be expressed as the sum of prime numbers raised to the power of n. Once we have the prime numbers, we can iterate through all possible combinations of prime numbers raised to the power of n to check if their sum matches A.

Learn more about algorithm here: brainly.com/question/21172316

#SPJ11

what are we mean by local connectivity as a connectivity
layer for IOT

Answers

Local connectivity, as a connectivity layer for IoT (Internet of Things), refers to the ability of IoT devices to establish and maintain network connections within a localized environment, such as a home or office, without necessarily relying on a wide-area network (WAN) or the internet.

In the context of IoT, local connectivity focuses on the communication and interaction between IoT devices within a specific area or network. This local connectivity layer enables devices to connect and exchange data, commands, and information directly with each other, without the need for constant internet access or reliance on a centralized cloud infrastructure. Examples of local connectivity technologies commonly used in IoT include Wi-Fi, Bluetooth, Zigbee, Z-Wave, and Ethernet.

These technologies enable devices to create a local network and communicate with each other efficiently, facilitating device-to-device communication, data sharing, and coordinated actions within a confined environment. Local connectivity plays a crucial role in enabling IoT devices to operate autonomously and efficiently within their localized ecosystems, enhancing the scalability, reliability, and responsiveness of IoT applications.

Learn more about wide-area network here: brainly.com/question/15421877

#SPJ11

CHALLENGE ACTIVITY 10.2.1: Enter the output of multiple exception handlers. 375510.2350218.qx3zqy Jump to level 1 Type the program's output Input user_input = input() while user_input != 'end': try: # Possible ValueError divisor = int(user_input) if divisor < 0: # Possible Name Error # compute() is not defined print (compute (divisor), end='') else:

Answers

The output of the given program will depend on the input provided by the user. If the user enters a non-negative integer, the program will print the result of the "compute()" function applied to that integer. If the user enters any other input, the program will raise a ValueError exception.

The given code snippet demonstrates the use of exception handling in Python. Let's break down the code and understand how the output will be generated based on different scenarios.

First, the program initializes the "user_input" variable by taking input from the user using the input() function. The while loop continues until the user enters 'end' as the input, indicating the termination condition.

Within the loop, the program enters a try block, which encapsulates the code that may raise exceptions. Inside the try block, the program attempts to convert the user's input into an integer using the int() function and assigns the result to the "divisor" variable.

If the user enters a non-negative integer, the program proceeds to the next line, which tries to call a function named "compute" with the "divisor" as an argument. Here, we assume that the "compute()" function is defined elsewhere in the code. The program then prints the result of this function using the print() function with the "end=''" argument, which ensures that the output is not followed by a newline character.

On the other hand, if the user enters anything other than a non-negative integer, the int() function will raise a ValueError exception. In such a case, the program jumps to the except block, which handles the exception. The except block checks if the value of "divisor" is less than zero. If it is, the program attempts to print the result of the "compute()" function, which will raise a NameError since the function is not defined.

In summary, the output of the program will depend on the user's input. If the user enters a non-negative integer, the program will execute the "compute()" function and print the result. If the user enters any other input, a ValueError exception will be raised, and if the entered integer is less than zero, a NameError exception will also be raised. The actual output will be the output of the "compute()" function or the error messages raised by the exceptions.

To learn more about output

brainly.com/question/14227929

#SPJ11

Suppose memory has 256KB, OS use low address 20KB, there is one program sequence: (20) + Progl request 80KB, prog2 request 16KB, + Prog3 request 140KB + Progl finish, Prog3 finish; + Prog4 request 80KB, Prog5 request 120kb + Use first match and best match to deal with this sequence • (from high address when allocated) (1)Draw allocation state when prog1.2.3 are loaded into memory? (5) + (2)Draw allocation state when prog1, 3 finish? (5) + (3)use these two algorithms to draw the structure of free queue after progl, 3 finish (draw the allocation descriptor information,) (5) + (4) Which algorithm is suitable for this sequence? Describe the allocation process? (5)

Answers

When using first fit, Prog1 will be allocated the first 80KB block of memory, Prog2 will be allocated the next 16KB block of memory, and Prog3 will be allocated the remaining 140KB block of memory. When Prog1 and Prog3 finish, the free queue will have two blocks of memory: one that is 80KB and one that is 140KB. When using best fit, Prog1 will be allocated the first 80KB block of memory, Prog2 will be allocated the next 16KB block of memory, and Prog3 will be allocated the remaining 44KB block of memory. When Prog1 and Prog3 finish, the free queue will have one block of memory that is 104KB.

First fit is a simple algorithm that allocates the first block of memory that is large enough to satisfy a process's request. Best fit is a more sophisticated algorithm that searches the entire free queue for the smallest block of memory that is large enough to satisfy a process's request. In this case, first fit will result in a smaller amount of fragmentation than best fit. However, best fit will result in a more efficient use of memory because it will not waste any space on small holes.

In general, first fit is a good choice when memory fragmentation is not a major concern. Best fit is a good choice when memory fragmentation is a major concern.

To learn more about simple algorithm click here : brainly.com/question/32175121

#SPJ11

Answer with Java please! Write a method called splitTheBill that interacts with a user to split the total cost of a meal evenly. First ask the user how many people attended, then ask for how much each of their meals cost. Finally, print out a message to the user indicating how much everyone has to pay if they split the bill evenly between them.
Round the split cost to the nearest cent, even if this means the restaurant gets a couple more or fewer cents than they are owed. Assume that the user enters valid input: a positive integer for the number of people, and real numbers for the cost of the meals.
Sample logs, user input bold:
How many people? 4
Cost for person 1: 12.03
Cost for person 2: 9.57
Cost for person 3: 17.82
Cost for person 4: 11.07
The bill split 4 ways is: $12.62
How many people? 1
Cost for person 1: 87.02
The bill split 1 ways is: $87.02

Answers

Here's an example implementation of the splitTheBill method in Java:

import java.util.Scanner;

public class SplitTheBill {

   public static void main(String[] args) {

       splitTheBill();

   }

   public static void splitTheBill() {

       Scanner scanner = new Scanner(System.in);

       System.out.print("How many people? ");

       int numPeople = scanner.nextInt();

       double totalCost = 0.0;

       for (int i = 1; i <= numPeople; i++) {

           System.out.print("Cost for person " + i + ": ");

           double cost = scanner.nextDouble();

           totalCost += cost;

       }

      double splitCost = Math.round((totalCost / numPeople) * 100) / 100.0;

       System.out.println("The bill split " + numPeople + " ways is: $" + splitCost);

       scanner.close();

   }

}

In this program, the splitTheBill method interacts with the user using a Scanner object to read input from the console. It first asks the user for the number of people attending and then prompts for the cost of each person's meal. The total cost is calculated by summing up all the individual costs. The split cost is obtained by dividing the total cost by the number of people and rounding it to the nearest cent using the Math.round function. Finally, the program prints the split cost to the console.

Learn more about implementation here: brainly.com/question/13194949

#SPJ11

Design Octal-to-Binary Encoder using OR Gates.

Answers

An octal-to-binary encoder uses OR gates to convert octal input signals into binary output signals. It employs three OR gates, each with three input lines. The input lines are connected to the OR gates, and the outputs of the OR gates represent the binary encoded output.

1. An octal-to-binary encoder is a digital circuit that converts octal input signals into binary output signals using OR gates. The encoder consists of three OR gates, each with three input lines. The octal input lines are connected to the OR gates, and the binary output lines are the outputs of the OR gates. By applying the input signals, the encoder activates the corresponding OR gate, which in turn produces the binary output corresponding to the octal input.

2. An octal-to-binary encoder is designed to convert octal input signals into binary output signals. It is a combinational logic circuit that utilizes OR gates to perform the encoding operation. The encoder has three octal input lines, representing the three digits (0-7) in octal notation. These input lines are connected to three separate OR gates.

3. Each OR gate in the encoder has three inputs: the octal input line, the complement of the corresponding input line, and the complement of the other two input lines. The purpose of the complement inputs is to ensure that only one OR gate is activated at a time, based on the octal input applied.

4. The outputs of the three OR gates are the binary encoded signals. Each OR gate produces one bit of the binary output, resulting in a total of three binary output lines. The activated OR gate will have its output set to 1, while the outputs of the other OR gates will remain at 0.

5. To summarize, by activating the corresponding OR gate based on the applied octal input, the encoder produces the appropriate binary output.

learn more about encoder here: brainly.com/question/31381602

#SPJ11

What is cryptography? Explain transposition cipher with an 5 example

Answers

Cryptography is the practice of secure communication in the presence of third parties or adversaries.

Cryptography:

Cryptography has been used for centuries to secure communication in order to keep it private and confidential. Transposition ciphers transposition cipher is a type of cipher that encodes the plaintext by moving the position of letters or groups of letters in the message. In a transposition cipher, the letters or symbols of the plaintext message are rearranged or shuffled according to a system or algorithm to form the ciphertext message. Example 1In a rail fence cipher, the plaintext is written diagonally, alternating between the top and bottom rows. The letters in the ciphertext are then read off in rows. Example 2The columnar transposition cipher involves writing the plaintext out in rows, and then rearranging the order of the rows before reading off the columns vertically.Example 3 The double transposition cipher is a type of transposition cipher that involves two stages of permutation. The plaintext is first written out in a grid and then rearranged in a specific way before being read off in rows or columns. Example 4 The route cipher is a type of transposition cipher that involves writing out the plaintext message along a specific route, and then reading off the message in a specific order.Example 5 The fractionated transposition cipher involves writing out the plaintext message in columns of a specific length, and then rearranging the order of the columns before reading off the rows to form the ciphertext message.

know more about Cryptography.

https://brainly.com/question/88001

#SPJ11

Other Questions
A 0.2 kg ball of negligible size is attached to the free end of a simple pendulum of length 0.8 m. The pendulum is deflected to a horizontal position and then released without pushing. (Let g = = 10 Ignore the effects of air resistance. In the time instant in question, when the pendulum is vertical, the motion can be considered uniform circular motion.) a) What is the speed of the ball in the vertical position of the pendulum? b) Determine the centripetal acceleration of the ball in the vertical position of the pendulum! A=40E A=60E A=30E A=50E In cellular system, the G.O.S is 1% if 120 degree sectorization is applied for the RED cell then the total traffic in Erlang for this cell will be: * (3 Points) Final In a maternity ward, the statistics says that 5% of women have abnormal delivery. There ale 200 women this year in the maternity ward. What is the probability that 20 women will have abnormal delivery this year? Answer the following questions regarding obesity, answer infull sentences for each question.Is obesity due to lack of willpower?Is obesity hereditary?Explain how obesity can be treated effectivel Miguel and Alicia disagree about who introduced them to each other. Miguel insists that his cousin introduced them, while Alicia is equally sure that her best friend did so. In defense of her recollection, Alicia argues, "I have never liked your cousin even though we grew up together. I would never let him introduce me to anyone. That's how I know that what you're saying couldn't possibly be true." In reality, Miguel's cousin actually was the person who introduced them. How would a psychologist who studies reconstructive memory explain Alicia's faulty recollection? O Alicia's schema for Miguel's cousin is influencing her memory Alicia may have been drinking when she met Miguel, and the alcohol interfered with her memory. Alicia may have repressed her memory of mecting Miguel and is covering it up by inventing the story that her best friend introduced them O Alicia does not trust Miguel and automatically assumes everything he says is wrong O Alicia doesn't remember the meeting accurately because she didnt encode any of the details Find the surface area of this pyramid. *15 cmSquare pyramid60 square cmO457.5 square cm1800 square cmO 465 square cm8 cm (1) Give a reasonable Lewis structure, including formal charges, for HNC (N.B. N is the central atom). H, N, and C are in groups 1, 5, and 4 and their atomic numbers are 1, 7, and 6. A temperature typically above ~0.5-0.7 of the absolute melting point of the material is needed to enable sintering of the powder compact of the material because: Select one: O A. need high temperature to provide a high thermodynamic driving force for sintering. O B. need high temperature to provide some melting of the material to fuse the particles together. O C. need high temperature to increase surface energy of the particles. O D. need high temperature to provide sufficient activation energy for diffusion mechanism (s) involved in the sintering process. O E. need high temperature to provide small amount of liquid phase so that there is a fast diffusional pathway for sintering. OF. all of the above O G. none of the above An air stream containing 1.6 mol% of SO, is being scrubbed by pure water in a counter-current packed bed absorption column. The absorption column has dimensions of 1.5 m2 cross-sectional area and 3.5 m packed height. The air stream and liquid stream entering the column at a flowrate of 0.062 kmol s and 2.2 kmol s'; respectively. If the outlet mole fraction of SO2 in the gas is 0.004; determine: (1) Mole fraction of SO2 in the liquid outlet stream; [6 MARKS] (1) Number of transfer unit (Noa) for absorption of Sozi [4 MARKS] (ill) Height of transfer unit (Hoo) in meters. [2 MARKS] Additional information Equilibrium data of SO: For air stream entering the column, y * = 0.009 For air stream leaving the column, ya* = 0.0. help needed here!!!!!! Your client Ben is in his late 30s (married, with two kids) and working as a full-time doctor in ZZ hospital. He deposited all this money in the bank, but the interest rate is decreasing all the time. He heard that the return of stock investment is much higher. As he knows one medicine company very well, he plans to open a stock account and invest all his money in that company first. Subsequently as he gets to know other medicine companies, he planned to diversify his portfolio into those companies. Appraise Ben's investment plan.(Word limit - 200 words) A radio technician measures 118 V without modulation and 126 V with modulation at the output of an AM transmitter with 59 Ohms resistive load using the true RMS reading meter. What is the coefficient of modulation of the signal? No need for a solution. Just write your numeric answer in the space provided. Round off your answer to 2 decimal places. What Causes do you serve with level 5 ambitions? Support your answer with example from literature.?good to great book by jim collins A standard vacuum pump designed specifically for evacuation and dehydration can: A. Be used alone as a self-contained (active) recovery device. B. Never be used as a recovery device in combination with a pressurized container. C. Be used alone as a substitute for any recovery device. D. Be used alone as a system-dependent (passive) recovery device Write a Conclusion on Core concepts of CT(Thinking computationally) . Its must be 2000 words. For the parallel RLC circuit shown in Figure 3, L = 4 mH. (7 pts) a) Calculate the values of R and C that will give a quality factor of 500 and a resonant frequency of 5000 rad/s. b) Calculate half power frequencies w, W2. c) Determine the power dissipated at wo, w, and w. 10 sin wt (+ R Figure 3 ell L 1: Society cannot be studied in the same way as the natural world because (a) it is difficult for sociologists to gain, access to a research laboratory. (b) human behaviour is meaningful, and varies between individuals and cultures. c) we cannot collect empirical data about social life. (d) sociologists are not rational or critical enough in their approach. Overloading in the pugmill of the drum mix plant can cause non-uniform mixing. O True O False foci looked at (2,0) ,(-2,0) and eccentricity of 12 Magnetism A wire, 100 mm long, is moved at a uniform speed of 4 m/s at right angles to its length and to a uniform magnetic field. Calculate a) the density of the field if the e.m.f. generated in the wire is 0.15 V. (4) b) If the wire forms part of a closed circuit having a total resistance of 0.04 02. Calculate the force on the wire in newtons